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Abstract

Compartmental models in epidemiology are used to construct mathematical models reflecting the
dynamic properties of infectious diseases, analyze the dynamic behavior of the model so formed, and
perform some simulations. The research results help to predict the growth of infectious diseases,
determine the key factors of their spread, and seek the optimum strategies for preventing and controlling
their spread. This paper focuses on different compartmental models used in epidemiology. Different

disease transmission rates applied to these models are mentioned. Different incident rates bilinear (5SI),
saturated (%), nonlinear (B SI?), and standard Incidence (%) have been comparatively studied

Keywords: Compartmental model, transmission rate, nonlinear incidence.

Introduction

Historical Background

Epidemic dynamics is an important method of studying the spread of infectious diseases. It is based on
the specific property of population growth, the spread rule of infectious disease, and the related social
factors, etc. Communicable diseases have been a great challenge to humankind since the beginning of
human history. At present, we still have a deal with infectious diseases like measles, AIDS, Plague,
Malaria, T.B., Dengue, SARI, and COVID-19. Millions of people die annually from these diseases, and
billions of others are infected. These diseases will soon be eliminated with the improvement in medical
science care and the awareness process. Communicable diseases caused by various microbes, pathogens
or microorganisms have been a threat to public health (Martcheva, 2015). They are caused by pathogens
and can be easily transmitted from one infected person to another non-infected person. The most common
examples are influenza or flu, measles, rubella, HIV, mumps, malaria, and smallpox (Brauer et al., 2012;
Waltman, 2013). The emergence and reemergence of infectious diseases have become a significant
worldwide problem. So, a Proper understanding of disease transmission dynamics caused by existing and
new pathogens facilitates devising prevention tools (Foppa, 2016; Dym, 2004). Prevention tools against
the transmission of disease need to be developed. The implementation and proper use of these
sophisticated tools against microbes is another challenge. This article addresses some theoretical

frameworks and intends to provide some basic information about the infection mechanisms of microbes,
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their orientation, control mechanisms and the role of mathematical models in epidemiology (Murray,
2001; Banerjee, 2021).

Most infectious disease dynamic models are based on the compartment structure of the disease. First
provided by Kermack and McKendrick in 1927, the compartment structures for dynamic models were
developed by numerous other bio-mathematicians in 1932 onwards. Those who recover from viral
diseases such as influenza, measles, swine flu, and chikungunya develop immunity to the same virus. The
SIR model can be used to describe these illnesses. Furthermore, those who recover from bacterial illnesses
such as gonorrhoea, the bubonic plague, tuberculosis, syphilis, etc., do not develop immunity and are
susceptible to re-infection. The SIS model can be used to investigate the dynamics of these illnesses.

The main objective of this paper is to overview of compartmental epidemiological models that
incorporate different forms of incidence rates.

Importance of Compartmental Models in Epidemiology

Compartmental models are fundamental in epidemiology because they provide a simplified yet powerful
framework for understanding how diseases spread in populations. Their importance lies in the following

key aspects:

1) Simplification of the complex system: Compartmental models divide a population into groups
(compartments) based on disease status, such as susceptible (S), infected (1), recovered (R). This
abstraction allows researchers to study the dynamics of disease transmission without needing to
track every individual.

2) Predicting disease spread: These models help forecast future outbreaks, estimate the peak of
infections, and predict how long an epidemic might last by modelling transitions between
compartments using differential equations.

3) Evaluating control strategies: Compartmental models are crucial for simulating interventions such
as vaccination programs, quarantine and isolation, social distancing, treatment or antiviral use.
They help to determine the effectiveness and optimal timing of these interventions.

4) Estimating epidemiological parameters: They enable estimation of key parameters like basic
reproduction number, infection and recovery rates, and herd immunity thresholds. These estimates
inform public health decisions.

5) Flexibility and extendibility: Models can be adapted to include: Age structure, spatial effects,
latent periods (e.g., SEIR models), behavior change, reinfection or waning immunity.

6) Guiding policy and public health decisions: Governments and health agencies use compartmental
models for Planning resource allocation (e.g., hospital beds, vaccines), implementing timely

interventions and communicating risks to the public.
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Fundamental Forms of Compartmental Models

Compartmental models are mathematical frameworks used in epidemiology to describe the spread of
infectious diseases within a population. These models divide the population into different compartments
like susceptible (S), exposed (E), infected (1), recovered (R) and immune (M or P or Y) based on disease
status and describe transitions between these compartments using differential equations. Parameters
and y are used to represent transmission rate and recovery rates. These compartmental models predict
outbreaks, evaluate control measures (e.g., vaccination, quarantine), and estimate the basic reproduction
number (Ro). Age-structured models (Consider different transmission rates based on age groups), spatial
models (incorporate geographic spread), and stochastic models (include random variations to capture

uncertainty in disease spread) are some extended forms of these models.

Models Without Latent Periods

In these models, the infected individuals become infectious immediately (Martcheva, 2015). These

models are as follows:

1. SI Model: In this model, the infectives cannot recover from the infection. It is represented in Diagram
2. The model equations are:

ST

Y

Figure 2: SI model

as _ dl _
= = —BSI, and - = BSI

2. SIS Model: In this model, the infected individuals are recovered but gain no immunity from infection.

It is a represented diagram. 3. The model equations are:

I

BST

Figure 3: SIS model

as _ _ ar _ —
== ﬁSI+yI,anddt—ﬁSI yl.

3. SIR Model: In this model, the infectives obtain permanent immunity to the disease after recovering

from infection. It is represented by diagram 4.
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I i

Figure 4: SIR model

ds
@ = ~hsL
dl

= BI(S — p) where p =%
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SIRS Model: In this model, the recovered individuals may have only temporary immunity after they

recover from infection. Diagram 5 represents this model.

The model equations are:

BSI ; 71 —

SR
Figure 5: SIRS model

as _
8 = —psI+6R,

dl

BI(S — p), where p = %

dR

SIRI Model: In this model, the infective individuals cannot obtain permanent immunity to the disease

when they recover from infection. Diagram 6 represents in model: The model

BSI

s "1 R

i

OR
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Figure 6: SIRI model

equations are:

. ﬁSI,%zﬁSI—yI+6R=ﬁI(S—p)+6R,Wherep=%,andi—f=y1—6R.

dat

6. MSIR Model: Babies are not born into the susceptible compartment for many illnesses, such as
measles, but are instead immune to the illness for the first several months of their lives because of
maternal antibodies (either through the placenta or through colostrum). This can be shown by
including an M class (for maternally derived immunity) at the beginning of the model. It is represented

by diagram 7.
s T
Figure 7: MSIR model

Models with Latent Periods

There is often a considerable period during which the affected person is infected but not yet contagious
for many serious infections. In the course of this latent time, the person is in the exposed compartment

(E) ( Martcheva, 2015). The following are these models:

1. SEI Model: This model is represented by Diagram 8

S gt E A 1]

Figure 8: SEI model

2. SEIR Model: In this model, the population is broken into four compartments: susceptible, exposed,

infectious and recovered. This model is represented by Diagram 9.

o | BsI WE 71
Ay

Figure 9: SEIR model

3. SEIS Model: In this model, the population is broken into four compartments: susceptible, exposed,

and infectious again susceptible. Diagram 10 represents this model.

I
Vo7, »E ‘
31

Figure 10: SEIS model
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4. SEIRS Model: The population is divided into five compartments in this model: susceptible, exposed,

infectious, recovered, and susceptible again. The representation of this model is Diagram 11

5. MSEIR Model: The MSEIR model is used for epidemiological classes in cases of disease where the
factors of latency period and passive immunity are present. Diagram 12 serves as a representation of

this model.

where M is births and passive immunity.

Figure 11: SEIRS model

M S— E— [ — R

Figure 12: SEIRS model
Different Disease Transmission Rates

Infectious diseases can be transmitted by direct contact. The contact rate of infection, represented by P(N),
is the number of people contacted by an infectious per unit of time. Depending on the population as a
whole, N. The persons may become infected if they come into contact with an infectious susceptible.
Assume that there is a fo probability of infection for every contact. Subsequently, the function BON is
referred to as an adequate contact rate, denoting the degree of infection caused by the infectious agents

and typically reliant on the bacterial or viral toxicity and environmental conditions.

The average rate at which susceptible individuals come into contact with infected persons per unit of time

is known as the contact rate, and it is commonly represented by the symbol f3.
B = contact rate x Bo.

For example, if an average individual has 10 contacts per day and the probability of disease transmission

per contact is 0.2 (20%), then B =10 contacts/day x 0.2 transmission/contact = 2

This means that each susceptible individual is effectively exposed to the infection at a rate of 2 contacts

per day.

To determine the unit of B, we need to consider the units of its components: the average number of contacts
per susceptible individual per unit of time and the probability of disease transmission per contact. The
unit of B will be a combination of these units. An average number of contacts per susceptible individual
per unit time has units of “contacts” per “unit time” (e.g., contacts per day, contacts per week), and the
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probability of disease transmission per contact is a dimensionless quantity, as it represents a probability
or a ratio. To obtain the unit of B, we multiply the units of the average number of contacts per susceptible

individual per unit of time by the dimensionless unit of the probability of disease transmission per contact.

Force of Infection

The force of infection (often denoted by A is a crucial concept in the mathematical modelling of infectious
diseases. It quantifies the rate at which susceptible individuals become infected. Essentially, it measures
the risk of infection for a susceptible person per unit of time, based on the current epidemiological

conditions.

It represents the rate at which susceptible individuals become infected per unit of time. It can be

Total Infected individuals

approximated as: The force of infection = —

where T is period (1 year = 365
days).

The effective daily transmission rate () in the population is given by

force of infection
- S

N

Assuming the initial number of susceptible individuals S is approximately the total population N,

(S(t) = N), especially at the beginning of the outbreak:
Bilinear incidence

If the contact rate is proportional to the total population size, i.e. P(N) = kN, then the incidence IS,
where B = ok, is called the transmission coefficient. This type of incidence is called a bilinear
incidence or a simple mass action incidence. The transmission rate 3 is often assumed to be proportional
to the product of the susceptible and infectious populations. It is called “bilinear” because it is a product
of two linear terms: S and I. Bilinear incidence models are used in epidemiology to study the dynamics
of various infectious diseases, including influenza, HIV/AIDS, and sexually transmitted infections. Most
of the standard epidemiological models used a bilinear incidence rate. In this incidence rate, it is assumed
that the population is homogeneously mixed and is normally used for airborne diseases. However, in case
of a large number of susceptible or population is not homogeneously mixed (i.e. heterogeneous mixing),
it is not realistic to consider the bilinear incidence rate due to the number of susceptible with which every
infective contact is limited within a definite time. It allows researchers to explore how changes in the size
of the susceptible and infectious populations affect the spread of the disease over time and to evaluate the

potential impact of interventions such as vaccination or behavior change campaigns.
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Standard Incidence

If the contact rate is constant, i.e. P(N) = k, then the incidence % where 8 = B,k is called the standard
incidence. If S, I, and N are several susceptible, infectious, and total populations at time t, respectively,

then % and % represent the susceptible and infectious fractions, respectively.

If B is the average number of adequate contacts of a single susceptible with other members of the

population per unit time, then %ﬁ is the average number of contacts with infectives per unit time of a

BIS

single susceptible and ﬁ% S, that is, ~ Is the number of new cases per unit of time due to the S

susceptible. Thus, % is the rate at which the susceptible population becomes infected. This form of

horizontal incidence is called the standard incidence (proportionate mixing incidence) because it is
formulated from the basic principles. The standard incidence rate adjusts the bilinear form by normalizing

it for the total population N (usually the sum of susceptible, infected, and recovered individuals). This

Incidence rate ﬁS% is useful in models where the population size is large and possibly variable.

Saturated Incidence Rate

Saturated incidence rates are used in epidemic models when the transmission rate of the disease does not
increase indefinitely with the number of infected individuals but instead levels off or saturates as infection
levels rise. This can reflect real-world constraints such as limitations on the number of effective contacts
due to behavioral changes, healthcare capacity, or other social factors. Saturated incidence rates are often
represented using Michaelis-Menten kinetics, also known as the Holling type Il functional response in
ecological models. They are used to model scenarios where the incidence rate plateaus as the number of

infected individuals becomes large, preventing the unrealistic assumption of unlimited growth in infection

.. SI SI
rate. The most commonly used saturated incidence rates are ﬁ and %

Nonlinear Incidence Rate

Nonlinear incidence rates in epidemiological models like the SIR and SIS models extend beyond the
simple bilinear form and capture more complex interactions in disease transmission. These nonlinear rates
can better represent various real-world scenarios where the rate of new infections does not increase
proportionally with the number of susceptible and infected individuals. Liu et al. (1986, 1987) introduced
a non-linear incidence rate of the form  SI?P S49, which shows a much wider range of dynamic behaviors
than do those with a bilinear incidence rate SIS. These behaviours are determined mainly by p and f,
and secondly by g. For these models, there may exist multiple equilibria in the feasible region, and thus

the model becomes more general and informative. For more application of this incidence rate, one can
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refer to (Dubey et al., 2015; Grigorieva et al., 2016; Wang et al., 2021). Different types of nonlinear

BSI  BSI BSI BSI
1+al ' 1+aS’ 1+aS+yl ' 1+a(S+I)

incidence rates commonly used in SIR and SIS models are

Nonlinear incidence rates in SIR and SIS models provide a richer framework for modelling disease
dynamics by incorporating more realistic factors such as saturation effects, population interactions, and
behavioral responses. They allow for more accurate predictions and better insights into the spread and

control of infectious diseases compared to simple bilinear models.

Non-monotonic Incidence Rate

A non-monotonic incidence rate in epidemiological models like the SIR or SIS models captures the
complex dynamics where the rate of new infections does not simply increase or decrease with the number
of susceptible or infected individuals but can also exhibit peaks and troughs. This can model phenomena
where the infection rate might increase up to a certain point and then decrease, reflecting various real-

world scenarios such as behavioral changes, resource limitations, or public health interventions. Capasso
BIS

1+al?

& Serio (1978) proposed a non-monotonic incidence rate g(I)S = in which g(I) is non-monotonic,

that is, g(I) increases when I is small and decreases when I gets large. In this incidence rate, Bl measures

1
1+al?

change of the susceptibles when the number of infectives gets large. This is important because the number

the force of infection, and

describes the psychological or inhibitory effect from the behavioural

of effective contacts between infectives and susceptibles decreases at high infective levels due to the

quarantine of infectives or due to the protective measures by the susceptible.

pIP

1+ald

The general incidence rate g(1).S = was given by Liu et al. (1986) and used by many authors

(Moghadas & Gumel, 2002; Alexander & Moghadas, 2004; Khan et al., 2015). Logistic Incidence Rate
A

(BSI(1 — é)), Oscillatory Incidence Rate ( BSI Sin(wl)), Threshold-Based Incidence Rate ( S SI B+12)'
. . BSI? . I\"
Holling Type 111 Functional Response ( 1+a12)’ General Polynomial Form ( SSI (1 _E) ) are

some of the other monotonic incident rates.

Non-monotonic incidence rates in SIR and SIS models offer a powerful tool for capturing the complex
dynamics of disease spread. They reflect realistic scenarios where infection rates can increase up to a
point and then decrease, exhibiting peaks and troughs due to various internal and external factors. These

models are crucial for accurately predicting and managing epidemic behaviors in complex environments.

Apart from the above-discussed incidence rates, several incident rates are investigated by researchers and
provide detailed qualitative analyses of the models. In the case of the Yoga awareness model, the disease
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transmission rate can be considered as Be~M SI, where M is the Yoga awareness infected mass and ¢
is constant (Bhatta, 2024).

Discussion of Key Study

Different compartmental models have been used in epidemiology because different diseases and public
health questions require models with different levels of complexity and realism. Each compartmental
model captures specific aspects of disease transmission, progression, and control strategies.

The SIR model is used for diseases where recovery gives long-term immunity (e.g., measles, COVID-19
in some cases). The SEIR model adds an exposed (latent) class for diseases with an incubation period
(e.g., Ebola, COVID-19). The SIS model is used for diseases with no lasting immunity where recovered
individuals become susceptible again (e.g., gonorrhea). The SEIRS model accounts for waning immunity,
where recovered people may lose immunity and become susceptible again.

The bilinear, saturated, standard, and nonlinear incident rates are important in mathematical
modelling, especially in epidemiology and population dynamics. Each of these incident rates describes
how a disease spreads based on the interaction between susceptible and infected individuals. Bilinear is
basic and commonly used in SIR models. It assumes direct proportionality between susceptible (S) and
infected (I) and has no saturation effect. Saturated incident rate accounts for behavioral or medical
constraints limiting infection spread. Saturation occurs when infected individuals increase, and is suitable
for modelling diseases with limited healthcare or contact. The standard rate is used in models with
heterogeneous populations. It is a generalization of the bilinear model. A non-linear rate is applied in

complex epidemiological models.

Conclusion

Various compartmental epidemic models have been studied. The mathematical modelling of different
infectious diseases is mentioned. Different compartmental models are used to ensure that the model
closely reflects the biological, social, and environmental realities of the disease being studied, thereby
improving understanding, prediction, and control of epidemics.

This work also highlights the important relationship between different incident rates. Bilinear incident
rate is used in basic SIR/SEIR models. Saturated incident rate is applied for diseases like COVID-19 with
behavioral constraints and it is more realistic under high infection loads and limits explosive outbreaks.
It captures more realistic contact saturation. Non-linear incident rates are used for great propagator
situations and vector-borne diseases. It captures nonlinear infection dynamics (e.g. clustering). Standard

incident rates are used when the total population varies and are normalized by total population size.
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