Reference Intervals (RIs) for laboratory test results obtained from healthy reference populations have an important role in diagnosis treatment and monitoring of patients. Careful determination of RIs by a laboratory is very important task [1]. A reference interval is the interval between and including two reference limits. The term “reference range” was rejected because range is the difference between the highest and lowest value in a number set; it is a single value. Reference value is a value expected for a healthy person. They are sometimes called “normal value”. By comparing the test results with reference values, your health care provider can determine whether your test results fall outside the range of expected values. Which can provide clues to identify possible conditions or diseases [2]. The term “reference value” was introduced by Nils-Erik Saris and Ralph Grasbeck in 1969 [3]. After seventeen years, between 987 and 1991, Six guidelines covering different aspect of reference intervals (RIs), were published by International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) recommending that each laboratory produce its own reference interval [4].

According to the directive on in vitro diagnostic medical devices of the European Union, diagnostic manufacturers are now requested to supply their clients with appropriate RIs for use with their assay platforms and reagents [5], and the International Organization for Standardization (ISO) 15189 standard for clinical laboratory accreditation states that each laboratory should periodically re-evaluate its own RIs [6]. In spite of immense clinical importance, most laboratories across Nepal depends on either kit inserts or scientific literature, which are mostly calculated for western population. Population across the globe differs physiologically, genetically and ethnically, with differences in lifestyle and diet which have great impact on the various biochemical analytes. Thus, it is inappropriate to use RIs which do not represent the local population. The derivation of RIs by conducting a multicenter study following a common protocol and standard operating procedures (SOPs), for multicenter RI studies [7, 8] is probably the most plausible solution for globally applicable RIs with indication of the utility of a panel of sera for the alignment of test results among laboratories in the multicenter studies [9].

REFERENCES