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Abstract
The aim of this study was to prepare landslide susceptibility mapping technique using multilayer
perceptron artificial neural network (MLP-ANN) and then to apply this method to Phewa catchment
in western Nepal. To determine the effect of causative factors on landslides, data layers of aspect,
elevation, slope, internal relief, slope shape, drainage proximity, drainage density, stream power index,
topographic wetness index, sediment transport index, land cover and geology were analysed in R-
statistical package and final map was produced using geographical information system environment.
A GIS-based landslide inventory map of 88 landslide locations was prepared using data from previous
reports and satellite image interpretation. A MLP-ANN model was generated from a training set
consisting of ~70% randomly selected landslide in the inventory map, with the remaining ~30%
landslides used for validation of the susceptibility map. According to analysis, the model had a success
rate of 82.1% and the prediction accuracy of 91.4%, indicating a good performance.
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Introduction
Landslides generate greater annual losses of property than any
other type of natural disaster (García et al., 2008). L andslides
constitute a major natural hazard in Nepal mainly due to the
unique combination of active tectonic setting, high rates of
weathering and abundant rainfall, aggravated by human interference
in the form of rapid urbanization and infrastructure development
(Deoja et al., 1991; Dhital, 2000). In Nepal, a significant number
of landslides occur each year (as many as 12,000). Furthermore,
due to climatic changes and increase in the frequency of extreme
events landslide problems have aggravated (Shiwak oti, 2000).
Landslides and floods alone claimed more than 8061 human lives
during the period 1983–2011 (DWIDP, 2012). The mountainous
terrain in Nepal Himalaya is generally characterized by steep slopes,
high relief , highly weathered and densely jointed rock with
unfavorable hydro-geological conditions with respect to slope
stability. The stability condition of the slopes is further affected by
intense human activities and improper land use practices (Sikrikar
et al., 1998).

 In order to mitigate or control the problems caused by landslides,
a systematic study of landslides, including inventor y mapping,
susceptibility mapping, hazard mapping and risk assessment have
to be under tak en (Upreti & Dhital, 1996). Researchers have
developed different methods to assess landslide susceptibility or
landslide hazard and risk. The basic concept of deter mining

landslide-prone areas (zones) using the spatial distribution of
factors related to instability processes (without temporal factors)
was first introduced by R adbruch (1970).Various methods to
prepare landslide susceptibility and hazard maps (models) using
statistical methods and GIS tools have been developed over the
last decade (Guzzetti et al., 2005; Van Westen et al., 2003). Among
recent models for landslide susceptibility mapping, a soft computing
technique such as artificial neural networks is widely used in
pattern recognition (Lee & Pradhan, 2007).

Phewa Lake is the travelers’ focal point in P okhara, and is the
second largest lake in Nepal. Phewa Lake has national as well as
local importance because of its rich biodiversity, proximity to the
Pokhara city, and significance for socioeconomic. According to
Pokharel (2008), the area of the lake has reduced from 10 km2 in
1957 to 4.4 km 2in 1998. It is assumed that the high amount of
sediment intake during past big landslide events is one of the
causes for lake area reduction (FEED Nepal P Ltd., 2014).

This study focuses on the use of a MLP–ANN to quantitatively
model the relationship between landslide occurrence and causative
factors (CFs), which could be used for land use planning and as
a base for further developments of research related to landslide
hazard.
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Materials and Methods
Study area
The Phewa Lake watershed area is situated west of Pokhara City
about 200 km northwest of Kathmandu (Fig. 1), covering an area
of about 123 km2. The catchment area is a NW-SE elongated Valley,
lying between latitude 28 o11’ to latitude 28 o18’ and longitude
83o48’ to longitude 83o59’. The main tributary river to Phewa Lake
is Harpan Khola. Measuring 2509 m. Panchase is the highest peak,
situated at the wester n part of the catchment boundar y and
Naudanda and Sarangkot are other important mountain peaks in
the northern rim of the catchment.

The study area is located within the P okhara Valley, an intra-
montane basin situated at the foot hills of the Annapurna Himalaya
range. Several episodes of debris flow events during the Holocene
have dammed the river channels, for ming a number of lakes in
the valley. Phewa is the largest of these lakes, formed by damming
of Harpan Khola (Yamanaka et al., 1982).  The slopes around the
valley are generally ver y steep and deeply incised by the rivers.

The unprecedented debris flows of September 2007 devastated
the Sedi Bagar area.  There was a heavy downpour from 4 th of
September and it intensified further between 7 and 9 September
2007 leading to that disaster (F ig. 2). The debris flow claimed a
life and a huge loss of properties.

Figure 2 Landslide observed in Phewa catchment

Figure 1  Location of Phewa catchment and distribution of landslides blended on Landsat image FCC 432

Spatial database
In this study, the data required for susceptibility mapping were
obtained from topographic maps and aerial photographs together
with extensive field sur vey of the area. The effects of causative
factors on slope stability were mapped on topographical maps of
1:25,000 and 1:50,000 and aerial photographs of 1:20,000 scales.
Geological data were obtained from engineering geological map
(1: 50,000) published by Department of Mines and Geology.



Nep J Environ Sci (2016),  4, 1-9 3

TU-CDES

Figure 3 Topographic causative factors: a) aspect; b) elevation; c) slope; d) curvature and e) internal relief

The landslides in the study area were identified from comparing
LANDSAT 7 ETM+ (15 m) satellite images of 2008 and 2009
(landsat.gsfc.nasa.gov), and they were verified in the field. In total
88 landslides were mapped (Fig.1) and digitized for further analysis.
Before analyzing the data, the training landslide data should be
selected (Pradhan et al., 2016b). However , there is no exact
mathematical rule to determine the required minimum size of the
training data-set (Caniani et al., 2008). From these landslides 66
(~70%) randomly selected landslides (training data) were taken
for making landslide susceptibility model and 26 (~30%) were
used for validation of the model.

Physically, the aspect is related to parameters such as the orientation
of discontinuities controlling landslide. The aspect or the direction
of maximum slope of the ter rain surface is presented in Fig. 3a.
In general, elevation is usually associated with landslides by virtue
of other factors such as slope gradient, lithology , weathering,
precipitation, ground motion, soil thickness and land-use. Richter

et al. (2009) stated that landslides represent an important ecosystem
disturbance. The elevation map (Fig. 3b) was produced using the
DEM with 30 X 30 m grid size. The slope in the study area varies
from 0° to 66.4°. This map was produced automatically in ArcGIS
using the DEM with 30 X 30 m grid size (Fig. 3c). Curvature analysis
allows dividing the area into concave, convex, and flat sur faces
and, consequently, may help to identify zones that exhibit proneness
to landslide (Mancini et al., 2010). The curvature was derived from
the DEM in ArcGIS 10.2 (Fig. 3d). Internal relief corresponds to
the local differences in height within a unit area; the internal relief
provides the indication of the potential energy for mass wasting
and soil erosion (Ghimire, 2011). It shows major breaks in the
slopes of study area. Rank order filter was used in DEM to obtain
maximum and minimum altitudes, and internal relief was computed
as the difference between the maximum and minimum altitudes
per 100 m 2 in study area (Pradhan & Kim, 2016a). In the study
area, relative relief ranges from 0 to 111.78 m (Fig. 3e).
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Figure 4 Hydrologic causative factors: a) drainage proximity; b) drainage density; c) SPI; d) STI; e) TWI

Land use also plays a significant role in the stability of slope. The
land use map was obtained from topographic map published by
Department of Survey, Government of Nepal. In the study area,
forest and cultivation land are predominantly present which is
followed by grass, bush and others (Fig. 5).

The rocks exposed in the northern area of the catchment belong
to the Kunchha Formation (DMG, 1998). The formation comprises
mostly of gritty phyllites, greenish gray phyllites, talcosicphyllite
and gray banded gray quartzite (Fig. 6). The greenish gray banded
quartzite and phyllites occur in the upper part of the Formation.
Fagfog Quartziteis well exposed in the wester n part of the
catchment. The characteristic feature of this formation is abundant
ripple marks. In this study, geological structures were not used
for analysis.

The river map obtained from the Department of Survey of Nepal
was used in the ArcGIS 10.2 software to get the proximity to rivers
(Fig. 4a). The stream may adversely affect stability by eroding the
slope or by saturating the lower portion of the material. Drainage
density is the ratio of the total length of the stream to the area of
the drainage basin (Fig. 4b). Stream power index (SPI) measures
the erosion power of the stream and is also considered as a factor
contributing toward stability within the study area (Fig. 4c). The
slopes of an area have two components that are  slope length (L)
and slope steepness (S). The sediment transport index (STI) is a
dimensionless sediment transport capacity index that is a nonlinear
function of specific discharge and slope was derived by considering
the transport capacity limiting sediment flux and catchment
evolution erosion theories (Moore & Wilson, 1992) as presented
in Fig. 4d. The topographic wetness index (TWI), which combines
local upslope contributing area and the entire slope, is commonly
used to quantify topographic control on hydrological processes
(Fig. 4e).
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Figure 6 Geological map of Phewa catchment (Modified after DMG, 1998)

Figure 5 Land-use map of Phewa catchment
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Methods
A multilayer perceptron (MLP) is a feed-for ward artificial neural
network model that maps sets of input data onto a set of
appropriate outputs (Garrett, 1994). An MLP consists of multiple
layers of nodes in a directed graph, with each layer fully connected
to the next one. Except for the input nodes, each node is a neuron
(or processing element) with a nonlinear activition function. This
method utilizes a super vised lear ning technique called back
propagation for training the network, and a modification of the
standard linear perceptron (Rosenblatt, 1961). This technique can
distinguish data that are not linearly separable.

If a multilayer perceptron has a linear activation function in all
neurons, that is, a linear function that maps the weighted inputs
to the output of each neuron, then it is easily proved with linnear
algebra that any number of layers can be reduced to the standard
two-layer input-output model (Haykin, 1998).  

This learning algorithm is a multi-layered neural network, which
consists of an input layer, hidden layers, and an output layer. The
hidden and output layer neurons process their inputs by multiplying
each input by a corresponding weight, summing the product, and
then processing the sum using a nonlinear transfer function to
produce a result.

A neural network consists of a number of interconnected nodes.
Each node is a simple processing element that responds to the
weighted inputs it receives from other nodes (Paola &
Schowengerdt, 1995). The arrangement of the nodes is referred
to as the network architecture (Fig. 7).

The two main activation functions used in current applications
are both sigmoid, and are described by equation 1

                                                                                            1

In which, the former function is a hyperbolic tangent which ranges
from -1 to 1, and the latter, the logistic function, is similar in shape

but ranges from 0 to 1. Here  y(J i) is the output of the ith node
(neuron) and  Ji is the weighted sum of the input synapses.
Alternative activation functions have been proposed, including
the rectifier and soft plus functions. More specialized activation
functions include radial basis functions which are used in another
class of supervised neural network models.

Results and Discussion
Once subsets of features were developed using the methodology
previously described, MLP-ANN is used to constr uct the model.
The selection of the optimal number of hidden neurons was
conducted by setting up a group of neurons in the range of 5 to
150 and examining the RMSEs of the training data. Fig. 8 illustrates
that RMSE value of the training data decreases with the increasing
number of neurons.

The calculated landslide susceptibility index values, computed
using MLP-ANN, were converted into an ARC/INFO grid data. In
order to facilitate the map interpretation, a map of landslide hazard
zonation is established by dividing the LSI values into different
landslide susceptibility classes. However, this is not straight forward,
as there are no statistical rules which can categorize continuous
data automatically. Moreover, the problem of dividing continuous
data into classes remains always unclear , because the most
researchers use their own expert opinion to develop class
boundaries. Mathematical methods for data classification are
usually available in GIS software. In this study, the manual classifier
method was used to reclassify the landslide susceptibility index
values into four different susceptibility zones. The classification
method should satisf y the principle that higher landslide
susceptibility classes should capture more or most of the landslide
occurrences. The susceptible area which encompassed 70%
landslide (training) occurrence data was considered as very high
susceptible area. And remaining three classes, i.e. low, moderate
and high were classified on the basis of natural break (Jenk)
classification available in ArcGIS (Fig. 9).

Figure 7 Multilayer neural network
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Figure 9 Landslide susceptibility map
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Figure 8 RMSE versus number of neurons for training data to
                 select optimal hidden neurons

Fig. 10  shows the area of the susceptibility class for the landslide
susceptibility map prepared by MLP-ANN. A total of 36.52% of the
area was categorized as having low susceptibility , 33.9% as
moderately susceptible, 19.08% was classified as high and remaining
10.5% was considered to have very high susceptibility.

Verification is a fundamental step in the development of
susceptibility and deter mination of its quality. The quality of a
landslide susceptibility model is usually estimated by using
independent information that is not available for building the
model. Among 88 landslides, ~70% were used to train phrase,
the rest of landslides were used as validate the susceptibility map.
Receiver characteristic curve (ROC) is applied in many fields to
test model performance. The ROC is a useful method to represent
the quality of deterministic and probabilistic detection and forecast
systems (Swets, 1988). When classifying a grid from the unstable

map, four outcomes are possible (Pradhan & Kim, 2016a). If
landslides were observed in a cell that was calculated to be unstable,
this was considered a tr ue positive (TP); if landslides were not
observed in the area that was calculated to be unstable; it was
considered a false positive (FP); if landslides were obser ved in
areas that were calculated to be stable cells, it was considered a
false negative (FN); and if no landslides were obser ved in areas
that were calculated to be stable cells, this was considered a true
negative (TN). The ROC was calculated by plotting the fraction of
positive outcomes that were cor rectly identified (i.e., the TNs)
versus the fraction of positive outcomes that were not cor rectly
identified (i.e., the FNs). The area under the ROC (AUC) can be
used as a metric to quantify the overall performance of the model
(Hanley & McNeil, 1982) such that the larger the area is, the better
the performance of the model becomes.
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Conclusion
Landslides are one of the most hazardous natural disasters, not
only in Nepal but around the world. Gover nment and research
institutions worldwide have attempted for years to assess landslide
hazards and their associated risks and to show their spatial
distribution. A multilayer perceptron artificial neural network
approach has been used to estimate areas susceptible to landslides
using a spatial database for a selected study area in Phewa L ake
catchment, Pokhara. The validation of landslide susceptibility maps
indicated that artificial neural network can be applied for the
landslide susceptibility mapping successfully . In order to get
accurate susceptibility map, this model included slope, aspect,
elevation, internal relief, and slope shape, drainage distance, stream
power index, topographic wetness index, sediment transport index,
land use and geology as the inputs. The AUCs of the success rate
and prediction rate were 82.1% and 91.4% respectively , which
indicate that artificial neural network is suitable for the prediction
of landslides in the study area.
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Chung and Fabbri (2003) distinguished between success- and
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These values represented that the MLP -ANN had a good
performance on the prediction of landslide. It also indicated that
the susceptibility map which was obtained through this method
was reasonable.
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