
 
 

 

 

 

 

 

 

 

Abstract 
In this article, the prime motivation is to demonstrate how calculating modular 
multiplicative inverse can be simplified computationally with the help of Euclid’s algorithm, 
which is usually attributed to finding the Greatest Common Divisor.  
Keywords: Algorithm, conjugacy class, data structure, java, modulus, number theory  
 

Introduction to Modular Arithmetic  
 Quite central to the study of  Number Theory[10], Modular Arithmetic provides a 
unique way of understanding different number systems, mainly the Integers [2][4][6][8]. 
Unequivocally, this further emphasizes the need for asking and solving different problems 
within “Modular Arithmetic”, eventually anticipating huge insights into solving big 
questions within both Pure and Applied Mathematics. The whole point of this report is to 
solve one such problem. 
 It all starts with understanding the basic “modulo operation” [9]. If “a” and “b” are 
any two integers, the “a mod b” returns the remainder when “a” is divided by “b”. 
Mathematically speaking, 

𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒃𝒃 = 𝒓𝒓	𝒊𝒊𝒊𝒊𝒊𝒊	𝒂𝒂 = 𝒒𝒒𝒃𝒃 + 𝒓𝒓	𝒘𝒘𝒘𝒘𝒆𝒆𝒓𝒓𝒆𝒆	𝒒𝒒, 𝒃𝒃, 𝒓𝒓, 𝒂𝒂 ∈ 𝒁𝒁 
Now, though the operation basically looks very simple, it can be quite a powerful 

tool for understanding the whole set of Integers (𝑍𝑍).  For example, take any natural number, 
𝑛𝑛 ∈ 𝑁𝑁,	then for any non-negative integer, 𝑎𝑎 ∈ 𝑍𝑍!, 𝟎𝟎 ≤ 𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒏𝒏 ≤ (𝒏𝒏 − 𝟏𝟏). This interesting 
discovery can, infact, be written in set notation as  𝒁𝒁𝒏𝒏 = 𝟎𝟎, , , , , , 𝒏𝒏 − 𝟏𝟏. Now all the elements 
of this set are called conjugate classes of the equivalence relation 	≡ 	𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒏𝒏 , which also 
implies, 𝒂𝒂 = 𝒄𝒄 + 𝒏𝒏𝒏𝒏	, ∀𝒏𝒏 ∈ 𝒁𝒁  . Now, all the possible values of ‘a’, given particular value of 
‘c’ and ‘n’ ,can be called as the equivalence class of ‘c’, also written as [c]. Finally with 
different values of ‘c’, the equivalence relation partitions the whole of 	𝒁𝒁	.  All these rigorous 
ideas can be understood in the example provided below. 
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Example: For n = 5, 
Set of conjugacy classes = 𝑍𝑍𝟝𝟝 	=	{0, 1, 2, 3, 4} 
Examples of Equivalence classes: 
Example 1: [2] = {……..,-18,-13,-8,-3, 2,7,12,17,…..}. 
Example 2: [3]= {……-17,-12,-7,-2, 3, 8, 13, 18….}      
Note: {[0], [1], [2], [3], [4]} partitions 𝒁𝒁. 

Now, normal arithmetic operations like (+,-,*) can be easily defined and performed as: 
Given,  𝒁𝒁𝒏𝒏, 

[𝑎𝑎] + [𝑏𝑏] = [𝑎𝑎 + 𝑏𝑏] 
[𝑎𝑎] − [𝑏𝑏] = [𝑎𝑎 − 𝑏𝑏] 
[𝑎𝑎] ∗ [𝑏𝑏] = [𝑎𝑎 ∗ 𝑏𝑏] 

Examples: 
Given, 𝑍𝑍𝟝𝟝, 
   7 + 8	 = 	15	 
This shows:   [2] + [3] = [0](5	𝑚𝑚𝑚𝑚𝑚𝑚	5	 = 	0) 
Also, 

7 ∗ 8	 = 	56 
This shows:  
   [2] ∗ [3] 	= [1](1 = 	6	𝑚𝑚𝑚𝑚𝑚𝑚	5) 

Modular Multiplicative Inverse and its Essence 
Unlike the operators discussed in previous section, finding modular multiplicative 

inverse isn’t straightforward. But what is modular multiplicative inverse? Mathematically 
speaking, 
In 𝒁𝒁𝒏𝒏, 
The inverse of [a] is [b] if [a] [b]=1. 
For example,  
In 𝑍𝑍𝟝𝟝, 
The inverse of [2] is [3] because [2]*[3] = [1].  
We can see that inverse, if it exists, is always unique. Also, there is no inverse of 0 in 
𝒁𝒁𝒏𝒏.	This fact will be used, later in producing efficient solution to the problem being 
discussed. However, it rather makes much sense to answer why do we care a lot about this? 
 Apart from being an interesting problem in mathematical theory, the concept of 
modular multiplicative inverse is used heavily in public-key cryptography- RSA being a 
major one. To be specific, a number and its modular multiplicative inverse are used as key 
pairs to encrypt and decrypt the data simultaneously. Usually in cryptographic procedures, 
computer scientists always aim to produce algorithms which are computationally cost 
effective. And, it turns out that manipulating Euclid’s Algorithm, which will be discussed 
later, is the most effective one.  
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Euclid’s Algorithm 
 In the previous page, it is claimed that “Euclid’s” Algorithm can be utilized in 
producing a solution for finding the modular multiplicative inverse of a number ‘a’ in  𝒁𝒁𝒏𝒏 . 
Before that, it is useful to know how Euclid’s algorithm works and what it is primarily used 
for. 
 Basically, Euclid’s algorithm, which culminated from Euclid’s and Bezout’s Lemma, 
is used for finding the greatest common divisor (gcd(a,b)) of a and b assuming 𝑎𝑎 < 𝑏𝑏.  The 
algorithmic procedure works like this: 

1. Express  𝑏𝑏	 = 	𝑞𝑞𝑎𝑎	 + 𝑟𝑟	where q is the quotient, r is the remainder, a the divisor. 
2. If ‘r’ is 0, then terminate the algorithm and record gcd(a,b) =a.[7] 
3. Else if ‘r’ isn’t 0, then set new dividend (b) to the previous divisor (a) and new 

divisor (a) to the previous remainder(r). Repeat step 1. 
Now, this algorithm is not only the part of finding the modular inverse, but also a way to 
avoid errors as it tells if inverse exists or not. There exists inverse of ‘a’ in 𝒁𝒁𝒏𝒏, if and only 
if gcd(a,n)=1. Equivalently, if a and n are co-prime.  

So we can use this algorithm to prevent errors before attempting to find inverse. On 
practical terms, if		𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑛𝑛) ≠ 1	, then we can computationally terminate the 
process of finding inverse. 
Example:  𝐴𝐴𝐴𝐴𝐴𝐴:	𝑇𝑇𝑇𝑇	𝑓𝑓𝐴𝐴𝑛𝑛𝑔𝑔	𝑔𝑔𝑔𝑔𝑔𝑔(7, 23). 

23	 = 	3 × 7 + 2 
7	 = 	3 × 2 + 1 

2 = 1 × 2 + 0 : In this stage, the algorithm terminates recording gcd (a,b) = a = 1 
Apparently, gcd (7,23) = 1. So inverse of [7] exists in Z23 

 
Why gcd (a,n) = 1 is compulsory for inverse to exist?  
First we need to understand Bezouts Lemma. 
 
Bezouts Lemma [11] 
Let a, b be non-zero integers. 
Then there exists r, s ∈ Z such that gcd (a, b) = ra + sb. 
Now, 
To prove: In	𝒁𝒁𝒏𝒏, the inverse of [a] exists if and only if gcd (a,n)=1. 
Proof: Suppose [a] has inverse [b] in 𝒁𝒁𝒏𝒏. That means [a][b]=1 

⟺ 𝑎𝑎𝑏𝑏	𝐴𝐴𝑇𝑇𝑔𝑔	𝑛𝑛	 = 	1 
⟺ 		𝑎𝑎𝑏𝑏	 = 	1 + 𝑘𝑘𝑛𝑛 
⟺ 𝑎𝑎𝑏𝑏 − 𝑘𝑘𝑛𝑛 = 1 

From Bezouts Lemma. 
				⟺ 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑛𝑛) = 1	 

Extending Euclid’s Algorithm- Full Solution 
 Euclid’s algorithm is just a half-way to the process of finding the inverse. Now, to 
find the inverse of a in 𝒁𝒁𝒏𝒏, we need to express ‘1’ in the form of 𝑘𝑘 × 𝑎𝑎	 + 𝑙𝑙 × 𝑛𝑛. This can be 
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<currentquotient> means the quotient at the particular run of the loop. We know the 
loop starts from backwards. So at first run, we access the last element and then 
second last element and so on. 
 
Keep running these two commands alternatively till you reach the end of the loop. 
Note: The number of times the loop runs depends on the size of the Quotientstack. 
However, running two different commands alternatingly requires a different variable 
which we can call “alternator”. The “alternator” just makes sure that 2 different 
commands run alternatingly inside the loop. 
 
Step 4: After Exiting the loop: 

            
There is no definite mathematical justification on how this algorithm works. I just 
conjectured how the “quotients” we calculated during the “Euclid’s” algorithm 
affects the numbers during the reverse process. In short, I have just tried to look at 
the pattern and conjectured accordingly. Despite all this, this algorithm works on all 
values of ‘a’ and ‘n’. We will see, how this algorithm runs perfectly with different 
values in upcoming sections. 
Working Demonstrations: 
Example 1) Inverse of 12 in 𝑍𝑍𝟛𝟛𝟛𝟛 
Here a = 12, n = 31 
31 = 2*12+7 
12 = 1*7+5 
7 =   1*5+2 
5 =    2*2+1 
2 =   1*2+0 (Terminate) 
We can also terminate the procedure already when we get remainder 1.  
In the Java Programming Assignment, we terminate once we get remainder 1 or 0. 
Gcd (12, 31) = 1. So inverse exists. 
Quotientstack: [2 1 1] ( Note: We exclude quotients in those lines where remainder is 
1 or 0). 

IF ksequence*a+lsequence*n=1 THEN 
RETURN ksequence 
ELSE 
RETURN lsequence 
 

ksequence=ksequence+(-1)*lsequence*<current quotient>. 
Then on second run(in the loop) execute 
->lsequence =lsequence - <current quotient>*ksequence 
 

 
 

done by keeping 1 as the subject and reverse engineering the process of Euclid’s algorithm. 
Once completed, the value of k is the required inverse value of [a] in Zn. Mathematically, [k] 
is the inverse of [a] in 𝒁𝒁𝒏𝒏. Or, [k] =[𝒂𝒂]$𝟏𝟏 

We can explain why this is the case. 
We know: 𝑘𝑘 × 𝑎𝑎	 + 𝑙𝑙	 × 𝑛𝑛	 = 	1 
 Now, taking (mod n) on both sides, 

(𝑘𝑘 × 𝑎𝑎 + 𝑙𝑙 × 𝑛𝑛)		𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 = 1	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 
Or, this implies  

𝑘𝑘 × 𝑎𝑎	 = 	1 
Obviously, in	𝒁𝒁𝒏𝒏, we know [𝑘𝑘] = 𝑘𝑘 + 𝑔𝑔 × 𝑛𝑛 where g is any integer. 
Also [𝑎𝑎] = 𝑎𝑎 + ℎ × 𝑛𝑛 , where h is any integer. 
[k] [a] = 𝑘𝑘 × 𝑎𝑎 + 𝑘𝑘 × ℎ × 𝑛𝑛 + 𝑔𝑔 × 𝑎𝑎 × 𝑛𝑛 + 𝑔𝑔 × ℎ × 𝑛𝑛(') 
            = 1 + 𝑛𝑛(𝑘𝑘ℎ + 𝑔𝑔𝑎𝑎 + 𝑔𝑔ℎ𝑛𝑛) 
Now, 

[𝑘𝑘][𝑎𝑎]	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 = 1	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 
[𝑘𝑘] × [𝑎𝑎] = 1 

Let’s see the example here how it works: 
We are going to find the inverse of 7 in 𝑍𝑍𝟚𝟚𝟚𝟚. 
 Using information from Page 6, 
1	 = 1 × 		7 +	(−	3) × 2 
1 = 7 − (23 − 7 × 3) × 3 
1 = 10 × 7 + (−3) × 23 
Finally, we have 1	 = 	𝑘𝑘	 × 𝑎𝑎 + 𝑙𝑙 × 𝑛𝑛 
Ultimately [10] is the inverse of 7 in Z23. 

How will we transform this process to an algorithm? 
Although, it is easy to manipulate mathematical expressions in paper, we need to find 
‘k’ and ‘l’ algorithmically.   
Note: We have already run the Euclid’s algorithm before executing this algorithm. 
Step 1  
First we need to store all the quotients during Euclid’s algorithm in each step to some 
dynamic array variable named   “quotient Stack” variable [1]. We are going to 
exclude quotients of those steps when remainder is   either 0 or 1. 
For example:    QuotientStack (while finding gcd (7, 23)) = [3].  
                         QuotientStack (while finding gcd (20, 73)) = [3 1 1] 
Step 2  
Initialize two new variables “ksequence” to 1 and “lsequence” to (-1*(last quotient in 
Euclid’s algorithm when remainder is 1)). 
Step 3  
Loop from bottom of the QuotientStack till you reach the first element. 
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<currentquotient> means the quotient at the particular run of the loop. We know the 
loop starts from backwards. So at first run, we access the last element and then 
second last element and so on. 
 
Keep running these two commands alternatively till you reach the end of the loop. 
Note: The number of times the loop runs depends on the size of the Quotientstack. 
However, running two different commands alternatingly requires a different variable 
which we can call “alternator”. The “alternator” just makes sure that 2 different 
commands run alternatingly inside the loop. 
 
Step 4: After Exiting the loop: 

            
There is no definite mathematical justification on how this algorithm works. I just 
conjectured how the “quotients” we calculated during the “Euclid’s” algorithm 
affects the numbers during the reverse process. In short, I have just tried to look at 
the pattern and conjectured accordingly. Despite all this, this algorithm works on all 
values of ‘a’ and ‘n’. We will see, how this algorithm runs perfectly with different 
values in upcoming sections. 
Working Demonstrations: 
Example 1) Inverse of 12 in 𝑍𝑍𝟛𝟛𝟛𝟛 
Here a = 12, n = 31 
31 = 2*12+7 
12 = 1*7+5 
7 =   1*5+2 
5 =    2*2+1 
2 =   1*2+0 (Terminate) 
We can also terminate the procedure already when we get remainder 1.  
In the Java Programming Assignment, we terminate once we get remainder 1 or 0. 
Gcd (12, 31) = 1. So inverse exists. 
Quotientstack: [2 1 1] ( Note: We exclude quotients in those lines where remainder is 
1 or 0). 

IF ksequence*a+lsequence*n=1 THEN 
RETURN ksequence 
ELSE 
RETURN lsequence 
 

ksequence=ksequence+(-1)*lsequence*<current quotient>. 
Then on second run(in the loop) execute 
->lsequence =lsequence - <current quotient>*ksequence 
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Now, ksequence = 1 and lsequence=-2 (Because, 2 is the quotient where the 
remainder is 1). (To be continued). 
Looping from backwards: 
Run in the loop Current Quotient ksequence lsequence 
1 1 1+(-1)*2*1=3 -2 
2 1 3 -2-(1*3)=-5 
3 2 3+(-1)*(-5)*2=13 -5 

Now, 13(ksequence)*12(a)+lsequence(-5)*31=1. So inverse is ksequence which is 
13. Or equivalence class of 13 which is [13]. 
 
Sometimes we might get a different case where 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 × 𝑎𝑎 + 𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 × 𝑘𝑘	 ≠
1. In those cases, inverse is the value of lsequence. One such example is: Finding 
inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙. The lsequence in this case is -5. So, inverse is -5. We can convert 
this negative number into its positive equivalent by using a different function named 
“PositiveEquivalent”. Finally the answer will be 7(-5+12*1). This will be discussed 
later in upcoming sections. 

Critical Analysis of the Proposed Method- Including Algorithmic Complexity 
From computational point of view, manipulating Euclid’s algorithm is the most 

effective way. It runs in 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍(𝒏𝒏)𝟐𝟐) given that we are finding the inverse of ‘a’ in 𝒁𝒁𝒏𝒏  
assuming a<n. However, if computational running time complexity isn’t a big deal, the 
problem of modular multiplicative inverse can be solved in two other ways as well. The first 
one is the direct one: 

1. Direct Algorithm. 

 
This algorithm has run-time complexity of 𝑂𝑂(𝑘𝑘), which is bad when n tends to be 
very large. 
The second way is to use Euler’s theorem. 
Applying Eulers’ theorem, if ‘a’ and ‘n’ are co-prime, then, 

𝑎𝑎∅(.) ≡ 1𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 
Here ∅	 is euler totient function which basically gives the number of positive integers 
less than n which are co-prime to ‘n’. 
Now multiplying 𝑎𝑎$/  on both sides we get, 

INPUTS: N ,A 
FOR X = 0 TO N-1 
IF (X*A) MOD N = 1 THEN 
INVERSE=A 
EXIT LOOP 
END IF 
END LOOP 
OUTPUT INVERSE 
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𝑎𝑎∅(.)$/ ≡ 𝑎𝑎$/	(𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛) 
Now 𝑎𝑎∅(.)$/  is the required modular multiplicative inverse of a in 𝒁𝒁𝒏𝒏.	It can be 
observed that this method is slightly slower than the method proposed in the solution 
because it takes long polynomial time to calculate the value of Euler totient function.  
Overall, on comparison, using Euclid’s algorithm seems practical for industrial 
purposes. But one major disadvantage of this method is that it is hard to explain the 
“Reverse process” and algorithmic logic to others. 

Full Algorithmic Implementation in Java 
The theoretical implementation of Euclid’s algorithm is given in previous sections. 

Here, in this section, we will see the how the solution is implemented practically in Java.  
 

 
Figure 1: Functions in Rectangles and Arrows Signifying flow of data in-between functions. 
 
Explanation:  

The main program is divided into 3 function /procedure. The first one is a default 
procedure which is automatically executed when the program is run for the first time. The 
“main” function calls second function called findInverse(long a, longn) which finds the 
inverse of a in Zn. Then the output is returned back to the main function. However, for 
‘findInverse’ to be executed successfully may require the invocation of third function 
‘positiveEquivalent’. The ‘positiveEquivalent’ function returns value to the ‘find Inverse’ 
function, if called depending upon the situation. 

 
 

Function: findInverse(long a, long n) returning Long 
Description: finds the inverse of a in 𝒁𝒁𝒏𝒏 and returns the value. 

Function: positiveEquivalent(long negative number,long  modulo N) returns 
long. 

Description: Converts negative number to its positive equivalent in 𝒁𝒁𝒏𝒏 .  
For example: -2 in  𝑍𝑍0 is 3. 

 

Main Function(Starting point the whole program) 
Description: The module executed when the program file is first executed. 
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Breakdown of (find Inverse (long a, long n) returns long) function 
 

 
 

Figure 2: Schematic Breakdown of findInverse function and arrows showing the flow of the 
program 
 
Description:  

The findInverse function contains 3 sections. These are: Error Handling Section, 
Euclid’s Algorithm Section and Reverse Process Section. 
The ‘findInverse’ function takes two inputs ‘a’ and ‘n’. It ultimately returns the inverse of 
‘a’ in Zn. 

Error Handling Section 
Before allowing the inputs ‘a’ and ‘n’ to go through the real algorithm, there are 

certain values of ‘a’ and ‘n’ which can create problem or create incorrect result while 
applying Euclid’s algorithm and Reverse Process Section. So, we need to detect the error 
and throw exceptions. These will be discussed later in Error Detection Section. 

Euclid’s Algorithm Section 
Coming after Error Handling Section, the main purpose of this section is to find the 

gcd(a,n) and to store the quotients(for further use in reverse process section). Note that we 
will only go to reverse process section if gcd (a,n)=1. If gcd (a,n) doesn’t equal to 1, an 
error(exception) will be thrown. 

 
The variables declared/intialized in this section are: 

1. mainA(for storing the value of a for further use), 
2. mainN(for storing the value of n for further use) 
3. QuotientStack(a dynamic array variable for storing quotients), 
4. gcd (storing the gcd), 
5. ksequence(equivalent of k in ka+ln) 
6. lsequence(equivalent of l in ka+ln) 

findInverse() 
function 

Euclid’s Algorithm Section 

Error Handling Section 

Reverse Process 
Selection 



Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 93

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]
 

 

7. r(for remainder) 
8. q(for quotient).  

The method in which we carry out Euclid’s algorithm is same as the procedure given in 
previous sections. We start with ‘n’ being the dividend and ‘a’ being the divisor. We keep 
looping using ‘Do—while’ loop structure until we get remainder ‘r’ to be either equal to 0 or 
1. To calculate remainder, modulus in built operator(‘%’) is used. Then to get the quotient 
we subtract remainder ‘r’ from ‘ n’ and do the integer division of the result by ‘a’. We then, 
keep changing the next divisor and dividend as according to the instruction in sections. Also, 
when we calculate the quotient every time, we add quotients to the quotient stack if the 
remainder isn’t 0 or 1. Finally, when the loop is exited, the latest remainder becomes the 
gcd. Then, if the gcd is 1 then we set the lsequence to latest value of quotient(q)*-1. On 
contrary, if gcd isn’t 1, we throw an error saying gcd isn’t 1. The whole program comes to 
halt in such situation. The user must enter new values of ‘a’ and ‘n’ and then rerun the whole 
program. 

Reverse Process Section 
 This is the final and the most important section. The main purpose of this section is 
to calculate the inverse of a in Zn. We only enter this section if we are sure that the inverse 
exists that is gcd(a,n) = 1. We declare a variable ‘alternator’ and initialize it to 1. 
 The reverse process happens like this. We first calculate the length of quotientstack 
and store it in sizeofStack variable of type, ‘integer’. We then create a for-loop running from 
bottom of ‘quotientStack’ variable. Since, the index of array variable starts from 0, we start 
the for-loop from sizeof Stack-1 to 0. (that is in reverse order). We execute two statements 
alternatively within the loop. The first statement modifies the value of ksequence and the 
second statement modifies the value of lsequence. As seen in the statements themselves, the 
values of ksequence and lsequence depend on the value of current value of quotient accessed 
from quotientStack variable and the values themselves. Since, nature of odd and even 
number alternates, we use modulus(%) operator on alternator variable to run the statements 
alternatively during the loop. The alternator variable keeps increasing by 1 during the loop. 
 After the loop exits, our required answer is either the value of ksequence or 
lsequence. We need to check that by checking if ksequence * a + lsequence * n = 1. If this 
evaluates to true, our required answer is ksequence. Otherwise the inverse of a is lsequence. 
For example, while finding the inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙, the inverse value is lsequence which is -5. 
 Now, in such cases when the inverse comes in negative, we need to convert it to 
positive equivalent value in modulo n. We can check if the inverse is negative by using If 
conditional statement. We have created positive Equivalent function for this.  
 The positive Equivalent function takes the two parameters ‘negativeValue’ and 
‘moduloN’. We will then keep increasing the value of a new variable k, which starts form 1. 
This is done, until the value of negativeValue+k*moduloN is non-negative. Finally the 
function returns the positive value. To understand, why we do this, we need to understand 
the concept of equivalence class from the previous sections. Since the negative number is in 
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the same equivalent class as the positive numbers, we can use the formula above to the 
equivalent positive value. 
 Some examples where we get negative inverse is finding the inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙	 the 
inverse of 5 in 	𝑍𝑍𝟞𝟞.  

 Error Handling 
 The program might encounter different errors (some runtime errors) or incorrect 
outputs. To prevent that error handling has been implemented [5]. Basically, we run the 
program by calling the function findInverse(a,n). If any developer wishes to use this function 
with incorrect inputs, then custom errors with messages will be thrown. Here are some the 
error handling cases: 

1) If user/developer puts data with wrong type. For example, in findInverse(a,n) the 
expected data type is long for both a and n. If double data is entered, the program 
will throw type error. 

2) If user/developer inputs n less than 1. We know that ‘n’ is a natural number. If 
user/developer puts n less than 1, then a custom error will be thrown saying that 
“n” should be greater than or equal to 1. 

3) If user/developer inputs n equal to0 1.  We know that when n is 1, the conjugacy 
classes will only be {0}. We also know 0 has no inverse. So, a custom error will 
be thrown saying “No  element with inverse exists in the conjugacy class of  
modulo 1”. 

4) If user/developer inputs a as 0, we know 0 has no inverse in any value of 𝑍𝑍.. A 
custom error will be thrown saying “0 has no inverse in Z<N>”. 

5) If user/developer inputs pair of a and n whose gcd(a,n) isn’t 1. In such cases a 
custom error will be thrown saying “Gcd isn’t 1. So, inverse doesn’t exist.” 

Note: When error is thrown, the whole program will not proceed further. The user is either 
expected to use try catch statement or rerun the whole program with different appropriate 
input. If any developer wishes to use this function, he can easily see the error message while 
developing his/her respective application. 

Conclusion/ Successful Testing of Algorithm 
 Here, we will see how the algorithm works when putting different values of ‘a’ and 
‘n’ in the findInverse() function. 

Case Scenario 1) When user/developer input a < 0: In this case, first ‘a’ is converted to its 
smallest positive equivalent in modulo n. For example, -2 in mod 5 will be first converted to 
3 and then inverse is calculated using ‘a’ as 3 
Case Scenario 2) When user/developer inputs a >n: Ideally a is supposed to be in between 
and including 0 to n-1. So, it should be a incorrect input. However, in modulo n, a can be 
represented to be a value in between 0 and n-1. And then inverse can be found. The java 
program produces correct input even when a>n. No further checking or manipulation is 
required. 
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Other cases: 
findInverse (-5,12): a<0. The program produces correct answer 7. 
findInverse (7,12): The program produces correct answer 7. 
findInverse(3,9): Error is thrown saying “Inverse doesn’t exist.GCD isn’t 1. ” 
findInverse(7,1111):The program produces correct answer 635. 
findInverse(0,3): The program throws custom error as described in  previous sections. 
findInverse(4.2,9): Type error will be thrown.  
findInverse(5,6): The program produces correct answer 5 
When error is thrown, it is the responsibility of user/developer to put correct inputs. 
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