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Abstract 

 Compartmental models in epidemiology are used to construct mathematical models reflecting the 

dynamic properties of infectious diseases, analyze the dynamic behavior of the model so formed, and 

perform some simulations. The research results help to predict the growth of infectious diseases, 

determine the key factors of their spread, and seek the optimum strategies for preventing and controlling 

their spread. This paper focuses on different compartmental models used in epidemiology. Different 

disease transmission rates applied to these models are mentioned.  Different incident rates bilinear (𝛽SI), 

saturated(
𝛽𝑆𝐼

1+𝛼 𝐼
), nonlinear (𝛽 𝑆𝐼𝑝), and standard Incidence (

𝛽 𝑆𝐼

𝑁
) have been comparatively studied  

Keywords: Compartmental model, transmission rate, nonlinear incidence. 

Introduction 

Historical Background 

Epidemic dynamics is an important method of studying the spread of infectious diseases. It is based on 

the specific property of population growth, the spread rule of infectious disease, and the related social 

factors, etc. Communicable diseases have been a great challenge to humankind since the beginning of 

human history. At present, we still have a deal with infectious diseases like measles, AIDS, Plague, 

Malaria, T.B., Dengue, SARI, and COVID-19. Millions of people die annually from these diseases, and 

billions of others are infected. These diseases will soon be eliminated with the improvement in medical 

science care and the awareness process. Communicable diseases caused by various microbes, pathogens 

or microorganisms have been a threat to public health (Martcheva, 2015). They are caused by pathogens 

and can be easily transmitted from one infected person to another non-infected person. The most common 

examples are influenza or flu, measles, rubella, HIV, mumps, malaria, and smallpox (Brauer et al., 2012; 

Waltman, 2013). The emergence and reemergence of infectious diseases have become a significant 

worldwide problem. So, a Proper understanding of disease transmission dynamics caused by existing and 

new pathogens facilitates devising prevention tools (Foppa, 2016; Dym, 2004). Prevention tools against 

the transmission of disease need to be developed. The implementation and proper use of these 

sophisticated tools against microbes is another challenge. This article addresses some theoretical 

frameworks and intends to provide some basic information about the infection mechanisms of microbes, 
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their orientation, control mechanisms and the role of mathematical models in epidemiology (Murray, 

2001; Banerjee, 2021).  

Most infectious disease dynamic models are based on the compartment structure of the disease. First 

provided by Kermack and McKendrick in 1927, the compartment structures for dynamic models were 

developed by numerous other bio-mathematicians in 1932 onwards. Those who recover from viral 

diseases such as influenza, measles, swine flu, and chikungunya develop immunity to the same virus. The 

SIR model can be used to describe these illnesses. Furthermore, those who recover from bacterial illnesses 

such as gonorrhoea, the bubonic plague, tuberculosis, syphilis, etc., do not develop immunity and are 

susceptible to re-infection. The SIS model can be used to investigate the dynamics of these illnesses. 

  The main objective of this paper is to overview of compartmental epidemiological models that 

incorporate different forms of incidence rates. 

Importance of Compartmental Models in Epidemiology 

Compartmental models are fundamental in epidemiology because they provide a simplified yet powerful 

framework for understanding how diseases spread in populations. Their importance lies in the following 

key aspects: 

1) Simplification of the complex system: Compartmental models divide a population into groups 

(compartments) based on disease status, such as susceptible (S), infected (I), recovered (R). This 

abstraction allows researchers to study the dynamics of disease transmission without needing to 

track every individual. 

2) Predicting disease spread: These models help forecast future outbreaks, estimate the peak of 

infections, and predict how long an epidemic might last by modelling transitions between 

compartments using differential equations.  

3) Evaluating control strategies: Compartmental models are crucial for simulating interventions such 

as vaccination programs, quarantine and isolation, social distancing, treatment or antiviral use. 

They help to determine the effectiveness and optimal timing of these interventions. 

4) Estimating epidemiological parameters: They enable estimation of key parameters like basic 

reproduction number, infection and recovery rates, and herd immunity thresholds. These estimates 

inform public health decisions.  

5)  Flexibility and extendibility: Models can be adapted to include: Age structure, spatial effects, 

latent periods (e.g., SEIR models), behavior change, reinfection or waning immunity.  

6) Guiding policy and public health decisions: Governments and health agencies use compartmental 

models for Planning resource allocation (e.g., hospital beds, vaccines), implementing timely 

interventions and communicating risks to the public.  
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  Fundamental Forms of Compartmental Models 

Compartmental models are mathematical frameworks used in epidemiology to describe the spread of 

infectious diseases within a population. These models divide the population into different compartments 

like susceptible (S), exposed (E), infected (I), recovered (R) and immune (M or P or Y) based on disease 

status and describe transitions between these compartments using differential equations.  Parameters 𝛽 

and 𝛾 are used to represent transmission rate and recovery rates. These compartmental models predict 

outbreaks, evaluate control measures (e.g., vaccination, quarantine), and estimate the basic reproduction 

number (R₀).  Age-structured models (Consider different transmission rates based on age groups), spatial 

models (incorporate geographic spread), and stochastic models (include random variations to capture 

uncertainty in disease spread) are some extended forms of these models.   

Models Without Latent Periods 

In these models, the infected individuals become infectious immediately (Martcheva, 2015). These 

models are as follows: 

1. SI Model: In this model, the infectives cannot recover from the infection. It is represented in Diagram 

2. The model equations are: 

 

Figure 2: SI model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, and 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 

2.  SIS Model: In this model, the infected individuals are recovered but gain no immunity from infection. 

It is a represented diagram. 3. The model equations are: 

 

Figure 3: SIS model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛾𝐼, and 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼. 

3. SIR Model: In this model, the infectives obtain permanent immunity to the disease after recovering 

from infection. It is represented by diagram 4. 
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Figure 4: SIR model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

= 𝐵𝐼(𝑆 − 𝜌) where 𝜌 =
𝛾

𝛽
 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

4. SIRS Model: In this model, the recovered individuals may have only temporary immunity after they 

recover from infection. Diagram 5 represents this model. 

 The model equations are: 

 

Figure 5: SIRS model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛿𝑅, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

𝛽𝐼(𝑆 − 𝜌), where 𝜌 =
𝛾

𝛽
 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛿𝑅. 

5. SIRI Model: In this model, the infective individuals cannot obtain permanent immunity to the disease 

when they recover from infection. Diagram 6 represents in model: The model  
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Figure 6: SIRI model 

 equations are: 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 + 𝛿𝑅 = 𝛽𝐼(𝑆 − 𝜌) + 𝛿𝑅, where 𝜌 =

𝛾

𝛽
, and 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛿𝑅. 

6. MSIR Model: Babies are not born into the susceptible compartment for many illnesses, such as 

measles, but are instead immune to the illness for the first several months of their lives because of 

maternal antibodies (either through the placenta or through colostrum).  This can be shown by 

including an M class (for maternally derived immunity) at the beginning of the model. It is represented 

by diagram 7. 

 

Figure 7: MSIR model 

Models with Latent Periods 

There is often a considerable period during which the affected person is infected but not yet contagious 

for many serious infections. In the course of this latent time, the person is in the exposed compartment 

(E) ( Martcheva, 2015). The following are these models: 

1. SEI Model: This model is represented by Diagram 8 

 

Figure 8: SEI model 

2. SEIR Model: In this model, the population is broken into four compartments: susceptible, exposed, 

infectious and recovered. This model is represented by Diagram 9. 

 

Figure 9: SEIR model 

3. SEIS Model: In this model, the population is broken into four compartments: susceptible, exposed, 

and infectious again susceptible. Diagram 10 represents this model. 

 

Figure 10: SEIS model 
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4. SEIRS Model: The population is divided into five compartments in this model: susceptible, exposed, 

infectious, recovered, and susceptible again. The representation of this model is Diagram 11 

5. MSEIR Model: The MSEIR model is used for epidemiological classes in cases of disease where the 

factors of latency period and passive immunity are present. Diagram 12 serves as a representation of 

this model. 

 where M is births and passive immunity. 

 

Figure 11: SEIRS model 

 

Figure 12: SEIRS model 

   Different Disease Transmission Rates 

Infectious diseases can be transmitted by direct contact. The contact rate of infection, represented by P(N), 

is the number of people contacted by an infectious per unit of time. Depending on the population as a 

whole, N. The persons may become infected if they come into contact with an infectious susceptible. 

Assume that there is a β0 probability of infection for every contact. Subsequently, the function β0N is 

referred to as an adequate contact rate, denoting the degree of infection caused by the infectious agents 

and typically reliant on the bacterial or viral toxicity and environmental conditions.  

The average rate at which susceptible individuals come into contact with infected persons per unit of time 

is known as the contact rate, and it is commonly represented by the symbol β. 

β = contact rate × β0. 

For example, if an average individual has 10 contacts per day and the probability of disease transmission 

per contact is 0.2 (20%), then β =10 contacts/day × 0.2 transmission/contact = 2 

This means that each susceptible individual is effectively exposed to the infection at a rate of 2 contacts 

per day. 

To determine the unit of β, we need to consider the units of its components: the average number of contacts 

per susceptible individual per unit of time and the probability of disease transmission per contact. The 

unit of β will be a combination of these units. An average number of contacts per susceptible individual 

per unit time has units of “contacts” per “unit time” (e.g., contacts per day, contacts per week), and the 
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probability of disease transmission per contact is a dimensionless quantity, as it represents a probability 

or a ratio. To obtain the unit of β, we multiply the units of the average number of contacts per susceptible 

individual per unit of time by the dimensionless unit of the probability of disease transmission per contact.  

Force of Infection 

The force of infection (often denoted by λ is a crucial concept in the mathematical modelling of infectious 

diseases. It quantifies the rate at which susceptible individuals become infected. Essentially, it measures 

the risk of infection for a susceptible person per unit of time, based on the current epidemiological 

conditions. 

It represents the rate at which susceptible individuals become infected per unit of time. It can be 

approximated as: The force of infection =  
𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑛×𝑇
      where T is period (1 year = 365 

days). 

The effective daily transmission rate (β) in the population is given by 

𝛽 =
𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑆
𝑁

 

 Assuming the initial number of susceptible individuals S is approximately the total population 𝑁,

(𝑆(𝑡) → 𝑁 ), especially at the beginning of the outbreak: 

 Bilinear incidence 

If the contact rate is proportional to the total population size, i.e. 𝑃(𝑁) =  𝑘𝑁, then the incidence 𝛽𝐼𝑆, 

where 𝛽 =  𝛽0𝑘, is called the transmission coefficient. This type of incidence is called a bilinear 

incidence or a simple mass action incidence. The transmission rate β is often assumed to be proportional 

to the product of the susceptible and infectious populations. It is called “bilinear” because it is a product 

of two linear terms: S and I. Bilinear incidence models are used in epidemiology to study the dynamics 

of various infectious diseases, including influenza, HIV/AIDS, and sexually transmitted infections. Most 

of the standard epidemiological models used a bilinear incidence rate. In this incidence rate, it is assumed 

that the population is homogeneously mixed and is normally used for airborne diseases. However, in case 

of a large number of susceptible or population is not homogeneously mixed (i.e. heterogeneous mixing), 

it is not realistic to consider the bilinear incidence rate due to the number of susceptible with which every 

infective contact is limited within a definite time. It allows researchers to explore how changes in the size 

of the susceptible and infectious populations affect the spread of the disease over time and to evaluate the 

potential impact of interventions such as vaccination or behavior change campaigns. 
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Standard Incidence 

If the contact rate is constant, i.e. 𝑃(𝑁) = 𝑘, then the incidence  𝛽
𝑆𝐼

𝑁
, where 𝛽 = 𝛽0𝑘 is called the standard 

incidence. If S, I, and N are several susceptible, infectious, and total populations at time t, respectively, 

then 
𝑆

𝑁
 and 

𝐼

𝑁
 represent the susceptible and infectious fractions, respectively. 

If β is the average number of adequate contacts of a single susceptible with other members of the 

population per unit time, then 
𝛽 𝐼

𝑁
𝛽 is the average number of contacts with infectives per unit time of a 

single susceptible and 𝛽
𝐼

𝑁
 𝑆, that is, 

𝛽𝐼𝑆

𝑁
 is the number of new cases per unit of time due to the S 

susceptible. Thus, 
𝛽𝐼𝑆

𝑁
 is the rate at which the susceptible population becomes infected. This form of 

horizontal incidence is called the standard incidence (proportionate mixing incidence) because it is 

formulated from the basic principles. The standard incidence rate adjusts the bilinear form by normalizing 

it for the total population N (usually the sum of susceptible, infected, and recovered individuals). This 

Incidence rate 𝛽𝑆
𝐼

𝑁
  is useful in models where the population size is large and possibly variable. 

Saturated Incidence Rate 

Saturated incidence rates are used in epidemic models when the transmission rate of the disease does not 

increase indefinitely with the number of infected individuals but instead levels off or saturates as infection 

levels rise. This can reflect real-world constraints such as limitations on the number of effective contacts 

due to behavioral changes, healthcare capacity, or other social factors. Saturated incidence rates are often 

represented using Michaelis-Menten kinetics, also known as the Holling type II functional response in 

ecological models. They are used to model scenarios where the incidence rate plateaus as the number of 

infected individuals becomes large, preventing the unrealistic assumption of unlimited growth in infection 

rate. The most commonly used saturated incidence rates are 
𝛽𝑆𝐼

1+𝛼𝑆
 and  

𝛽𝑆𝐼

1+𝛼𝐼
.  

Nonlinear Incidence Rate 

Nonlinear incidence rates in epidemiological models like the SIR and SIS models extend beyond the 

simple bilinear form and capture more complex interactions in disease transmission. These nonlinear rates 

can better represent various real-world scenarios where the rate of new infections does not increase 

proportionally with the number of susceptible and infected individuals. Liu et al. (1986, 1987) introduced 

a non-linear incidence rate of the form     𝛽𝐼𝑝 𝑆𝑞 ,  which shows a much wider range of dynamic behaviors 

than do those with a bilinear incidence rate   𝛽𝐼𝑆. These behaviours are determined mainly by p and β, 

and secondly by q. For these models, there may exist multiple equilibria in the feasible region, and thus 

the model becomes more general and informative. For more application of this incidence rate, one can 



                                          

53 

 

Journal of NAST College (JONC), Volume 1, Number 1-2, 2025 Raghu Bir Bhatta 

ISSN: 3102-0283 (Print) 

refer to (Dubey et al., 2015; Grigorieva et al., 2016; Wang et al., 2021). Different types of nonlinear 

incidence rates commonly used in SIR and SIS models are  
𝛽𝑆𝐼

1+𝛼𝐼
 , 

𝛽𝑆𝐼

1+𝛼𝑆
 ,  

𝛽𝑆𝐼

1+𝛼𝑆+𝛾𝐼 
 ,  

𝛽𝑆𝐼

1+𝛼(𝑆+𝐼)
 .  

Nonlinear incidence rates in SIR and SIS models provide a richer framework for modelling disease 

dynamics by incorporating more realistic factors such as saturation effects, population interactions, and 

behavioral responses. They allow for more accurate predictions and better insights into the spread and 

control of infectious diseases compared to simple bilinear models. 

Non-monotonic Incidence Rate 

A non-monotonic incidence rate in epidemiological models like the SIR or SIS models captures the 

complex dynamics where the rate of new infections does not simply increase or decrease with the number 

of susceptible or infected individuals but can also exhibit peaks and troughs. This can model phenomena 

where the infection rate might increase up to a certain point and then decrease, reflecting various real-

world scenarios such as behavioral changes, resource limitations, or public health interventions. Capasso 

& Serio (1978) proposed a non-monotonic incidence rate 𝑔(𝐼)𝑆 =
𝛽𝐼𝑆

1+𝛼𝐼2 in which g(I) is non-monotonic, 

that is, g(I) increases when I is small and decreases when I gets large. In this incidence rate, βI measures 

the force of infection, and 
1

1+𝛼𝐼2 describes the psychological or inhibitory effect from the behavioural 

change of the susceptibles when the number of infectives gets large. This is important because the number 

of effective contacts between infectives and susceptibles decreases at high infective levels due to the 

quarantine of infectives or due to the protective measures by the susceptible. 

The general incidence rate 𝑔(𝐼). 𝑆 =
𝛽𝐼𝑃

1+𝛼𝐼𝑞
  was given by Liu et al. (1986) and used by many authors 

(Moghadas & Gumel, 2002; Alexander & Moghadas, 2004; Khan et al., 2015). Logistic Incidence Rate 

( 𝛽𝑆𝐼(1 −
𝐼

𝐾
)), Oscillatory Incidence Rate ( 𝛽𝑆𝐼 𝑆𝑖𝑛(𝜔𝐼)), Threshold-Based Incidence Rate (  𝛽 𝑆𝐼

𝐴

𝐵+𝐼2
),

  Holling Type III Functional Response (  
𝛽𝑆𝐼2

1+𝛼𝐼2
), General Polynomial Form (  𝛽𝑆𝐼 (1 −

𝐼

𝐾
)

𝑛

) are 

some of the other monotonic incident rates. 

Non-monotonic incidence rates in SIR and SIS models offer a powerful tool for capturing the complex 

dynamics of disease spread. They reflect realistic scenarios where infection rates can increase up to a 

point and then decrease, exhibiting peaks and troughs due to various internal and external factors. These 

models are crucial for accurately predicting and managing epidemic behaviors in complex environments.  

Apart from the above-discussed incidence rates, several incident rates are investigated by researchers and 

provide detailed qualitative analyses of the models. In the case of the Yoga awareness model, the disease 



                                          

54 

 

Journal of NAST College (JONC), Volume 1, Number 1-2, 2025 Raghu Bir Bhatta 

ISSN: 3102-0283 (Print) 

transmission rate can be considered as   𝛽𝑒−𝑐𝑀 𝑆𝐼, where M is the Yoga awareness infected mass and c 

is constant (Bhatta, 2024).  

Discussion of Key Study 

Different compartmental models have been used in epidemiology because different diseases and public 

health questions require models with different levels of complexity and realism. Each compartmental 

model captures specific aspects of disease transmission, progression, and control strategies.   

The SIR model is used for diseases where recovery gives long-term immunity (e.g., measles, COVID-19 

in some cases).  The SEIR model adds an exposed (latent) class for diseases with an incubation period 

(e.g., Ebola, COVID-19).  The SIS model is used for diseases with no lasting immunity where recovered 

individuals become susceptible again (e.g., gonorrhea). The SEIRS model accounts for waning immunity, 

where recovered people may lose immunity and become susceptible again. 

The bilinear, saturated, standard, and nonlinear incident rates are important in mathematical 

modelling, especially in epidemiology and population dynamics. Each of these incident rates describes 

how a disease spreads based on the interaction between susceptible and infected individuals. Bilinear is 

basic and commonly used in SIR models. It assumes direct proportionality between susceptible (S) and 

infected (I) and has no saturation effect. Saturated incident rate accounts for behavioral or medical 

constraints limiting infection spread. Saturation occurs when infected individuals increase, and is suitable 

for modelling diseases with limited healthcare or contact. The standard rate is used in models with 

heterogeneous populations. It is a generalization of the bilinear model.  A non-linear rate is applied in 

complex epidemiological models. 

Conclusion 

 Various compartmental epidemic models have been studied. The mathematical modelling of different 

infectious diseases is mentioned. Different compartmental models are used to ensure that the model 

closely reflects the biological, social, and environmental realities of the disease being studied, thereby 

improving understanding, prediction, and control of epidemics. 

 This work also highlights the important relationship between different incident rates. Bilinear incident 

rate is used in basic SIR/SEIR models. Saturated incident rate is applied for diseases like COVID-19 with 

behavioral constraints and it is more realistic under high infection loads and limits explosive outbreaks. 

It captures more realistic contact saturation. Non-linear incident rates are used for great propagator 

situations and vector-borne diseases. It captures nonlinear infection dynamics (e.g. clustering). Standard 

incident rates are used when the total population varies and are normalized by total population size. 
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