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Abstract 
Employing the Lotka -Voltera (1926) prey-predator model equation, the system is presented with harvesting effort for both 
species prey and predator. We analyze the stability of the system of ordinary differential equation after calculating the 
Eigenvalues of the system.  We include the harvesting term for both species in the model equation, and observe the dynamic 
analysis of prey-predator populations by including the harvesting efforts on the model equation. We also analyze the 
population dynamic of the system by varying the harvesting efforts on the system.  The model equation are solved numerically 
by applying Runge - Kutta fourth order method.  
Keywords:  Harvesting efforts; Ordinary differential equation; Prey-predator model; Runge - Kutta fourth order method.  

Introduction 
Two species survive in the same region, and one as a predator which depends on the population of another as a prey.  A 
common assumption in population studies is that, at the beginning, a population of one species will grow at a rate which is 
proportional to its initial size.  The population changes as a function of time which describes this time-continuous phenomenon 
by means of an ordinary differential equation. If one species predates another affecting the population dynamics of both 
species, then the populations are in a prey-predator situation. 

Malthus (1798) developed a continuous population growth model. He proved that the population is increasing 
exponentially if the birth rate is greater than the death rate and dies out if the birth rate is less than death rate. A predator-prey 
model equation in the form of a system of ordinary differential equation was derived by (Lotka, 1920; Voltera 1926).  
Chattopadhyay  et al. (1999)  studied the  combined harvesting of  a prey-predator  system in which both the prey and predator 
would obey the law of logistic growth. They included the disease factor term in the model equation, and studied the dynamical 
behavior of the system. Xiao & Jennings (2005) studied the dynamical properties of the ratio-dependent predator-prey model 
with nonzero constant rate harvesting.  Das (2016) modified the system of ordinary differentiable equation (ODE) of two 
variables into the system of ODE with four variables introducing the variables as susceptible prey, infected prey, susceptible 
predator, and infected predator. He observed the role of harvesting on the overall dynamics of the proposed system. Kunwar 
(2019) observed in the phase plot, and analyzed the prey-predator model. Pokhrel (2019) analyzed the Lotka- Voltera model 
equation by doing the variation of the interaction rate of the two species.  
In this paper, we consider that the prey population increases with the Malthusian growth model in the absence of predator, 
whereas the predator population decreases as the proportion of its population size. We consider the killing rate of prey 
attacking by predator, and include the interaction rate on the system of ordinary differential equation. Further, we present the 
model equation with harvesting effort as the proportional to their population size. We analyze the population dynamic by doing 
the variation of harvesting efforts rate. We also consider the harvesting efforts rate is same for both species. We perform here a 
careful sensitivity analysis in different harvesting efforts rate of two species. This would substantially help in the planning of 
conservations of the two species in the certain bounded region.  

Formulation of model equation 
 Let x(t) and  y(t) be the number of  prey  (for example  deer) and  the number of predator (for example tiger)  at time t, 
respectively. If there is an unlimited food supply for prey species, then in the absence of predator the growth of the prey is 
represented by the equation (Malthus, 1798): 

 
d x
 d t   =  x (t),     > 0,  …(1) 

Where  is the difference between  birth and death rate. If there were no food supply, then the predator population would die 
out at a rate proportional to its population growth as: 

 
d y
 d t   =  – y (t),     > 0,  …(2) 

Where  is the  die out rate of the predator. If the rate at which predator population encounters the prey population is jointly 
proportional to the sizes of the two populations, then the system of ordinary differential model equation (Lotka, 1925; Voltera, 
1938) as: 

   
d x
 d t   = x (t) –  x (t)  y (t),     > 0, > 0,  …(3) 
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d y
 d t   = – y (t) +  x (t) y (t),     > 0, > 0,  …(4) 

Where  and  are the attraction rate of the predator so that the population of prey is decreasing and the population of the 
predator is increasing.  If both species are considered as harvesting, and this is carried out on assuming the demand in the 
market of both species, then Lotka-Volterra  model equation is written in the form: 

   
d x
 d t   = x (t) –  x (t)  y (t) – E x,     > 0, > 0,  …(5) 

   
d y
 d t   = – y (t) +  x (t) y (t) – E y,    > 0, > 0,  …(6) 

where the positive constant E  is the harvesting efforts for both species with  initial populations  are x(0) = x0, and    y (0) = y0, 
and  , , ,   are positive constants. However, the presence of predators also causes the number of deer to decline in 
proportion to the number of encounters between a tiger and a deer, which is proportional to the product  x(t) y (t).  There are 
some assumptions that population of predator has only one food source, and it will die in the absence of the specific prey 
instead of resorting to another food source. The population of tiger reduces in the absence of the   population of deer, and there 
is no other threat to prey population other than one species tiger. The system of model equation (5) and (6) are solved 
numerically by the method of Runge-Kutta fourth order (Kresyzig, 2009). 

The Trajectories 
 Dividing the equation (6) by (5), we obtain    

   
d y

 d x   = 
 y (–  +  x – E )
 x ( –  y – E ) .    …(7) 

 

 

 

   

 

 

 
 

 

 

 

 
 

Integrating (7), we get 

                       ( – E ) log y  – y  =  x – (  + E) log x + c, 

where c is constant of integration. Using initial conditions, x(0) = x0, and y (0) = y0, we get 

                         (– E) log y0 – y0  =  x0 – ( + E) log x0 +  c, ...(8) 

                       c  =  ( – E) log y0 –  y0 –  x0 +  (+ E) log x0.  

 Substituting the value of c in (8), we get 

   (-E)  log 



 

y
 y0

 – (y – y0) = (x – x0) – ( + E) log 



x

 x0
,  

                 or,     
x + E

 e  x   
e  x0   

 x0 
+ E   =  

e  y

 y  – E    
y0 

– E

 e  y0
.   

  Since (x0, y0) lies in the first positive quadrant, we get a family curve as:     

                       x  + E   e –  x =   e  y  y – (– E,  where = x0 
 + E  y0 

– E  e –  y0 – x0. 

Figure 1.1: Determination of the points of intersection of curves.
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 These curves are in x y - plane which are the trajectories of model equation (5) and (6).  The points of intersection of the 
curves with  lines  parallel to the coordinate axes, as  taking  the line  parallel to the x- axis is  y  = k,  as  

                         x  + E   e –  x =   e  k  k – (– E = 
1
 , 

           F(x)     x  + E   –  e   x = 0. ....(9) 

 Differentiating (9) with respect to x, we get 

  F (x)    ( + E) x  + E –1   –   e   x = 0. ....(10) 

Eliminating x between (9) and (10), we get the critical values of  and the values of  x as     

  = * = 
e + E  + E

  (+ E)+ E , and  x = x* = 
+ E
 .  

The roots of  (9) are  obtained by  the abscissa of the points of intersection of the  curves, 

  y =  e  x,     and   y  = x + E. ...(11) 

These two curves intersect in two real and equal points if  = *, or in two different points if    = 1 or do not intersect in any 
points if  = 2 as shown in Fig. 1.1.  

Characteristic Speeds and Critical Values 
 For the critical points, putting   d x / d t = 0, d y / d t = 0 give 

                       x (  –  y – E )   = 0, ...(12) 

 y (– x – E) = 0. …(13)  

So, the critical values are (0, 0), and 



  + E

    
 – E

  . In the first case, there are no species no predators and no prey, and this 

is catastrophic situation. The second is a nontrivial solution in which both populations maintain a steady value, for which the 
birth rate of the prey is precisely sufficient to continuously feed the predators. The other possible critical values are     





  + E

    0 , 



0   

 – E
  .  These are the critical values from where the population sizes are decreasing or increasing. Both the 

populations are increasing if first derivatives                      d x / d t > 0, d y/ d t > 0, and decreasing if  d x / d t < 0,  d y / d t < 0. 
The characteristic speeds are determined from the Eigenvalues of the system. The model equations (5) and (6) can be put in the 
matrix form as: 

                               
d X
  d t  = F (X), …(14) 

where X  is the vector of function with  and   F  = F (X)  is the vector of   function  with: 

                            X = 



x

 y
 ,   F ( X) = 







 x  – x y – E x

 –  y +  x y – E y 
. …(15) 

One of the main tasks here is to obtain the Eigenvalues of the system (14) as characterized by   (15). The Eigenvalues are 
connected with the Jacobian matrix as 

                            A = 
  F
   X  = 







 – y - E  –   x

    y   –  +  x – E 
.  

Eigenvalues of A  are given  by the roots  of the characteristics polynomial equation  |A –   I| = 0  in    at the critical values 

(0, 0 ), 



  + E

    0  



0   

 – E
  ,  and 



  + E

    
 – E

  . The critical point  



  + E

    0   refers that   there are only prey 

population exist in the absence of predator population, the point 



  + E

    
 – E

   means that the populations of two species are 

coexistence in this equilibrium. In the equilibrium point (0, 0),  | A – I | = 0 gives 

        




 – E –     0

  0    –  – E –  
 = 0, 

                             – E  – (. 
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The growth rate of the population of   prey is greater than the product of the harvesting rate E with the catchability rate of the 
prey, and one Eigenvalue is positive and another is negative. Since one Eigenvalue is positive for  > E, and another 

Eigenvalue is negative, then the system is semi-stable. In the equilibrium point 



  + E

    0 , | A –  I | = 0 gives 

                   








 – E –   –  

 + E
 

  0   0 –   
 = 0, 

 0,   – E. 

Since  > E, one Eigen value is positive, and another is zero, the system is unstable.  In the equilibrium point 



  + E

     
 - E

  , 

| A –  I | = 0 gives    

           







 0 –   –  

 + E


  
 –  E

     0 –   
 = 0, 

                               i  ( + E) ( – E). 

 Since  > E,  both Eigenvalues are imaginary, so the system is asymptotically stable, and its solution will be periodic.  

Numerical Results and Discussion 

Figure 1.2   reveals that the initially twenty tigers and   forty deer are existing in the region; the growth rate of the prey 
population,  = 0.56 per capita, the rate of decreasing of predator population  0.64 per capita, and the interaction rate  =  
= 0.012. Although the harvesting effort for both species are taken E = 0.0225, both   species are survived periodically a long 
period of time. One hundred four is the maximum population sizes of prey at t = 4 yrs, 15 yrs, 26 yrs, 37 yrs,  40  yrs, and so 
on. Every eleven years, the populations of deer are periodically maximum as in Fig. 1.2.  In the case of predator, ninety is the 
maximum population sizes of predator at  t  =  6 yrs,  7 yrs, 28 yrs,  39 yrs,  50 yrs  and so on. Every eleven years, the 
populations of tiger are periodically maximum as in Fig. 1.2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3  shows that if the harvesting efforts rate is increased by 100% for both species in the model  equation, then  the  
maximum  number of  prey is increased by   0.961% and reached up to 105 prey population  sizes whereas the maximum  
number of  predator is  decreased by 5.5% and reached  up to  85 predator population. Both the populations are existing 
periodically a long period of time. 

Figure 1.2:  The prey-predator populations with harvesting effort E = 0.0225. 
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 Figure 1.5:  The trajectories of the system of prey-predator model with harvesting. 

Figure 1.4:  The prey-predator populations with harvesting effort E = 0.0900. 

Figure 1.3:  The prey-predator populations with harvesting effort E = 0.0450. 
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Figure 1.4   reveals that if the harvesting efforts rate is increased by 100% for both species in the model  equation, then  the  

maximum  number of  prey is increased by   1.9048% and reached up to 107 prey population  sizes whereas the maximum  

number of  predator is  decreased by  8.2353 % and reached  up to  78 predator population. Both the populations also exist 

periodically a long period of time.  The trajectories of the population of both species are shown in Fig. 1.5. 

Conclusion 

The numerical solution of the prey predator model with harvesting was obtained by using Runge-Kutta fourth order method. In 

the system, the harvesting effort rates are the same for both species.   We   observed that the populations of both species are 

survived periodically for a long period of time if the harvesting efforts rates are the same for both species. In this case, we 

found that at the certain period of time, both prey and predator population increases. The prey population increases by less 

percentage whereas the predator population increases significantly by high percentage. The qualitative dynamics of population 

depended on the harvesting efforts rate in which the populations of prey species are slowly increasing, and the population of 

predator is decreasing but they are coexisting for a long period of time; the results   showed that the population dynamics 

depend on the initial population, growth rate, interaction rate and also harvesting efforts. The dynamic of the system are also 

observed   by taking different   harvesting efforts rate for both species in the certain bounded region.  This would be useful for 

analyzing the population dynamic of   various types of species within the same compartment.  
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