
 

 

 

 

 

 

 

 

 

Abstract 

Traffic route guidance, destination optimization, and optimal route choice are some of the 
approaches to accelerate the evacuation process of transit-based evacuation problems. 
Their effectiveness depends upon the evacuee arrival patterns at the pickup locations and 
their assignment in an appropriate way to the resources in the network. The arrival patterns 
of the evacuees at different pickup locations might be a constant or random variable, 
deterministic or stochastic, time-dependent, or flow-dependent, or can be categorized either 
way. In this work, we are focused on the collections of evacuees at the pickup locations 
from the danger zone in the earliest arrival flow patterns, which can be further assigned to 
the transit vehicles in the integrated evacuation network by treating such pickup locations 
as the sources for the subsequent process to minimize the overall network clearance time 
from the danger zone to the safety.  
Keywords: Evacuation, evacuation network, earliest arrival flow, transform network, time 

complexity 
   

Introduction 
 The massive loss of human life and the socio-economic damage caused by different 
natural or man-made disasters draw increasing attention from society and researchers 
toward disaster management. The great loss of people in disasters is due to the lack of 
proper planning rather than the disaster itself. Mostly, the evacuation planning problems are 
based on the network model. 
 A network N = (V, A) consists of a finite set of nodes and edges. Each node 
corresponds to the intersection of streets and the edges connect a pair (i, j) of nodes, 
corresponding to roads or the streets in the region. Commodities flow from node to node, 
transported by edges of a network having a capacity	𝑢𝑢!, which restricts the amount it can 
transverse. The locations where evacuees are situated initially are the source nodes denoted 
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by s and the safe locations where the evacuees are to be transported are sink nodes denoted 
by t. Intermediate pickup locations are Y. The transit time is the amount of time it takes for 
the flow to travel through the edge i.e., 𝜏𝜏!	∀	𝑎𝑎 ∈ 	𝐴𝐴.	  
 Consider a flow over time evacuation network as in Figure 1,  𝑁𝑁 = (𝑉𝑉, 𝐴𝐴, 𝑢𝑢, 𝜏𝜏, 𝑠𝑠,
𝑡𝑡, 𝑇𝑇) where 𝑢𝑢, 𝜏𝜏, 𝑠𝑠, 𝑡𝑡,  and T represent capacity, transit time, set of sources, set of sinks, 
and the time horizon, respectively. Then its transformed network 𝑁𝑁" = (𝑉𝑉, 𝐴𝐴", 𝑢𝑢", 𝜏𝜏", 𝑠𝑠, 𝑡𝑡, 𝑇𝑇) 
consists of the modified arc capacities and symmetric transit times, 
𝑢𝑢"! = 𝑢𝑢! + 𝑢𝑢!! whereas  τ"! = 	 𝜏𝜏!	if  𝑎𝑎 ∈ 𝐴𝐴	 and  τ"! = 	 𝜏𝜏!!	if  𝑎𝑎 ∉ 𝐴𝐴.	…………. (1),  
where an arc 𝑎𝑎" ∈ 𝐴𝐴" is in the transformed network, if 𝑎𝑎⋁𝑎𝑎" ∈ 𝐴𝐴	in the network N. The 
remaining data structure remains the same.  
 The flow of evacuees from the source to the sink over time is a non-negative 
function f on 𝐴𝐴 ×	ℝ#$ for given time T= {0, 1, 2, …, T-1} satisfying the flow conservation 
and the capacity constraints, (1-3). The inequality flow conservation constraints allow 
waiting for flow at intermediate nodes. However, the flow conservation constraints fore that 
the flows entering an intermediate node must leave it again immediately. 

∑ ∑ 𝑓𝑓%
&'("!)	+#

#$	 	(𝑎𝑎, 𝜎𝜎 − 𝜏𝜏!) −	∑ ∑ 	𝑓𝑓%
&'$!)	+#

&'(	 	(𝑎𝑎, 𝜎𝜎) 	= 0, ∀	𝑖𝑖 ∈ 𝑉𝑉\(𝑆𝑆 ∪ 𝑌𝑌) (1) 
∑ ∑ 𝑓𝑓,

&'("!)	+#
#$	 	(𝑎𝑎, 𝜎𝜎 − 𝜏𝜏!) −	∑ ∑ 	𝑓𝑓,

&'$!)	+#
&'(	 	(𝑎𝑎, 𝜎𝜎) 	≥ 0, ∀	𝑖𝑖 ∈ 𝑉𝑉\(𝑆𝑆 ∪ 𝑌𝑌), 𝜃𝜃 ∈ 𝑇𝑇	(2) 

   0 ≤ f	(a, θ) ≤ 𝑢𝑢!	∀	𝑎𝑎 ∈ 𝐴𝐴, 𝜃𝜃 ∈ 𝑇𝑇	(3) 
The sets of outgoing and incoming arcs for the node 𝑖𝑖	𝜖𝜖	𝑉𝑉 are denoted by, 𝐴𝐴-./0 = {𝑎𝑎 =
(𝑖𝑖, 𝑗𝑗)	𝜖𝜖	𝐴𝐴} and	𝐴𝐴--1 = {𝑎𝑎 = (𝑗𝑗, 𝑖𝑖)	𝜖𝜖	𝐴𝐴}, respectively. Not stated otherwise, for all pickup 
locations 	𝑦𝑦	𝜖𝜖	𝑌𝑌 and	𝑠𝑠	𝜖𝜖	𝑆𝑆, we assume that 𝐴𝐴-./0 = 𝐴𝐴--1 = ɸ in the case without arc reversals. 
However, the flow value to  	υ2	(s) > 0, and  υ2	(y) < 0,   respectively, where 
∑ 	υ2	(i) = 0-	)	3 . 
In such network, the flow reached to Y for all time setup up to 𝜃𝜃" ∈ ℝ#$ is given by,  

|𝜈𝜈4|," = ∑ 	|,"
,'5 	(𝜈𝜈(𝑌𝑌, 𝜃𝜃)|             (4) 

For the given time bound T, its value becomes |𝜈𝜈4| = ∑ 	|%
,'5 (𝜈𝜈(𝑌𝑌, 𝜃𝜃)|             (5) 

 
Figure 1: A simple embedded evacuation network to collect evacuees. 
 
For such problems, not only the amount of flow transmitted but also the time needed for the 
flow plays an important role and are named as flows over time problems. Such a plan is 
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dependent upon many sources, sinks, and different parameters on the arcs and nodes, like 
constant, time-dependent, or flow-dependent capacities, etc. The flow may be auto-based or 
transit-based and the time may be discrete or continuous. Such problems arise in many 
applications of evacuation planning problems. There has been a fair amount of work in this 
area, as referred to by the authors in [1]-[7], [9] and the references therein.     
 In this paper, we seek to focus on the collections of the evacuees at the pickup 
locations from the danger zone in the earliest arrival flow patterns that are better suited for 
the evacuation scenarios as they send the maximum number of evacuees as much as 
possible at every point in time within T. For this, the danger zone is connected to the pickup 
locations via intermediate nodes. This part of the network is not fully connected as the 
source has only outgoing arcs. Furthermore, vehicles do not return either to the depot or to 
the danger zone. However, it can be extended to an integrated network for the integrated 
approach to minimize the overall network clearance time. 
 Here, Section 2 deals with its literature, the earliest arrival flow in Section 3. Finally, 
Section 4 concludes the paper.   

Literature Review  
 The pioneering work of Ford and Fulkerson [10] opened the wide horizon of 
dynamic network flow problems by focusing their work on maximum dynamic flow 
problems, which gives the optimal maximum dynamic flow from the source to the sink in 
the given time horizon T. Quickest flows, as the variant of maximum dynamic flows, are for 
the minimization of time-horizon to transfer a given amount of flow value from initial 
position to the final destination along with the paths in the network and are similar to the 
evacuation of spectators from the stadium. Earliest arrival flow is a flow over time that 
simultaneously maximizes the amount of flow arriving at sinks before time T for all θ	in 
every time unit including the time horizon T. Note that it is not entirely clear that such a 
flow can generally exist in every network, though the earliest arrival flows do exist for a 
single source single sink network by Gale [11]. 

A prominent bus-based evacuation problem model is proposed by Bish [8] to 
minimize the time of evacuation in case of short notice using many homogeneous buses 
satisfying all evacuee demands and without violating both shelter and vehicle capacity 
constraints. In this, the number of evacuees at the demand node might be greater than the 
capacity of a bus and demand the split delivery within the pickup locations. Contrary to this, 
Goerigk et al. [13] assumed that the number of evacuees at every source is known in terms 
of the integral multiples of the bus loads and that does not demand the split delivery service 
in the network. 
 Most of the evacuation planning problems in the literature used a homogeneous fleet 
of vehicles to collect the diverse types of evacuees, and each pickup location may have 
multiple visits.  Most of them the evacuee arrival pattern is silent. However, authors in [5] 
and [7] have presented the earliest arrival pattern in an integrated evacuation network to 
achieve the minimum clearance time in the network considered. They have considered the 
embedding of two different sub-networks as the collection network and the assignment 
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network. In the collection network, evacuees are shifted to the pickup locations from the 
sources for the evacuation. Such pickup locations are taken as the sources for the 
subsequent evacuation process to minimize the overall network clearance time where the 
transit vehicles are provided from the bus depot to the assignment sub-network of that 
embedding. In such integrated network, the earliest arrival flow pattern during the collection 
of evacuees at primary sub-network respects the partial lane reversal strategy, whereas the 
better assignment of transit-vehicles in such embedding are based on dominance relations 
concerning the evacuation duration.  
 Evacuees were supposed to gather themselves from their residents depending on the 
disaster scenario to the nearby pickup locations. In a case study of the hypothetical 
endangered region of a highly populated and dense area of Kathmandu having a large 
transit-dependent population, evacuees were supposed to gather randomly from their 
residents to the nearby pick-up locations. The excess exterior points of such considered 
regions were taken as the pick-up locations and the available open spaces as the sinks. The 
evacuees were supposed to be brought at such sinks from the pick-ups by using buses of 
uniform capacity as the multi-source and multi-sink network. Different empirical 
conclusions were drawn and showed that the domain of optimal solutions remains on many 
buses with higher capacity and speed irrespective of the population chosen where the choice 
of many sources and sinks does not play a significant role [14].  In literature, very fewer 
priorities are given for the collection patterns of the evacuees at the pickup locations from 
the danger zone and are our concern for what we are dealing with the earliest arrival flow 
patterns in our collection sub-network.  
Here, our concern is about such a better-suited arrival pattern in an evacuation network.   
 
The Earliest Arrival Flow  
 The arrival of evacuees at the pick-up locations can be categorized as random or 
constant arrival, deterministic or stochastic, time-dependent, or flow-dependent, and so on. 
As mentioned earlier, most of the evacuations planning problems were silent about the 
arrival patterns at the pickup location. But when preparing for an evacuation, it is uncertain 
how much time it will take to enact it and hence it is preferential to plan within the available 
time horizon to execute the maximum flow possible as in [12], i.e., the transversal of a 
maximum number of evacuees in each possible time unit, which is offered by the earliest 
arrival flows. In the earliest flow pattern, it maximizes the flows of evacuees simultaneously 
at each instance within the given time horizon and is better suited for evacuation planning 
problems. Such flow patterns are more appropriate to achieve the minimum network 
clearance time in the integrated evacuation network. Here, the network clearance time is the 
effective duration of the evacuation planning process from the beginning to the evacuation 
of the last evacuee or the evacuee's caring vehicle in the evacuation network. 
 Earliest arrival flow will simultaneously maximize the flow that reaches the sinks in 
every time unit, but such flows do not exist in arbitrary networks either in constant or/and 
variable time or in zero transit time. For the special case of the flow over time with zero 
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transit times, some characteristic networks always permit the earliest arrival flow pattern 
regardless of their capacities, supplies, and demands, [15].  
Theorem 1 [15]. There exists the earliest arrival transshipment for zero transit times in a 
single source multi-sinks network where the depth is at most two. Hence, we have: 

Lets denote the source and y is the sink. Here, each of the networks as illustrated in 
Figure 2 has a depth less or equal to two, and hence there exists the earliest arrival flow. 

 
Figure 2. The nature of different networks in which the earliest arrival flows exists. 
 
In fact, for the special case of the flow over time with zero transit times, some characteristic 
networks always permit the earliest arrival flow pattern regardless of their capacities, 
supplies, and demands, for a single source with multiple sinks as in [15] and their depth are 
bounded by two. But this need not be held in multi-source multi-sink networks.  

 
Figure 3. Non-existence of the earliest arrival flow in a multi-source multi- sink network. 
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Example 1: In the adjoining Figure 3, let the capacities be 𝑢𝑢(𝑦𝑦5, 𝑦𝑦6) = 𝑢𝑢(𝑦𝑦7, 𝑦𝑦8) =
4, 𝑢𝑢(𝑦𝑦6, 𝑦𝑦7) = 2 whereas the balances be 𝜇𝜇(𝑦𝑦5) = 8, 𝜇𝜇(𝑦𝑦6) = −4, 𝜇𝜇(𝑦𝑦7) = 4, 𝜇𝜇(𝑦𝑦8) =
−4.			Here two different settings of flows are possible in different instances with the same 
amount of flow in aggregate but not the same in each time unit. For this, let us send two 
units each from(𝑦𝑦5, 𝑦𝑦6), (𝑦𝑦5, 𝑦𝑦8), and (𝑦𝑦5, 𝑦𝑦8)	.	Then, we will get 6 units of flow in the first 
instance as in left-half of Figure 3. However, it can balance all the nodes in the second step 
with the same repetition of flows with the total of 12 units in second instance. But in 
another setting, consider 4 units of parallel flows on(𝑦𝑦5, 𝑦𝑦6), and (𝑦𝑦7, 𝑦𝑦8)  will balance 
completely the 𝑦𝑦6 and 𝑦𝑦7 with the total flows of 8 units in the first instance itself, but the 
remaining 4 units can only be sent in two different time steps which needs three time steps 
for the total flow of the same 12 units, as in right-half of Figure 3. Hence, no earliest arrival 
flow does exist in such a network even in zero transit times.   
Now, we are presenting the earliest arrival evacuee algorithm:  
 
Algorithm 1: Earliest arrival evacuee algorithm  
Input: A flow over-time network 𝑁𝑁 = {𝑠𝑠, 𝑉𝑉, 𝐴𝐴, 𝑢𝑢!, 𝜏𝜏!, 𝑌𝑌} with 𝜏𝜏! = 0   ∀	𝑎𝑎 ∈ 𝐴𝐴. 

1. Construct a transformed network N’ as in Equation 1.  
2. Determine the maximum number of evacuees at every possible time instance at each 

Y from s as in [15].  
3. For each 𝜃𝜃 ∈ 𝑇𝑇 and reverse 𝑎𝑎" ∈ 𝐴𝐴   up to capacity 𝑐𝑐! − 𝑢𝑢! if and only if 𝑐𝑐! > 𝑢𝑢! 

And 𝑢𝑢! is replaced by 0 whenever 𝑎𝑎 ∉ 𝐴𝐴 in N where 𝑐𝑐!	 denotes the capacity of the 
static s-t flow value 	∀	𝑎𝑎 ∈ 𝐴𝐴, ∀ N. 

4. For each 𝜃𝜃 ∈ 𝑇𝑇 and  𝑎𝑎 ∈ 𝐴𝐴   if a is reversed to capacity 𝜅𝜅! = −𝑐𝑐!! + 𝑢𝑢! and  𝜅𝜅!" =
0. If neither 𝑎𝑎  nor 𝑎𝑎" is reversed, then  𝜅𝜅! = −𝑐𝑐! + 𝑢𝑢! where 𝜅𝜅! is saved capacity 
of 𝑎𝑎 

Output: Earliest arrival flow of evacuees at Y with 𝜏𝜏! = 0  ∀𝑎𝑎 ∈ 𝐴𝐴. 
 
Theorem 2. The earliest arrival evacuee algorithm designed in above Algorithm 1 sends the 
evacuees at earliest arrival time to Y at each time and saves the unused capacity.  
Proof:  The construction of a transformed network ‘N’ for a given network in Step 1 is 
feasible. Steps 2 and Steps 4 are feasible. As there is no cycle in Step 2, the flow is either in 
𝑎𝑎	or in  𝑎𝑎" but not simultaneously in both. Moreover, such a flow is not greater than the 
modified capacities of each arc in the transformed network. Hence, Step 3 is also feasible. 
Thus the earliest arrival flow as in Algorithm 1 is feasible.  
 Now, we show that Algorithm 1 gives an optimal solution. In N, the maximum 
number of evacuees reached to every pickup location in Y at every possible time unit with 
zero transit times on each arc is computed by Equation 4. As in Theorem 1, there are some 
characteristic networks with depth less or equal to two in which earliest arrival flow exists 
and is so in this network provided by Algorithm 1. The capacities of the arcs not used by the 
flow in such transformed network are recorded in Step 4 and can be used for logistics. This 
completes the proof.  
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Theorem 3. The earliest arrival evacuee flow problem having zero transit times with partial 
arc reversal capacity follows the principle of temporary repeated flows and can be solved in 
polynomial time complexity using earliest arrival evacuee algorithm designed by Algorithm 
1 in the evacuee collection sub-network of the embedding.  
Proof:  As Steps 1,3, and 4 of the earliest arrival evacuee algorithm given by Algorithm 1 
are solved in linear time and its time complexity is dominated by the time complexity of 
computation of the earliest arrival evacuees at the pickup locations Y with zero transit times 
on each arc as in [15] and is solved in polynomial time. Thus, the earliest arrival evacuee 
problem can be solved in polynomial time complexity in the evacuee collection sub-
network.  
 The flow overtime problem having zero transit times that reached to each of the 
pickup locations determines the maximum number of evacuees at every possible time 
instance from the beginning in the evacuee collection sub-network as in [4] and in [15]. 
That means the earliest arrival evacuees at such pickup locations Y from the source s with 
zero transit times on the transformed network follows the principle of temporary repeated 
flows which is equivalent to the solution with arc reversal capability on the original 
network. This completes the proof.   

Conclusions 
 Earliest arrival flows need not exist in the networks with multiple sinks for general 
transit times. Under some characterizations, some of the specific networks always permit 
the earliest arrival transshipments regardless of all choices of the capacities and balances in 
zero transit times.   
 Here, we are focused on the new and better-suited form of arrival patterns of 
evacuees in the earliest arrival flow patterns which will maximize the arrival of the evacuees 
at every possible instance at the pickup locations on zero transit time from a source and are 
considered as the supplies for the subsequent evacuation process to have the complete 
evacuation. However, due to asymmetric network structure, complex traffic congestions, 
and heterogeneous types of vehicles available for the assignment such solutions and 
solution strategies also have some limitations and complete solutions for such real-life 
problems are always challenging. 
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