

Abstract
In this article, the prime motivation is to demonstrate how calculating modular
multiplicative inverse can be simplified computationally with the help of Euclid’s algorithm,
which is usually attributed to finding the Greatest Common Divisor.
Keywords: Algorithm, conjugacy class, data structure, java, modulus, number theory

Introduction to Modular Arithmetic
 Quite central to the study of Number Theory[10], Modular Arithmetic provides a
unique way of understanding different number systems, mainly the Integers [2][4][6][8].
Unequivocally, this further emphasizes the need for asking and solving different problems
within “Modular Arithmetic”, eventually anticipating huge insights into solving big
questions within both Pure and Applied Mathematics. The whole point of this report is to
solve one such problem.
 It all starts with understanding the basic “modulo operation” [9]. If “a” and “b” are
any two integers, the “a mod b” returns the remainder when “a” is divided by “b”.
Mathematically speaking,

𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒃𝒃 = 𝒓𝒓	𝒊𝒊𝒊𝒊𝒊𝒊	𝒂𝒂 = 𝒒𝒒𝒃𝒃 + 𝒓𝒓	𝒘𝒘𝒘𝒘𝒆𝒆𝒓𝒓𝒆𝒆	𝒒𝒒, 𝒃𝒃, 𝒓𝒓, 𝒂𝒂 ∈ 𝒁𝒁
Now, though the operation basically looks very simple, it can be quite a powerful

tool for understanding the whole set of Integers (𝑍𝑍). For example, take any natural number,
𝑛𝑛 ∈ 𝑁𝑁,	then for any non-negative integer, 𝑎𝑎 ∈ 𝑍𝑍!, 𝟎𝟎 ≤ 𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒏𝒏 ≤ (𝒏𝒏 − 𝟏𝟏). This interesting
discovery can, infact, be written in set notation as 𝒁𝒁𝒏𝒏 = 𝟎𝟎, , , , , , 𝒏𝒏 − 𝟏𝟏. Now all the elements
of this set are called conjugate classes of the equivalence relation 	≡ 	𝒂𝒂	𝒎𝒎𝒎𝒎𝒎𝒎	𝒏𝒏 , which also
implies, 𝒂𝒂 = 𝒄𝒄 + 𝒏𝒏𝒏𝒏	, ∀𝒏𝒏 ∈ 𝒁𝒁 . Now, all the possible values of ‘a’, given particular value of
‘c’ and ‘n’ ,can be called as the equivalence class of ‘c’, also written as [c]. Finally with
different values of ‘c’, the equivalence relation partitions the whole of 	𝒁𝒁	. All these rigorous
ideas can be understood in the example provided below.

Kaumodaki : Journal of Multidisciplinary Studies
[A Peer-Reviewed, Open Access Journal; Indexed in NepJoL]
ISSN : 2822 - 1567 (Print); ISSN : 2822 -1583 (Online)
Published by Research Management Cell, Shree Vinduwasini

Sanskrit Vidyapeeth (Campus)
Nepal Sanskrit University, Pokhara, Nepal
https://ejournal.vsc.edu.np

Euclid’s Algorithm and its
Role in Solving Modular
Multiplicative Inverse

Dev Raj Kandel
DipHE Mathematics with Computing, Middlesex University, United Kingdom

Article History : Submitted 05 Sep. 2023; Reviewed 19 Sep. 2023; Accepted 01 Oct. 2023
Corresponding Author : Dev Raj Kandel, Email : geniusppdevraj@gmail.com
DOI : https://doi.org/10.3126/kdk.v4i1.64567

 Copyright 2024 © the Author(s) and the Publisher

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 86

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Example: For n = 5,
Set of conjugacy classes = 𝑍𝑍𝟝𝟝 	=	{0, 1, 2, 3, 4}
Examples of Equivalence classes:
Example 1: [2] = {……..,-18,-13,-8,-3, 2,7,12,17,…..}.
Example 2: [3]= {……-17,-12,-7,-2, 3, 8, 13, 18….}
Note: {[0], [1], [2], [3], [4]} partitions 𝒁𝒁.

Now, normal arithmetic operations like (+,-,*) can be easily defined and performed as:
Given, 𝒁𝒁𝒏𝒏,

[𝑎𝑎] + [𝑏𝑏] = [𝑎𝑎 + 𝑏𝑏]
[𝑎𝑎] − [𝑏𝑏] = [𝑎𝑎 − 𝑏𝑏]
[𝑎𝑎] ∗ [𝑏𝑏] = [𝑎𝑎 ∗ 𝑏𝑏]

Examples:
Given, 𝑍𝑍𝟝𝟝,
 7 + 8	 = 	15	
This shows: [2] + [3] = [0](5	𝑚𝑚𝑚𝑚𝑚𝑚	5	 = 	0)
Also,

7 ∗ 8	 = 	56
This shows:
 [2] ∗ [3] 	= [1](1 = 	6	𝑚𝑚𝑚𝑚𝑚𝑚	5)

Modular Multiplicative Inverse and its Essence
Unlike the operators discussed in previous section, finding modular multiplicative

inverse isn’t straightforward. But what is modular multiplicative inverse? Mathematically
speaking,
In 𝒁𝒁𝒏𝒏,
The inverse of [a] is [b] if [a] [b]=1.
For example,
In 𝑍𝑍𝟝𝟝,
The inverse of [2] is [3] because [2]*[3] = [1].
We can see that inverse, if it exists, is always unique. Also, there is no inverse of 0 in
𝒁𝒁𝒏𝒏.	This fact will be used, later in producing efficient solution to the problem being
discussed. However, it rather makes much sense to answer why do we care a lot about this?
 Apart from being an interesting problem in mathematical theory, the concept of
modular multiplicative inverse is used heavily in public-key cryptography- RSA being a
major one. To be specific, a number and its modular multiplicative inverse are used as key
pairs to encrypt and decrypt the data simultaneously. Usually in cryptographic procedures,
computer scientists always aim to produce algorithms which are computationally cost
effective. And, it turns out that manipulating Euclid’s Algorithm, which will be discussed
later, is the most effective one.

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 87

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Euclid’s Algorithm
 In the previous page, it is claimed that “Euclid’s” Algorithm can be utilized in
producing a solution for finding the modular multiplicative inverse of a number ‘a’ in 𝒁𝒁𝒏𝒏 .
Before that, it is useful to know how Euclid’s algorithm works and what it is primarily used
for.
 Basically, Euclid’s algorithm, which culminated from Euclid’s and Bezout’s Lemma,
is used for finding the greatest common divisor (gcd(a,b)) of a and b assuming 𝑎𝑎 < 𝑏𝑏. The
algorithmic procedure works like this:

1. Express 𝑏𝑏	 = 	𝑞𝑞𝑎𝑎	 + 𝑟𝑟	where q is the quotient, r is the remainder, a the divisor.
2. If ‘r’ is 0, then terminate the algorithm and record gcd(a,b) =a.[7]
3. Else if ‘r’ isn’t 0, then set new dividend (b) to the previous divisor (a) and new

divisor (a) to the previous remainder(r). Repeat step 1.
Now, this algorithm is not only the part of finding the modular inverse, but also a way to
avoid errors as it tells if inverse exists or not. There exists inverse of ‘a’ in 𝒁𝒁𝒏𝒏, if and only
if gcd(a,n)=1. Equivalently, if a and n are co-prime.

So we can use this algorithm to prevent errors before attempting to find inverse. On
practical terms, if		𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑛𝑛) ≠ 1	, then we can computationally terminate the
process of finding inverse.
Example: 𝐴𝐴𝐴𝐴𝐴𝐴:	𝑇𝑇𝑇𝑇	𝑓𝑓𝐴𝐴𝑛𝑛𝑔𝑔	𝑔𝑔𝑔𝑔𝑔𝑔(7, 23).

23	 = 	3 × 7 + 2
7	 = 	3 × 2 + 1

2 = 1 × 2 + 0 : In this stage, the algorithm terminates recording gcd (a,b) = a = 1
Apparently, gcd (7,23) = 1. So inverse of [7] exists in Z23

Why gcd (a,n) = 1 is compulsory for inverse to exist?
First we need to understand Bezouts Lemma.

Bezouts Lemma [11]
Let a, b be non-zero integers.
Then there exists r, s ∈ Z such that gcd (a, b) = ra + sb.
Now,
To prove: In	𝒁𝒁𝒏𝒏, the inverse of [a] exists if and only if gcd (a,n)=1.
Proof: Suppose [a] has inverse [b] in 𝒁𝒁𝒏𝒏. That means [a][b]=1

⟺ 𝑎𝑎𝑏𝑏	𝐴𝐴𝑇𝑇𝑔𝑔	𝑛𝑛	 = 	1
⟺ 		𝑎𝑎𝑏𝑏	 = 	1 + 𝑘𝑘𝑛𝑛
⟺ 𝑎𝑎𝑏𝑏 − 𝑘𝑘𝑛𝑛 = 1

From Bezouts Lemma.
				⟺ 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑛𝑛) = 1	

Extending Euclid’s Algorithm- Full Solution
 Euclid’s algorithm is just a half-way to the process of finding the inverse. Now, to
find the inverse of a in 𝒁𝒁𝒏𝒏, we need to express ‘1’ in the form of 𝑘𝑘 × 𝑎𝑎	 + 𝑙𝑙 × 𝑛𝑛. This can be

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 88

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

<currentquotient> means the quotient at the particular run of the loop. We know the
loop starts from backwards. So at first run, we access the last element and then
second last element and so on.

Keep running these two commands alternatively till you reach the end of the loop.
Note: The number of times the loop runs depends on the size of the Quotientstack.
However, running two different commands alternatingly requires a different variable
which we can call “alternator”. The “alternator” just makes sure that 2 different
commands run alternatingly inside the loop.

Step 4: After Exiting the loop:

There is no definite mathematical justification on how this algorithm works. I just
conjectured how the “quotients” we calculated during the “Euclid’s” algorithm
affects the numbers during the reverse process. In short, I have just tried to look at
the pattern and conjectured accordingly. Despite all this, this algorithm works on all
values of ‘a’ and ‘n’. We will see, how this algorithm runs perfectly with different
values in upcoming sections.
Working Demonstrations:
Example 1) Inverse of 12 in 𝑍𝑍𝟛𝟛𝟛𝟛
Here a = 12, n = 31
31 = 2*12+7
12 = 1*7+5
7 = 1*5+2
5 = 2*2+1
2 = 1*2+0 (Terminate)
We can also terminate the procedure already when we get remainder 1.
In the Java Programming Assignment, we terminate once we get remainder 1 or 0.
Gcd (12, 31) = 1. So inverse exists.
Quotientstack: [2 1 1] (Note: We exclude quotients in those lines where remainder is
1 or 0).

IF ksequence*a+lsequence*n=1 THEN
RETURN ksequence
ELSE
RETURN lsequence

ksequence=ksequence+(-1)*lsequence*<current quotient>.
Then on second run(in the loop) execute
->lsequence =lsequence - <current quotient>*ksequence

done by keeping 1 as the subject and reverse engineering the process of Euclid’s algorithm.
Once completed, the value of k is the required inverse value of [a] in Zn. Mathematically, [k]
is the inverse of [a] in 𝒁𝒁𝒏𝒏. Or, [k] =[𝒂𝒂]$𝟏𝟏

We can explain why this is the case.
We know: 𝑘𝑘 × 𝑎𝑎	 + 𝑙𝑙	 × 𝑛𝑛	 = 	1
 Now, taking (mod n) on both sides,

(𝑘𝑘 × 𝑎𝑎 + 𝑙𝑙 × 𝑛𝑛)		𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 = 1	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛
Or, this implies

𝑘𝑘 × 𝑎𝑎	 = 	1
Obviously, in	𝒁𝒁𝒏𝒏, we know [𝑘𝑘] = 𝑘𝑘 + 𝑔𝑔 × 𝑛𝑛 where g is any integer.
Also [𝑎𝑎] = 𝑎𝑎 + ℎ × 𝑛𝑛 , where h is any integer.
[k] [a] = 𝑘𝑘 × 𝑎𝑎 + 𝑘𝑘 × ℎ × 𝑛𝑛 + 𝑔𝑔 × 𝑎𝑎 × 𝑛𝑛 + 𝑔𝑔 × ℎ × 𝑛𝑛(')
 = 1 + 𝑛𝑛(𝑘𝑘ℎ + 𝑔𝑔𝑎𝑎 + 𝑔𝑔ℎ𝑛𝑛)
Now,

[𝑘𝑘][𝑎𝑎]	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛 = 1	𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛
[𝑘𝑘] × [𝑎𝑎] = 1

Let’s see the example here how it works:
We are going to find the inverse of 7 in 𝑍𝑍𝟚𝟚𝟚𝟚.
 Using information from Page 6,
1	 = 1 × 		7 +	(−	3) × 2
1 = 7 − (23 − 7 × 3) × 3
1 = 10 × 7 + (−3) × 23
Finally, we have 1	 = 	𝑘𝑘	 × 𝑎𝑎 + 𝑙𝑙 × 𝑛𝑛
Ultimately [10] is the inverse of 7 in Z23.

How will we transform this process to an algorithm?
Although, it is easy to manipulate mathematical expressions in paper, we need to find
‘k’ and ‘l’ algorithmically.
Note: We have already run the Euclid’s algorithm before executing this algorithm.
Step 1
First we need to store all the quotients during Euclid’s algorithm in each step to some
dynamic array variable named “quotient Stack” variable [1]. We are going to
exclude quotients of those steps when remainder is either 0 or 1.
For example: QuotientStack (while finding gcd (7, 23)) = [3].
 QuotientStack (while finding gcd (20, 73)) = [3 1 1]
Step 2
Initialize two new variables “ksequence” to 1 and “lsequence” to (-1*(last quotient in
Euclid’s algorithm when remainder is 1)).
Step 3
Loop from bottom of the QuotientStack till you reach the first element.

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 89

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

<currentquotient> means the quotient at the particular run of the loop. We know the
loop starts from backwards. So at first run, we access the last element and then
second last element and so on.

Keep running these two commands alternatively till you reach the end of the loop.
Note: The number of times the loop runs depends on the size of the Quotientstack.
However, running two different commands alternatingly requires a different variable
which we can call “alternator”. The “alternator” just makes sure that 2 different
commands run alternatingly inside the loop.

Step 4: After Exiting the loop:

There is no definite mathematical justification on how this algorithm works. I just
conjectured how the “quotients” we calculated during the “Euclid’s” algorithm
affects the numbers during the reverse process. In short, I have just tried to look at
the pattern and conjectured accordingly. Despite all this, this algorithm works on all
values of ‘a’ and ‘n’. We will see, how this algorithm runs perfectly with different
values in upcoming sections.
Working Demonstrations:
Example 1) Inverse of 12 in 𝑍𝑍𝟛𝟛𝟛𝟛
Here a = 12, n = 31
31 = 2*12+7
12 = 1*7+5
7 = 1*5+2
5 = 2*2+1
2 = 1*2+0 (Terminate)
We can also terminate the procedure already when we get remainder 1.
In the Java Programming Assignment, we terminate once we get remainder 1 or 0.
Gcd (12, 31) = 1. So inverse exists.
Quotientstack: [2 1 1] (Note: We exclude quotients in those lines where remainder is
1 or 0).

IF ksequence*a+lsequence*n=1 THEN
RETURN ksequence
ELSE
RETURN lsequence

ksequence=ksequence+(-1)*lsequence*<current quotient>.
Then on second run(in the loop) execute
->lsequence =lsequence - <current quotient>*ksequence

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 90

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Now, ksequence = 1 and lsequence=-2 (Because, 2 is the quotient where the
remainder is 1). (To be continued).
Looping from backwards:
Run in the loop Current Quotient ksequence lsequence
1 1 1+(-1)*2*1=3 -2
2 1 3 -2-(1*3)=-5
3 2 3+(-1)*(-5)*2=13 -5

Now, 13(ksequence)*12(a)+lsequence(-5)*31=1. So inverse is ksequence which is
13. Or equivalence class of 13 which is [13].

Sometimes we might get a different case where 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 × 𝑎𝑎 + 𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 × 𝑘𝑘	 ≠
1. In those cases, inverse is the value of lsequence. One such example is: Finding
inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙. The lsequence in this case is -5. So, inverse is -5. We can convert
this negative number into its positive equivalent by using a different function named
“PositiveEquivalent”. Finally the answer will be 7(-5+12*1). This will be discussed
later in upcoming sections.

Critical Analysis of the Proposed Method- Including Algorithmic Complexity
From computational point of view, manipulating Euclid’s algorithm is the most

effective way. It runs in 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍(𝒏𝒏)𝟐𝟐) given that we are finding the inverse of ‘a’ in 𝒁𝒁𝒏𝒏
assuming a<n. However, if computational running time complexity isn’t a big deal, the
problem of modular multiplicative inverse can be solved in two other ways as well. The first
one is the direct one:

1. Direct Algorithm.

This algorithm has run-time complexity of 𝑂𝑂(𝑘𝑘), which is bad when n tends to be
very large.
The second way is to use Euler’s theorem.
Applying Eulers’ theorem, if ‘a’ and ‘n’ are co-prime, then,

𝑎𝑎∅(.) ≡ 1𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘
Here ∅	 is euler totient function which basically gives the number of positive integers
less than n which are co-prime to ‘n’.
Now multiplying 𝑎𝑎$/ on both sides we get,

INPUTS: N ,A
FOR X = 0 TO N-1
IF (X*A) MOD N = 1 THEN
INVERSE=A
EXIT LOOP
END IF
END LOOP
OUTPUT INVERSE

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 91

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

𝑎𝑎∅(.)$/ ≡ 𝑎𝑎$/	(𝑚𝑚𝑚𝑚𝑚𝑚	𝑛𝑛)
Now 𝑎𝑎∅(.)$/ is the required modular multiplicative inverse of a in 𝒁𝒁𝒏𝒏.	It can be
observed that this method is slightly slower than the method proposed in the solution
because it takes long polynomial time to calculate the value of Euler totient function.
Overall, on comparison, using Euclid’s algorithm seems practical for industrial
purposes. But one major disadvantage of this method is that it is hard to explain the
“Reverse process” and algorithmic logic to others.

Full Algorithmic Implementation in Java
The theoretical implementation of Euclid’s algorithm is given in previous sections.

Here, in this section, we will see the how the solution is implemented practically in Java.

Figure 1: Functions in Rectangles and Arrows Signifying flow of data in-between functions.

Explanation:

The main program is divided into 3 function /procedure. The first one is a default
procedure which is automatically executed when the program is run for the first time. The
“main” function calls second function called findInverse(long a, longn) which finds the
inverse of a in Zn. Then the output is returned back to the main function. However, for
‘findInverse’ to be executed successfully may require the invocation of third function
‘positiveEquivalent’. The ‘positiveEquivalent’ function returns value to the ‘find Inverse’
function, if called depending upon the situation.

Function: findInverse(long a, long n) returning Long
Description: finds the inverse of a in 𝒁𝒁𝒏𝒏 and returns the value.

Function: positiveEquivalent(long negative number,long modulo N) returns
long.

Description: Converts negative number to its positive equivalent in 𝒁𝒁𝒏𝒏 .
For example: -2 in 𝑍𝑍0 is 3.

Main Function(Starting point the whole program)
Description: The module executed when the program file is first executed.

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 92

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Breakdown of (find Inverse (long a, long n) returns long) function

Figure 2: Schematic Breakdown of findInverse function and arrows showing the flow of the
program

Description:

The findInverse function contains 3 sections. These are: Error Handling Section,
Euclid’s Algorithm Section and Reverse Process Section.
The ‘findInverse’ function takes two inputs ‘a’ and ‘n’. It ultimately returns the inverse of
‘a’ in Zn.

Error Handling Section
Before allowing the inputs ‘a’ and ‘n’ to go through the real algorithm, there are

certain values of ‘a’ and ‘n’ which can create problem or create incorrect result while
applying Euclid’s algorithm and Reverse Process Section. So, we need to detect the error
and throw exceptions. These will be discussed later in Error Detection Section.

Euclid’s Algorithm Section
Coming after Error Handling Section, the main purpose of this section is to find the

gcd(a,n) and to store the quotients(for further use in reverse process section). Note that we
will only go to reverse process section if gcd (a,n)=1. If gcd (a,n) doesn’t equal to 1, an
error(exception) will be thrown.

The variables declared/intialized in this section are:

1. mainA(for storing the value of a for further use),
2. mainN(for storing the value of n for further use)
3. QuotientStack(a dynamic array variable for storing quotients),
4. gcd (storing the gcd),
5. ksequence(equivalent of k in ka+ln)
6. lsequence(equivalent of l in ka+ln)

findInverse()
function

Euclid’s Algorithm Section

Error Handling Section

Reverse Process
Selection

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 93

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

7. r(for remainder)
8. q(for quotient).

The method in which we carry out Euclid’s algorithm is same as the procedure given in
previous sections. We start with ‘n’ being the dividend and ‘a’ being the divisor. We keep
looping using ‘Do—while’ loop structure until we get remainder ‘r’ to be either equal to 0 or
1. To calculate remainder, modulus in built operator(‘%’) is used. Then to get the quotient
we subtract remainder ‘r’ from ‘ n’ and do the integer division of the result by ‘a’. We then,
keep changing the next divisor and dividend as according to the instruction in sections. Also,
when we calculate the quotient every time, we add quotients to the quotient stack if the
remainder isn’t 0 or 1. Finally, when the loop is exited, the latest remainder becomes the
gcd. Then, if the gcd is 1 then we set the lsequence to latest value of quotient(q)*-1. On
contrary, if gcd isn’t 1, we throw an error saying gcd isn’t 1. The whole program comes to
halt in such situation. The user must enter new values of ‘a’ and ‘n’ and then rerun the whole
program.

Reverse Process Section
 This is the final and the most important section. The main purpose of this section is
to calculate the inverse of a in Zn. We only enter this section if we are sure that the inverse
exists that is gcd(a,n) = 1. We declare a variable ‘alternator’ and initialize it to 1.
 The reverse process happens like this. We first calculate the length of quotientstack
and store it in sizeofStack variable of type, ‘integer’. We then create a for-loop running from
bottom of ‘quotientStack’ variable. Since, the index of array variable starts from 0, we start
the for-loop from sizeof Stack-1 to 0. (that is in reverse order). We execute two statements
alternatively within the loop. The first statement modifies the value of ksequence and the
second statement modifies the value of lsequence. As seen in the statements themselves, the
values of ksequence and lsequence depend on the value of current value of quotient accessed
from quotientStack variable and the values themselves. Since, nature of odd and even
number alternates, we use modulus(%) operator on alternator variable to run the statements
alternatively during the loop. The alternator variable keeps increasing by 1 during the loop.
 After the loop exits, our required answer is either the value of ksequence or
lsequence. We need to check that by checking if ksequence * a + lsequence * n = 1. If this
evaluates to true, our required answer is ksequence. Otherwise the inverse of a is lsequence.
For example, while finding the inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙, the inverse value is lsequence which is -5.
 Now, in such cases when the inverse comes in negative, we need to convert it to
positive equivalent value in modulo n. We can check if the inverse is negative by using If
conditional statement. We have created positive Equivalent function for this.
 The positive Equivalent function takes the two parameters ‘negativeValue’ and
‘moduloN’. We will then keep increasing the value of a new variable k, which starts form 1.
This is done, until the value of negativeValue+k*moduloN is non-negative. Finally the
function returns the positive value. To understand, why we do this, we need to understand
the concept of equivalence class from the previous sections. Since the negative number is in

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 94

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

the same equivalent class as the positive numbers, we can use the formula above to the
equivalent positive value.
 Some examples where we get negative inverse is finding the inverse of 7 in 𝑍𝑍𝟙𝟙𝟙𝟙	 the
inverse of 5 in 	𝑍𝑍𝟞𝟞.

 Error Handling
 The program might encounter different errors (some runtime errors) or incorrect
outputs. To prevent that error handling has been implemented [5]. Basically, we run the
program by calling the function findInverse(a,n). If any developer wishes to use this function
with incorrect inputs, then custom errors with messages will be thrown. Here are some the
error handling cases:

1) If user/developer puts data with wrong type. For example, in findInverse(a,n) the
expected data type is long for both a and n. If double data is entered, the program
will throw type error.

2) If user/developer inputs n less than 1. We know that ‘n’ is a natural number. If
user/developer puts n less than 1, then a custom error will be thrown saying that
“n” should be greater than or equal to 1.

3) If user/developer inputs n equal to0 1. We know that when n is 1, the conjugacy
classes will only be {0}. We also know 0 has no inverse. So, a custom error will
be thrown saying “No element with inverse exists in the conjugacy class of
modulo 1”.

4) If user/developer inputs a as 0, we know 0 has no inverse in any value of 𝑍𝑍.. A
custom error will be thrown saying “0 has no inverse in Z<N>”.

5) If user/developer inputs pair of a and n whose gcd(a,n) isn’t 1. In such cases a
custom error will be thrown saying “Gcd isn’t 1. So, inverse doesn’t exist.”

Note: When error is thrown, the whole program will not proceed further. The user is either
expected to use try catch statement or rerun the whole program with different appropriate
input. If any developer wishes to use this function, he can easily see the error message while
developing his/her respective application.

Conclusion/ Successful Testing of Algorithm
 Here, we will see how the algorithm works when putting different values of ‘a’ and
‘n’ in the findInverse() function.

Case Scenario 1) When user/developer input a < 0: In this case, first ‘a’ is converted to its
smallest positive equivalent in modulo n. For example, -2 in mod 5 will be first converted to
3 and then inverse is calculated using ‘a’ as 3
Case Scenario 2) When user/developer inputs a >n: Ideally a is supposed to be in between
and including 0 to n-1. So, it should be a incorrect input. However, in modulo n, a can be
represented to be a value in between 0 and n-1. And then inverse can be found. The java
program produces correct input even when a>n. No further checking or manipulation is
required.

Euclid’s Algorithm and its Role in Solving Modular Multiplicative Inverse 95

Kaumodaki : Journal of Multidisciplinary Studies Vol. 04, January 2024 [pp. 85 - 95]

Other cases:
findInverse (-5,12): a<0. The program produces correct answer 7.
findInverse (7,12): The program produces correct answer 7.
findInverse(3,9): Error is thrown saying “Inverse doesn’t exist.GCD isn’t 1. ”
findInverse(7,1111):The program produces correct answer 635.
findInverse(0,3): The program throws custom error as described in previous sections.
findInverse(4.2,9): Type error will be thrown.
findInverse(5,6): The program produces correct answer 5
When error is thrown, it is the responsibility of user/developer to put correct inputs.

References
[1] Stack data structure. (n.d.).

https://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm
[2] Modular arithmetic | brilliant Math & Science (n.d.).

https://brilliant.org/wiki/modular-arithmetic/
[3] Ramuglia, G. (2023, November 17). Java functions explained: your ultimate guide.

Linux Dedicated Server Blog. https://ioflood.com/blog/java-functions/
[4] Libretexts. (2022b, May 19). 3.1: Modulo operation. Mathematics LibreTexts.

https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2150%3A_
Higher_Arithmetic/3%3A_Modular_Arithmetic/3.1%3A_Modulo_Operation

[5] Exception handling in java | Java exceptions - javatpoint. (n.d.). www.javatpoint.com.
https://www.javatpoint.com/exception-handling-in-java

[6] Libretexts. (2022, April 17). 7.3: Equivalence classes. Mathematics LibreTexts.
https://math.libretexts.org/Bookshelves/Mathematical_Logic_and_Proof/Book%3
A_Mathematical_Reasoning__Writing_and_Proof_(Sundstrom)/07%3A_Equivale
nce_Relations/7.03%3A_Equivalence_Classes

[7] Jafar, W., & Jafar, W. (2023, July 5). How to find Greatest Common Divisor (GCD)?
Definition, examples. Splash learn - Math vocabulary.
https://www.splashlearn.com/math-vocabulary/greatest-common-divisor-gcd

[8] Number theory - Modular arithmetic. (n.d.).
https://crypto.stanford.edu/pbc/notes/numbertheory/arith.html

[9] Geeks for Geeks. (2023, July 20). Operators in java.
https://www.geeksforgeeks.org/operators-in-java/

[10] Number systems: naturals, integers, rationals, irrationals, reals, and beyond. (n.d.).
https://www.varsitytutors.com/hotmath/hotmath_help/topics/number-systems

[11] Libretexts. (2023, July 28). 4.2: Euclidean algorithm and Bezout’s algorithm.
Mathematics LibreTexts.
https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2150%3A_
Higher_Arithmetic/4%3A_Greatest_Common_Divisor_least_common_multiple_
and_Euclidean_Algorithm/4.2%3A_Euclidean_algorithm_and__Bezout's_algorit-
hm

