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Abstract 

Digital images have been a major form of transmission of visual information, but due to the presence of noise, 

the image gets corrupted. Thus, processing of the received image needs to be done before being used in an 

application. Denoising of image involves data manipulation to remove noise in order to produce a good quality 

image retaining different details. Quantitative measures have been used to show the improvement in the quality 

of the restored image by the use of various thresholding techniques by the use of parameters mainly, MSE 

(Mean Square Error), PSNR (Peak-Signal-to-Noise-Ratio) and SSIM (Structural Similarity index). Here, non-

linear wavelet transform denoising techniques of natural images are studied, analyzed and compared using 

thresholding techniques such as soft, hard, semi-soft, LevelShrink, SUREShrink, VisuShrink and BayesShrink. 

On most of the tests, PSNR and SSIM values for LevelShrink Hard thresholding method is higher as compared 

to other thresholding methods. For instance, from tests PSNR and SSIM values of lena image for VISUShrink 

Hard, VISUShrink Soft, VISUShrink Semi Soft, LevelShrink Hard, LevelShrink Soft, LevelShrink Semi Soft, 

SUREShrink, BayesShrink thresholding methods at the variance of 10 are 23.82, 16.51, 23.25, 24.48, 23.25, 

20.67, 23.42, 23.14 and 0.28, 0.28, 0.28, 0.29, 0.22, 0.25, 0.16 respectively which shows that the PSNR and 

SSIM values for LevelShrink Hard thresholding method is higher as compared to other thresholding methods, 

and so on. Thus, it can be stated that the performance of LevelShrink Hard thresholding method is better on 

most of tests. 

 

Keywords: Image denoising, gaussian noise, salt and pepper noise, discrete wavelet transform, thresholding, 

non-linear wavelet techniques, Peak-Signal-to-Noise-Ratio (PSNR), SSIM (Structural Similarity Index). 

 

1. Introduction 

Noise removal is the most common and important 

preprocessing step in image processing applications. 

Image processing requires the denoising of image as 

one of its most vital parts. As the data consist of 

noise, many great studies have been done in this 

field. The newest one being the wavelet transforms 

which can be applied for digital signal and image 

processing for denoising and compression of data. 

The main objective of denoising is to recover the best 

estimate of the original image from its noisy version.  
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The denoising of a natural image corrupted by 

Gaussian noise is an abiding problem in signal 

processing.  Images are also frequently corrupted by 

impulse noise, that is, salt and pepper noise, due to 

the faulty memory locations or timing errors in 

analog to digital conversion. Generally, non- linear 

filtering techniques are used in the removal of salt 

and pepper noise. The aim of an image-denoising 

algorithm is to recover the clean image from its noisy 

version by removing the noise and retaining the 

maximum possible image information. When the 

signal corruption is modeled as a Gaussian process, 

then the accuracy criterion is the mean square error 

“MSE” (Asem et al., 2013;V. Strela, 2000;Mohen et 

al., 2006). However, designing a filter based on this 

assumption frequently results in a filtered image that 

is more visually displeasing than the original noisy 

signal, even though the filtering operation 

successfully reduces the MSE. 
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1.1. Non-Linear Threshold Filtering 

The most investigated domain in denoising using 

wavelet transform is the non-linear coefficient 

thresholding based methods. In the wavelet hard 

thresholding technique (Mohen et al., 2006), each 

coefficient after applying wavelet transform is 

compared with a threshold value. If the coefficient is 

smaller than threshold, set to zero, else it is 

preserved.  

In order to overcome the demerits of hard 

thresholding, wavelet transform using soft 

thresholding was introduced in (Asem et al., 2013; 

Fodor and Kamath, 2001). An improvement in 

wavelet thresholding is soft thresholding. In this 

method, firstly the k level decomposition is 

performed then,thresholding is applied to noisy 

coefficient. 

One of the most known algorithms in non–adaptive 

threshold is VisuShrink (Asem et al., 2013; Fodor 

and Kamath, 2001) which depends only on number 

of data points. VISUShrink is known to yield overly 

smoothed images because its threshold choice can be 

unwarrantedly large due to its dependence on the 

number of pixels in the image. 

SUREShrink uses a hybrid of the universal threshold 

and the “SURE” (Stein’s Unbiased Risk Estimator) 

threshold and performs better than VISUShrink. 

BayesShrink (Asem et al., 2013; Simoncelli and 

Adelson, 1996;Chipman et al., 1997) minimizes the 

Bayes’ Risk Estimator function assuming 

Generalized Gaussian prior and thus yielding data 

adaptive threshold. BayesShrink outperforms 

SUREShrink most of the times. 

 

1.2. Image Denoising Techniques 

1.2.1 Noise Model 

1.2.1.1 Gaussian Noise 

Noise having Gaussian-like distribution in the noisy 

image is the sum of the true pixel value and a random 

Gaussian distributed noise value (Jain, 1989).This 

type of noise with a Gaussian distribution has a bell-

shaped probability distribution function given by, 

 

     
 

      
 
       

    (1) 

Where g represents the gray level, m is the mean or 

average of the function and σ is the standard 

deviation of the noise. 

 

 
Fig 1 Gaussian distribution 

 

1.2.1.2 Salt and Pepper Noise 

Salt and Pepper noise is a kind of impulse noise 

having intensity spikes. The salt and pepper noise has 

scattered bright & dark disruptions with different 

intensities of color as compared with their 

neighboring pixels. The noisy pixel in case of salt & 

pepper noise has no relation with the color of the 

neighboring pixel affecting a small number of pixels. 

The contaminated image looks like it contains light 

and dark dots, and hence the name salt & pepper 

noise. For an 8-bit image, the minimum value i.e. 

pepper noise is set as 0, and the salt noise which has 

maximum value is set as 255. Salt and pepper noise 

occurs due to the defected pixels in the camera 

sensors and timing errors in the digitization error or 

faulty memory locations (Harleen et al., 2013;Saxena 

and Kourav, 2014). 

 

1.2.2 Discrete Wavelet Transform 

A Discrete Wavelet Transform (DWT) is any wavelet 

transform for which the wavelets are discretely 

sampled.DWT is a fast, linear operation on a data 

vector having the length with an integer power of 2. 

An image can be decomposed into a sequence of 

different spatial resolution image using DWT. In case 

of an image, an N level decomposition can be 

performed resulting in 3N+1 different frequency 

bands (sub bands) such as LL, LH, HL and HH as 

shown in Fig 2. 
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Fig 2 DWT with 3-Level decomposition  

(Perumal et al., 2008) 

 

The sub-bands HHk, HLk, LHkare called the details 

coefficients, where k = 1, 2, …,j; k is the 

decomposition level and j denotes the largest or 

coarsest scale in decomposition and LLkis the 

approximation coefficient which is low resolution 

component. The next level of wavelet transform is 

applied to the low frequency sub band image LL 

only. The Gaussian noise will nearly be averaged out 

in low frequency wavelet coefficients. Therefore, 

only the wavelet coefficients in the high frequency 

levels need to be threshold. As a final step in the 

denoising algorithm, the inverse discrete wavelet 

transform is applied to build back the modified image 

from its coefficients. 

 

1.2.3 Thresholding Methods 

Thresholding methods use a threshold and determine 

the clean wavelet coefficients based on this threshold.  

 

1.2.3.1 Hard Thresholding Method 

The hard-thresholding function chooses all wavelet 

coefficients whose magnitudes are greater than the 

selected threshold value λ to remain as they are and 

the others with magnitudes smaller than λ are set to 

zero (Parmar, 2015). Mathematically, it is 

 

       
       
           

  (2) 

 

The threshold λ is chosen according to the signal 

energy and the noise variance (σ
2
). 

 

 
Fig 3 Hard-thresholding (Asem et al., 2013; 

Rangarajan et al., 2002) 

 

1.2.3.2 Soft Thresholding Method 

The soft-thresholdingfunction shrinks the wavelet 

coefficients by λ towards zero, and hence arealso 

called the wavelet shrinkage function. Soft 

thresholding is where the coefficients with greater 

than the threshold are shrunk towards zero after 

comparing them to a threshold value(Parmar, 2015). 

 

       
                       

           
  (3) 

 

The soft-thresholding rule is chosen over hard-

thresholding, for the soft-thresholding method yields 

more visually pleasant images over hard 

thresholding. 

 

 
Fig 4 Soft-thresholding (Asem et al., 

2013;Rangarajan et al., 2002) 

 

1.2.3.3 Semi- Soft Thresholding Method 

By choosing appropriate thresholds, semi-soft 

shrinkage offers advantages over both hard shrinkage 

and soft shrinkage (Parmar, 2015). 

 

        

            

        
        

     
 

        

               (4) 

 

1.2.3.4 Universal Thresholding Method 

The most original threshold, Universal Threshold, 
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was proposed by Donoho and Johnstone and is 

formulated as (Doye and Ruikar, 2011): 

 

                  (5)

   

Where M is the signal size and σ
2
 is noise variance 

estimated from the sub-band HH1. 

 

1.2.3.5 LevelShrink Filter 

LevelShrink filter is a level-dependent thresholding 

algorithm which adopts different thresholds for 

different levels of the wavelet tree to improve the 

performance of the original wavelet thresholding 

method. It is calculated as: 

 

          
      

  (6) 

 

Where J is the total number of decomposition levels 

and j is the scale level where the wavelet coefficient 

to be thresholded is located. 

 

1.2.3.6 VisuShrink Filter 

VisuShrink is thresholding by applying the Universal 

threshold proposed by Donoho and Johnstone. For 

denoising images, VisuShrink is found to yield an 

overly smoothed estimate. It is formulated as: 

 

              (7)

  

Where σ
2
 is the noise variance present in the signal 

and M represents the signal size or number of 

samples (Parmar, 2015). 

 

1.2.3.7 SureShrink Filter 

An adaptive threshold, called SureShrink, was 

developed by Donoho and Johnstone, which is named 

from Stein’s unbiased risk estimation (SURE) (Cho, 

2004). SureShrink is the combination of the universal 

threshold and the SURE threshold (Luisier et al, 

2007). Sure Shrink (Luisier et al, 2007) is an adaptive 

thresholding method where the wavelet coefficients 

are treated in level-by-level fashion. SureShrink is 

used for suppression of additive noise in wavelet-

domain where a threshold ‘T’ SURE is employed for 

denoising(Singh and Wadhwani, 2015). 

The threshold parameter ‘T’ SURE is expressed as: 

 

                      (8)

  

Where the Stein’s Unbiased Risk (SURE) is 

minimized as follows: 

 

              
 

  
                 

 =1       , 2 (9)  

 

where N is the number of samples; J is the number of 

channels; Nj is the number of samples in the channel 

j; σ
2
 is noise variance and y is the coefficient of the 

sub band. 

 

1.2.3.8 BayesShrink Filter 

BayesShrink is an adaptive data-driven threshold 

driven in a Bayesian framework, and we assume 

generalized Gaussian distribution (GGD) for the 

wavelet coefficients in each detail sub band and try to 

find the threshold T, which minimizes the Bayesian 

Risk. The goal of this method is to minimize the 

Bayesian risk, and hence its name, 

BayesShrink(Doye and Ruikar, 2011). The Bayes 

threshold, TB, is defined as: 

 

   
  

   
  (10) 

 

Where σ
2
 is the noise variance and σs

2
 is the signal 

variance without noise. The noise variance σ
2 

is 

estimated from the sub band HH by the median 

estimator. From the definition of additive-noise we 

have, 

 

                     (11) 

 

Since the noise and the signal are independent of 

each other, it can be stated that  

 

  
    

     (12) 

 

Where σw
2
can be computed as shown below:  

 

  
  

 

  
    

           (13) 

 

The variance of the signal, σs
2
 is computed as 

 

                   (14) 

 

With σ
2 

and σs
2
, the Bayes threshold is computed. 
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Using this threshold, the wavelet coefficients are 

threshold at each band (Perumal et al, 2008; Poleselet 

al, 2000). 

 

2. Evaluation 

The performance of each algorithm is compared by 

computing MSE, PSNR and SSIM, besides the visual 

interpretation. MSE, PSNR and SSIM are the three 

parameters used in this paper for comparison of 

denoising techniques.  Mean square error (MSE) is 

calculated as: 

 

    
 

   
                    

   
 
    (15) 

Where x is the original image and x' is the denoised 

image. 

PSNR is the peak signal to noise ratio. PSNR is the 

most commonly used parameter to measure the 

quality of reconstruction image with respect to the 

original image. A higher PSNR would normally 

indicate that the reconstruction is of higher quality. 

PSNR is usually expressed in terms of the 

logarithmic decibel scale (dB). PSNR of 

reconstructed image is formulated as:  

 

             
    

   
  (16) 

 

The Structural SIMilarity (SSIM) index is a method 

for measuring the similarity between two images. 

The SSIM index can be viewed as a quality measure 

of one of the images being compared provided the 

other image is regarded as of perfect quality. SSIM is 

designed to improve on traditional methods such 

as peak signal-to-noise ratio (PSNR) and mean 

squared error (MSE). 

The SSIM index is calculated on various windows of 

an image. The measure between two 

windowsxand y of common size N×N is: 

 

          
                   

   
    

        
    

     
 (17) 

with: 

µxthe average of x; 

µy the average of y; 

σx
2
 the variance of x; 

σy
2
 the variance of y; 

σxy the covariance of x and y; 

c1= (k1L)
2
, c2= (k2L)

2
  two variables to stabilize the 

division with weak denominator; 

L the dynamic range of the pixel-values (typically 

this is 2
#bits per pixel

-1); 

k1= 0.01 and k2= 0.03 by default. 

The SSIM index satisfies the condition of 

symmetry: SSIM(x, y) = SSIM(y, x).  
 

3. Illustration of Proposed Algorithm 
 

1. Input image xi,jcorrupted with visual noise. 

2. Compute the Discrete Wavelet Transform 
 

                  (18) 
 

Where αj,k and βj,k are the transform 

coefficients and basic functions respectively. 

3. Apply different wavelet schemes. 

4. Estimate the wavelet coefficients of an 

image produced by different wavelet 

schemes. 

5. Compute the inverse discrete wavelet 

transform. 

 

4. Simulated Results And Discussion 

Different test images i.e. lena.jpeg, cameraman.jpeg, 

peppers.jpeg and mandrill.jpeg, of size 256 x 256 are 

taken for Gaussian noise application and 

airplane.png, barbara.png, and boat.png (512 x 512) 

images for Salt & Pepper Noise application as input 

images for simulation of results. 

 

Test images for Gaussian Noise Application: 
 

Original Images 

 
Fig 5 (a)Lena.jpeg (b) Cameraman.jpeg  

(c)Peppers.jpeg (d) Mandrill.jpeg 

Test images for Salt & Pepper Noise Application: 

Original Images 

 
Fig 6 (a)airplane.png (b) barbara.png (c) boat.png 
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Table 1 PSNR Values for Lena image (Level 3) 

Methods 
Variance 

 
10 20 30 40 

VISU hard 26.45 29.51 27.51 34.54 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 25.18 25.95 25.29 25.92 

VISU semi 

soft 
26.56 29.9 36.86 31.06 

Level Shrink 

hard 
26.24 28.05 28.83 33.65 

Level Shrink 

soft 
25.52 27.87 30.36 32.17 

Level Shrink 

semi soft 
26.31 29.84 30.36 51.85 

SURE shrink 26.23 28.39 29.03 31.84 

Bayes Shrink 29.9 30.1 30.49 32.15 

 

Table 2 SSIM Values for Lena image (Level 3) 

Methods 
Variance 

 
10 20 30 40 

VISU hard 0.28 0.23 0.23 0.14 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.28 0.25 0.25 0.22 

VISU semi 

soft 
0.28 0.22 0.09 0.16 

Level Shrink 

hard 
0.29 0.2 0.15 0.11 

Level Shrink 

soft 
0.28 0.22 0.17 0.14 

Level Shrink 

semi soft 
0.22 0.13 0.17 0.12 

SURE shrink 0.24 0.2 0.18 0.14 

Bayes Shrink 0.16 0.16 0.15 0.14 

 

Visual Results: 
 

 
Fig 7 (a) Original image (b) Noisy Image, Denoised 

by: (c) VISUShrink Hard (d) VISUShrink Soft(e) 

VISUShrink semi-soft (f) Level Shrink Hard (g) 

Level Shrink Soft (h) Level Shrink semi-soft (i) 

SureShrink (j) Bayes Shrink 
 

 
Fig 8 PSNR vs VARIANCE for Lena image 

Table 3 PSNR Values for Cameraman image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 49.61 53.77 49.11 37.37 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 26.77 25.31 24.16 22.34 

VISU semi 

soft 
47.92 47.98 51.04 36.2 

Level Shrink 

hard 
52.73 51.96 52.25 49.27 

Level Shrink 

soft 
46.93 43.25 37.07 31.73 

Level Shrink 

semi soft 
50.42 51.35 45.56 44.34 

SURE shrink 26.77 25.31 24.16 22.34 

Bayes Shrink 19.44 19.34 19 18.61 

 

Table 4 SSIM Values for Cameraman image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 0.61 0.37 0.25 0.23 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.5 0.35 0.22 0.17 

VISU semi 

soft 
0.6 0.41 0.22 0.22 

Level Shrink 

hard 
0.69 0.5 0.32 0.27 

Level Shrink 

soft 
0.55 0.38 0.24 0.2 

Level Shrink 

semi soft 
0.49 0.29 0.17 0.1 

SURE shrink 0.5 0.35 0.22 0.17 

Bayes Shrink 0.5 0.33 0.18 0.13 

 

 
Fig 9 PSNR vs. VARIANCE for Cameraman image 

 

Table 5 PSNR Values for Peppers image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 38.36 36.99 39.77 35.27 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 35.48 33.66 34.07 33.57 

VISU semi 

soft 
38.36 37.37 38.83 34.87 

Level Shrink 

hard 
40.53 36.08 38.07 36.53 

Level Shrink 

soft 
36.47 35.96 36.28 34.84 

Level Shrink 

semi soft 
40.16 41.49 42.93 42.67 

SURE shrink 37.01 35.98 36.36 34.75 

Bayes Shrink 36.55 35.92 36.29 34.71 
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Fig 10 PSNR vs. VARIANCE for Peppers image 

 

Table 6 SSIM Values for Peppers image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 0.27 0.19 0.11 0.11 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.27 0.19 0.12 0.1 
VISU semi 

soft 
0.27 0.18 0.11 0.1 

Level Shrink 

hard 
0.25 0.21 0.14 0.12 

Level Shrink 

soft 
0.28 0.18 0.11 0.09 

Level Shrink 

semi soft 
0.21 0.12 0.06 0.04 

SURE shrink 0.24 0.16 0.1 0.08 

Bayes Shrink 0.23 0.15 0.1 0.08 

 

Table 7 PSNR Values for mandrill image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 48.03 43.48 45.99 32.26 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 34.58 27.83 26.29 22.36 

VISU semi 

soft 
47.45 41.58 40.44 29.19 

Level Shrink 

hard 
53.64 44.65 54.39 41.5 

Level Shrink 

soft 
41.28 37.21 40.15 28.9 

Level Shrink 

semi soft 
56.04 52.85 45.47 48.82 

SURE shrink 37.13 32.08 31.71 28.88 

Bayes Shrink 32.09 31.47 31.09 28.8 

 

 
Fig 11 PSNR vs. VARIANCE for Mandrill image 

Table 8 SSIM Values for mandrill image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 0.29 0.19 0.11 0.11 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.27 0.16 0.11 0.09 
VISU semi 

soft 
0.28 0.18 0.12 0.1 

Level Shrink 

hard 
0.27 0.23 0.09 0.14 

Level Shrink 

soft 
0.28 0.16 0.09 0.08 

Level Shrink 

semi soft 
0.17 0.08 0.04 0.03 

SURE shrink 0.25 0.15 0.1 0.08 
Bayes Shrink 0.24 0.14 0.09 0.08 

 

Table 9 PSNR Values for Airplane image (Level 3) 

Methods 
Variance 

 
12 17 22 27 

VISU hard 32.21 31.65 36.36 29.66 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 23.46 21.3 19.96 18.58 

VISU semi 

soft 
36.92 31.22 35.34 23.2 

Level Shrink 

hard 
38.37 37.94 41.51 38.83 

Level Shrink 

soft 
27.67 25.68 28.41 22.57 

Level Shrink 

semi soft 
50.95 41.33 39.2 42.97 

SURE shrink 25.72 23.84 23.35 22.43 

Bayes Shrink 24.44 23.24 22.9 22.18 

 

 
Fig 12 PSNR vs. VARIANCE for Airplane image 

 

Table 10 SSIM Values for Airplane image (Level3) 

Methods 
Variance 

 
12 17 22 27 

VISU hard 0.66 0.42 0.26 0.19 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.46 0.34 0.2 0.14 

VISU semi 

soft 
0.57 0.4 0.24 0.18 

Level Shrink 

hard 
0.75 0.59 0.54 0.39 

Level Shrink 

soft 
0.54 0.37 0.21 0.15 

Level Shrink 

semi soft 
0.49 0.28 0.13 0.07 

SURE shrink 0.46 0.34 0.2 0.14 

Bayes Shrink 0.41 0.31 0.18 0.13 
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Table 11 PSNR Values for Barbara image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 21.72 40.21 30.19 33.76 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 14.72 26.95 20.08 19.35 

VISU semi 

soft 
19.22 36.74 29.18 33.51 

Level Shrink 

hard 
18.51 40.62 38.25 36.02 

Level Shrink 

soft 
18 32.41 24.08 27.95 

Level Shrink 

semi soft 
32.43 55.12 38.28 39.39 

SURE shrink 15.58 26.95 22.78 20.72 
Bayes Shrink 15.61 23.37 22.55 20.64 

 

 
Fig 13 PSNR vs. VARIANCE for Barbara image 

 

Table 12 SSIM Values for Barbara image (Level 3) 

Methods 
Variance 

 
10 15 20 25 

VISU hard 0.22 0.41 0.26 0.16 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.24 0.34 0.21 0.15 
VISU semi 

soft 
0.24 0.39 0.25 0.14 

Level Shrink 

hard 
0.19 0.61 0.46 0.36 

Level Shrink 

soft 
0.24 0.37 0.22 0.14 

Level Shrink 

semi soft 
0.16 0.18 0.09 0.04 

SURE shrink 0.25 0.34 0.21 0.15 
Bayes Shrink 0.25 0.32 0.2 0.14 

 

Table 13 PSNR Values for Boat image (Level 3) 

Methods 
Variance 

 
11 16 21 26 

VISU hard 56.31 39.19 38.89 34.49 

P
S

N
R

 V
al

u
es

 o
f 

im
ag

es
 VISU soft 27.01 25.64 23.17 18.56 

VISU semi 

soft 
45.91 38.65 34.83 34.21 

Level Shrink 

hard 
45.02 50.09 39.27 40.06 

Level Shrink 

soft 
39.3 33.69 29.04 27.88 

Level Shrink 

semi soft 
47.58 52.86 47.43 38.61 

SURE shrink 27.01 25.64 23.17 21.11 

Bayes Shrink 24.36 23.31 22.35 20.98 

 
Fig 14 PSNR vs. VARIANCE for Boat image 

 

Table 14 SSIM Values for Boat image (Level 3) 

Methods 
Variance 

 
11 16 21 26 

VISU hard 0.52 0.35 0.23 0.16 

S
S

IM
 V

alu
es o

f im
ag

es 

VISU soft 0.42 0.28 0.19 0.13 

VISU semi 

soft 
0.51 0.33 0.23 0.15 

Level Shrink 

hard 
0.69 0.52 0.42 0.33 

Level Shrink 

soft 
0.47 0.3 0.2 0.13 

Level Shrink 

semi soft 
0.4 0.19 0.1 0.05 

SURE shrink 0.42 0.28 0.19 0.13 

Bayes Shrink 0.37 0.25 0.18 0.13 

 

From above test results, Thresholding Techniques 

that obtained higher values of PSNR and SSIM with 

Gaussian Noise and Salt and Pepper Noise are 

summarized below: 

 

Table 15 Summarized test results of Lena image, 

Cameraman image, Pepper image and Mandrill 

image with Gaussian Noise (Level 3) 

Image 
Variance 

 
10 20 30 40 

Lena 

   Level 

Shrink 

Hard   

 VISU 

Soft   

 VISU 

Soft   

 VISU 

Soft   

High 

SSIM 

value 

 

BayesS

hrink 

 

BayesS

hrink 

   VISU 

Semi 

Soft   

   Level 

Shrink 
Semi 

Soft   

High 

PSNR 

value 

Camerama

n 

Variance 
 

10 15 20 25 

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

High 
SSIM 

value 

   Level 
Shrink 

Hard   

VISU 

Hard   

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

High 
PSNR 

value 

Pepper 

Variance 
 

10 15 20 25 

   Level 

Shrink 

Soft 

   Level 

Shrink 

Hard   

   Level 

Shrink 

Hard   

   Level 

Shrink 

Hard   

High 

SSIM 

value 

   Level 
Shrink 

   Level 
Shrink 

   Level 
Shrink 

   Level 
Shrink 

High 
PSNR 
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Hard   semi 

soft 

semi 

soft 

semi 

soft 

value 

Mandrill 

Variance 
 

10 15 20 25 

 VISU 
Hard 

   Level 

Shrink 

Hard   

 VISU 
Soft   

   Level 

Shrink 

Hard   

High 

SSIM 

value 

   Level 

Shrink 

semi 
soft 

   Level 

Shrink 

semi 
soft 

   Level 
Shrink 

Hard   

   Level 

Shrink 

semi 
soft 

High 
PSNR 

value 

 

Table 16 Summarized test results of Airplane image, 

Barbara image and Boat image with Salt and Pepper 

Noise (Level 3) 

Image 
Variance 

 
12 17 22 27 

Airplane 

   Level 

Shrink 
Hard   

   Level 

Shrink 
Hard   

   Level 

Shrink 
Hard   

   Level 

Shrink 
Hard   

High 

SSIM 
value 

   Level 

Shrink 
semi 

soft 

   Level 

Shrink 
semi 

soft 

   Level 

Shrink 

Hard   

   Level 

Shrink 
semi 

soft 

High 

PSNR 

value 

Barbara 

Variance 
 

10 15 20 25 

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

   Level 
Shrink 

Hard   

High 
SSIM 

value 

   Level 
Shrink 

Soft 

   Level 
Shrink 

Soft 

   Level 
Shrink 

Soft 

   Level 
Shrink 

Soft 

High 
PSNR 

value 

Boat 

Variance 
 

11 16 21 26 

   Level 

Shrink 

Hard   

   Level 

Shrink 

Hard   

   Level 

Shrink 

Hard   

   Level 

Shrink 

Hard   

High 

SSIM 

value 

 VISU 

Hard 

   Level 
Shrink 

Soft 

   Level 
Shrink 

Soft 

   Level 
Shrink 

Hard   

High 
PSNR 

value 

 

5. Conclusion 

From the results obtained above, it can be concluded 

that LevelShrink Semi-Soft thresholding 

methodhasbest PSNR values whereas LevelShrink 

Hard thresholding method hasbetter PSNR and SSIM 

values on most of tests.VISUShrink Soft method has 

poor PSNR and SSIM for the output image as 

compared to the other methods considered.  

Though, LevelShrink Semi-Soft and LevelShrink 

Hardthresholding methods have better PSNR values, 

but they cannot denoise properly the salt & pepper 

noise. SUREShrink, BayesShrink and VISUShrink 

are poor in terms of PSNR values but work well for 

denoising Salt & Pepper Noise with visually pleasing 

results. 
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