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Abstract  

The Gompertz law states a functional relationship on exponential scale between instantaneous 

intensity and age. The objective is to first estimate the model parameters by using mortality data 

and then confirm the interval of validity for the estimated parameters. The parsimonious model is 

implicitly expressed in terms of age and level of mortality while the force of mortality is the 

dependent variable. Current contributions in actuarial literature have made it tractable to obtain 

life span from the actuarial point of view, making the life table invaluable analytical tool for 

insurers. Mortality functions which have been developed recently possess sophisticated actuarial 

techniques with many parameters hence they are very complex to estimate numerically making it 

difficult to fit to mortality data. In order to overcome this problem, we need to employ numerical 

algebraic method to estimate the appropriate values of model parameters and which may enable 

us fit the function to mortality data. In this paper, the direct algebraic method offers simpler 

perspective of approximating mortality parameter and was decomposed into systems of algebraic 

equations. We observed that mortality C over all ages for males is lower than that of females while 

the initial mortality B for male is higher than that of female. The R-language software was 

employed in the computation. In view of actuarial benchmarks, our results confirm that the values 

of B and C  for both males and females lie within the expected interval
6 3
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Introduction 

A life table is an actuarial tool summarizing the mortality experience of a cohort and it 

produces information on longevity and life expectancy. Despite its use in studying mortality 

trends, the life table can further be used to summarize any duration function such as duration of 

marriage, duration of sickness or duration of disability. Mortality table are mainly applied in life 

contingencies’ computations to value life and pensions funds, however the procedures of 

constructing mortality table is quite involving taking time and resources to finish up. Within the 

time interval from the commencement to the completion, the set assumptions called the basis 

functions could have varied. The change could be due to innovations in health care delivery or 

outbreak of a pandemic like covid-19. The change in question could make the mortality table 

become irrelevant thus the risk could further render it unusable within that defined period. 

Mortality table remains potent drivers in life insurance contract product pricing and financial 

stability for life insurance liabilities. Policy regulators continue to express great concerns the 

level of deviation arising between the forecasted and the actual mortality because the deviation 

will result in cash flow distortions that may make life office financially unstable. The unexpected 

will definitely impact on underwriters’ cash payment and reduced insurance business resulting in 

financial instability. Consequently, profit margins are affected because claims amount out go 

exceeds premium income collected. In order to compute appropriate premium, life offices need. 

We observe in Andreeski & Vasant (2008), that various functions were developed to estimate 

life tables but are really very complex to permit the technique of simple methods such as direct 

algebraic method, maximum likelihood or methods of moments to estimate the parameters. 

Following Higgins(2003); Canudas-Romo(2008); Missov, Lenart  , Nemeth ,  Canudas-Romo & 

Vaupel (2015) and Chukwu & Ogunde (2016) hence some efforts are made to model the 

functional form which could estimate mortality data in an efficient manner. Various authors such 

as Strehler & Mildvan (1960) have proposed genetical theories to support the exponential 

increase in death rates as age increases. All of these theories are deeply rooted in Gompertz 

function formulated by Gompertz (1825) and modeled as ( ) Ke  =  where  is the mortality 

intensity,  and k are constants and   is the age parameter. Other theories employing the 

Gompertz model is the Strehler & Mildvan theory. The Strehler & Mildvan theory falls in line 

with Gompertzian mortality kinetics but has a linear decay of physiological function at a rate 

consistent with observation. The theory can project the numerical inverse relation between 

Gompertz slopes and intercept which has been observed. The description of the various causes of 

death across age spectrum which leads to increase in mortality when using Gompertz model has 

proved helpful as a build-up of the theories outlined above. In view of Bongaarts (2005), 

Actuaries have adopted as a norm the functional relationships between age and mortality rate so 

that any deviation from this norm suggests that within any age spectrum, the population being 

treated has abnormal risk. Over the years, estimations of mortality tables have been constructed 

in connection with distinct functions other than the functions mentioned earlier. However, one of 

the most successful model formulated is the Gompertz-Makeham’s model. This model results in 

higher degree of accuracy approximations for mortality data other than the ones explained 

earlier. The Gompertz-Makeham model is wholly built on the Gompertz mortality function. In 

Mahdi & Gupta (2012), Cohen, Bohk-Ewald & Rau (2018), this function is usually applied to 

model human mortality and to compute life tables motivating other estimation methods being 

suggested for this model with respect to complete and censored mortality data. The choice of 

approximation technique relies wholly on the area of interest. As observed in Mahdi & Gupta 

(2012), it is most probable that the technique of approximations is differently appealing to 
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distinct users. Following Melnikov & Romaniuk (2006) and Tai, Noymer (2017), this new 

variation of Gompertz’ distribution also has aroused much interest in actuarial literature. In 

Willemse & Koppelaar (2000), the quintile function of Gompertz-Makeham has been associated 

with a closed form equation by applying the Lambert W function. Mortality at extreme ages 

seems to deviate from the Gompertz’s model, hence the logistic model has been proposed to take 

care of this departure to fit human mortality. The approximations of mortality rate at extreme 

ages are hard to compute since only a few lives survive to these ages. Moreover, mortality data at 

extreme ages are rare and subject to age exaggeration. The deterministic demographic 

approximations of mortality based on period data, experience well-known denominator 

problems. In order to calculate better estimates of mortality at extreme ages, mortality data are 

combined together for different calendar periods. The distribution of mortality by single year 

shows few numbers of lives surviving to the end of the life table making approximations of 

mortality at extreme ages inadequate. In Zempleni (2006) and Mahdi & Gupta (2012), the 

Gompertz’s model is applied for modeling human lifetimes in the context of life insurance. In a 

research conducted to test the adequacy of Taylor’s law on Gompertz’s, Makeham’s and Siler’s 

models, Cohen, Bohk-Ewald & Rau (2018) extended the senescent mortality of Gompertz to 100 

years 

.  

Preliminary Survey of Standard Actuarial Functions 

According to McNown & Rogers (1992), the mortality rate is a measure of the number of 

deaths in general due to aging or through a specified cause in a defined population, scaled to the 

size of that population, per unit of time. Mortality is measured because it is useful to public 

health authorities. Vital statistics systems which is compulsory in many economies, record 

certain information contained on every death, such as name, age at deaths, and cause of death, 

then add the number of deaths periodically to compute mortality rates. Mortality data remain 

good source of information concerning the health status of surviving communities. It generates a 

summary of the health risk profile, identifies continuous and non-transient patterns of risk profile 

in certain communities and shows trend patterns in particular causes of death.  

For a live age x , its future lifetime is xXTx −= . For a newborn, 0=x ,  

so that we have XT =0            (1) 

( )  
( )

( )
0

0 0

0

Pr | 1x s x s x

S x s
S s T x s T x p q

S x

+
=  +  = = = −

      (2)                        
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− +
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( )
( ) ( ) ( )

( )
0

0

x x

x

dF s dS s f x s
f s

ds ds S x

+
= = =

                                                                      

(4)

     

 

xp  refers to the probability that ( )x  survives for another year. 

xx pq −=1 , on the other hand, refers to the probability that ( )x  dies within one year. 

Following Bowers et al .(1997); Hudec (2017); Ogungbenle & Ogungbenle (2020); Ogungbenle 

& Adeyele(2020) ( )
( )
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( ) ( )
1

0

1
s

x s x x s x t x s
t

f s p q 
−

+ + +
=

=  =  − 
 for s integral       

(6) 

The probability that ( )x  will survive for s  years and die within the next u  years is denoted by

|s v xq .  

This is equivalent to the probability that ( )x  will die between the ages of  x s+  and  x s v+ +  

This can be computed in several ways: 

                               
 | Prs v x xq t T s v=   +

                                                             
(7) 

 

                                        =    Pr Prx xT s v T s + − 
    

(8)
  

            
 

                                        = s v x s xq q+ −
      

(9) 

                                        = s x s v xp p+−
      

(10) 

                                        = ( )
1

0

1
s

s x v x s v x s x t
t

p q q q
−

+ + +
=

 =  −
                                         (11)

 

We see that ( ) ( )
0

s

x xF s f d =          (12) 

In actuarial notation, 
0

s

s x x xq p d  +=                                                 
(13) 

We can generalize this to \

t v

t v x x x
t

q p d  
+

+=       
(14)  

Curtate future lifetime of ( )x  is the number of future years completed by a life aged ( )x  prior to 

death. 

 xx TK = , the greatest integer part of xT  

Its probability mass function is 

     1Pr1PrPr +=+== kTkkTkkK xxx                                                  
(15) 

                          = ( ) ( ) xkxkxkxx qqqkSkS \11 =−=+− + ,                                (16) 

for ,...3,2,1,0=k  

Its distribution function is   xk

k

h

xhx qqkK 1

0

\Pr +

=

==                                      (17) 

The expected value of xT  is called the complete expectation of life: 

  ( )
0 0

x x x s x x se E T sf s ds s p ds
 

+= = =        
 
(18) 

0 0
0

s x s x
x s x

p p
e s ds s p ds

x x


   

= − = − +   
       (19) 

0
x s xe p ds



=            (20) 

The expected value of xK  is called the curtate expectation of life: 

( ) ( )

( ) ( ) ( )( )

1

1

/

/ 1 1

x k x x x x x x

k

x x x x x x x
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p E K T p q q e



=

+

 = =  + + 

  + = − + 


     (21) 
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Let  and  be real constants and assume that the survival function of a newborn is 

exponentially defined as ( ) ( )1s

XS s e = − −  and cumulative hazard function be 

( )
( )

( ) ( )
11

log log loge e X e X

X

Z s S s S s
S s

− 
   = = = −     

  
     (22) 

Let   be the hazard function intensity, then ( )
( )

( )

( )

X

X

dS s

dZ s dss
ds S s

 = = −   (23) 

( ) ( )
1

,
s

se
Z s s e


  



−
= =        (24) 

From equation (22), ( ) ( ) ( ) ( )
1

Z s Z s

X XS s e F s e
− −

=  = −  

 

( )
( )

( )( )
( ) ( ) ( ) ( )

1
Z s

X Z s Z s

X

d edF s
f s Z s e s e

ds ds


−

− −
−

= = = =     (25) 

( )
1 1s se e

s
s

dF s
e e e

ds

 

  
  

   − −
− −   
   
   = =        (26) 

( ) ( )
( ) ( ) ( ) ( ) ( )

2

2

Z s Z sd F s df s
s e s e Z s

dsds
 

− − = = −      (27) 

( )
( ) ( ) ( ) ( )

( ) ( )  ( )

2
2

2

2

Z s Z s

Z s

d F s
s e s e

ds

s s e

 

 

− −

−

  = − = 

  −  

      (28) 

( )   ( )   ( )
2

2
2 2

2

Z s Z ss s s s
d F s

e e e e e e
ds

      
− − = − = −     (29) 
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  ( ) ( )  ( )

3

2 2 2 2 2

3
2

Z s Z ss s s s
d F s

e e e Z s e e e
ds

      
− −= − − −   (29a) 

 

( ) ( )   ( ) 
3

2 2 2 2 2

3
2

Z s s s s s
d F s

e e e s e e
ds

       
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 
   (29b) 

 

( ) ( )

( )

3
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3

2 2 2 3 3

2

3

Z s s s s s

Z s s s s

d F s
e e e e e

ds

e e e e

   

  

    

  

−

−

 = − − + = 

 − + 

    (29c) 

 

From equation (29), If   ( )2 2 0
Z ss se e e  

−
− = , 

2 2 2 20s s s se e e e      − =  =  (30) 

Let ( )2 0 0 , 0se         =  − =  − =  = =     (31) 

Thus there are two points of inflexion 
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0 0se =  =           (32) 

( )
1se s s      


=  + =  = −        (33) 

From equation (33),   cannot be zero 

 

2.1 Procedures For Obtaining Estimated Probability Of Survival 

We define, 
( ) 2

1

1

2!
x s x x x

s s
l l s l l+ −

−
= +  +          (34) 

where 
1x x xl l l+ = −  is the forward differencing 

( )( ) ( )1

1 1

0

1 1
0.5 0.5 0.5x s x

x x x x

x x xs

dl l
l l P

l ds l l
 + −

−

=

− − 
= =  −   = − 

 
    (35) 

 

Using a Gauss forward formula to order 4, and following Ogungbenle & Adeyele (2020), we 

have 
( ) ( ) ( )( )2 3 3

2 3 4

1 1 2

2

2 6 24
x s x x x x x

s s s s s s s
l l s l l l l+ − − −

− − − −
= +  +  +  +    (36) 

 

( ) ( ) ( )2 3

1 1 2

0

1 1 1 1
0.5

6 12

x s

x x x x x

x xs

dl
l l l l

l ds l
 +

− − −

=

− −   
= =  −   −   +    

  
    (37) 

hence  

 

( ) ( )1 1 2 212 8x x x x x xl l l l l − + − += − − −         (38) 

 

Now, x x xdl l dx= −           (38a) 

 

  ( )
0

0

m
m

x t x t x tl l dt+ + += −          (38b) 

 

( )
0

m

x m x x t x tl l l dt+ + +− = −          (38c) 

( ) ( )
0 0

m m

x x m x t x t m x x t x tl l l dt d l dt + + + + +− =  =        (38d) 

Using equation (38), 
( ) ( )

( )1 1 2 2

0

8

12

m
x s x s x s x s

m x t x s

x s

l l l l
q P ds

l

+ − + + + − + +

+

+

 − − −
=   

 
    (38e) 

 

( ) ( )1 1 2 2

0

8

12

m
x s x s x s x s

m x x s t

l l l l
q l ds

+ − + + + − + +

+ +

 − − −
=   

 
       (38f) 
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( ) ( )1
1 1 2 2

0

0

8

12

s s s s

s t

l l l l
q l ds

− + − +

+

 − − −
=   

 
        (38g) 

thus 0q  is independent of age x  at time s  

 

From equation (38d), ( ) ( )
1 1

0 0

x x t x x x x t x tt
q P dt l q l dt + + +=  =   

( ) 0x t x t

d
l

dt
 + +    

 

( ) ( ) ( )2 2 0x t x t x t x t x t x t x t x t

d d
l l l l

dt dt
   + + + + + + + +

 
+ = − = 

 
 

hence ( )x t x tl + +  is non-decreasing, and ( ) 0x t x tl + +   

 

then within the interval 0 1t  , 
x x x x x xl l q q    in the life table 

 

Theorem: If t xq is a continuous function, then it is possible to obtain the minimum where 

( ) ( )

( ) ( )
1 1 2 2

1 1 2 2

8

8

x t x t x t x t

t x

x x x x

l l l l
P

l l l l

+ − + + + − + +

− + − +

 − − − 
=

 − − − 

 and 
1x x + =      (38f) 

Proof 

Note that by definition, 
( ) ( )( )

0 0

Pr
lim lim

t x

x
t t

T x tq

t t


+ + →  →

 
= =

 
 

( ) ( ) ( )1 t x t x x t x t x

d d
P P q

dx dx
 +− = − =        (38h) 

 

( ) ( )0 0t x x t x x t xP    + +− =  − = ,  0t xP        (38i) 

 

x t x + = ,            (38j) 

 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2

1 1
8 8

12 12
x t x t x t x t x x x x

x t x

l l l l l l l l
l l

+ − + + + − + + − + − +

+

   − − − = − − −      (38k) 

 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 28 8x t

x t x t x t x t x x x x

x

l
l l l l l l l l

l

+

+ − + + + − + + − + − +
   − − − = − − −       (38l) 

 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 28 8x t x t x t x t t x x x x xl l l l P l l l l+ − + + + − + + − + − +
   − − − = − − −       (38m) 

 

( ) ( )

( ) ( )
1 1 2 2

1 1 2 2

8

8

x t x t x t x t

t x

x x x x

l l l l
P

l l l l

+ − + + + − + +

− + − +

 − − − 
=

 − − − 

       (38n) 
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since 0t = is not possible, consequently 

 

so at 1t =  

 

( ) ( )

( ) ( )
2 1 3

1

1 1 2 2

8

8

x x x x

x

x x x x

l l l l
P

l l l l

+ − +

− + − +

 − − − 
=
 − − − 

 and       (38p) 

 

1x x + =  hence, 
1 xq  attains its minimum 

If t xP  were continuous in the interval 0 1t  , then ( ) 11x t x xl t l tl+ += − +  for integral x, then (38n) 

becomes     

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( )

1 1 1 1

1 1 2 2

8 2 1 1 3 2 1 2

8

x x x x x x x x

t x

x x x x

t l t l tl t l t l t l t l t l
P

l l l l

+ + + +

− + − +

   − + − + + + − − + − − − − + +   
=

 − − − 

            (39q) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( )

1 1 1 1

1 1 2 2

16 8 1 1 3 2 1 2

8

x x x x x x x x

t x

x x x x

t l t l tl t l t l t l t l t l
P

l l l l

+ + + +

− + − +

− + − + + + − − − − − + − +
=

 − − − 

 

            (39r) 

 
( ) ( )

1

1 1 2 2

16 8 3 1 1 1 2 2

8

x x

t x

x x x x

l t t t t l t t t t
P

l l l l

+

− + − +

− + − + − − + − + + − + − −
=

 − − − 

    (39s) 

 

 
( ) ( )1 1 2 2

8 7

8

x

t x

x x x x

t l
P

l l l l− + − +

−
=
 − − − 

        (39t) 

 

At 
1

2
t =  ,  

( ) ( )1

1 1 2 22
16 2

x

x

x x x x

l
P

l l l l− + − +

=
− − −

      (39u) 

 

Material and Methods  

 Gompertz Model 

Bowers et al. (1997) define the force of mortality as Gompertz apply the exponential function for the 

instantaneous mortality intensity. For life offices, the model has implications for the parameters and also 

has minimum number of parameters for obtaining mortality trend over time period. This parsimony 

accounts for the reason why Gompertz law is justified in mortality. It is observed in literature that within 

a known collection of mortality models, modest descriptions with respect to their number of parameters 

are much more preferred to the sophisticated mortality models. Parsimony hence refers to the cardinality 

of efficient model parameters. Consequently, the Gompertz model offers a good trade-off between a 

simple numerical computational implementation and efficient analytic process. Gomperz is intuitive and 

hence reduces the risk of an incongruous implementation. The mortality intensity is defined as follows 

In Gompertz (1825), 
x x

x BC e  += = , 0x  and subject to:     (39) 
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1

1

C

B





            (39a) 

The constant B is the level of the mortality intensity of a newborn while the constant C describes the rate 

of demographic ageing. Thus, the death probability increases at a constant exponential rate when age 

increases in the equation implying exponential ageing. In the logarithmic scale ln x x  = +  

translating to the fact that logarithmic function of Gompertz’s law is linearly increasing 

B  is the starting point of parameter and C  is the rate of mortality over ages while x  is the initial age of 

analysis 

0 0

x x
s

sds BC ds =            (40) 

0
0

log log log

x
s x

x

s

e e e

Bc Bc B
ds

C C C


 
=  − 
 


       (41)     

   

( )
0

1 log , log
log

,
x

x

s e e

e

w
B

ds C g ghere
C


−

= − − =                                  (42)       

1

0
log

xx
C

s eds g
−

= −                                                                                                                 (43) 

1

0 log 1

0 0 0

x xc
xs

e
ds g C

xl l e l e l g


−
− −= = =                                                                                           (44)                

0 0,
x xC C

x

l l
l g kg k

g g
= = =           (45) 

( )
1

1

x
x t

x

C
C C

s x s xC

kg
p p g

kg

+

−
= = =          (46) 

 

Again, as lim 0t x
x

t P
→

→  

( ) ( )
0 0

T Xt
tf t dx t x t P dx

 

= +          (47) 

( )
( ) ( )

0 0 0
0

t x t x

T t x

P Pt
tf t dt t dt t P dt

tt t

   =
= = −

=          (48) 

 

( )
( )

0 0 0

t x

T t x

P
tf t dt dt P dt

t

  
= − =

           (49) 

 

( )
( ) ( )1

0 0 0

x tC Ct x

T

P
tf t dt dt g dt

t

  
−

= − =
          (50) 

 Data Presentation and Analysis 

Life offices usually would like to consider the level at which a live commences a career in order 

to permit them to assess the salary structure of an insured ( )x and to make it more rewarding 

when ( )x are dealing with the life office. Life offices usually make assumption to set the age 

where mortality data is fitted by a model. Again, many lives who start a career obtain university 
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education or equivalents and thereafter assume an office around 20 years. Consequently, as we 

consider the career of individuals, it seems appropriate to collect data from age 20 . 

Using the formulae that are developed above, we construct the following results for male and 

female using R-language. For the purpose of this study, the data used in this study came mainly 

from the mortality of the population of England and Wales during the years 1990, 1991 and 

1992. 

 

For Males 
20

98496 ckg=                                                                                                              (51) 

 
40

96500 ckg=                                    (52) 

 
60

86714 ckg=                            (53)     

Divide equation (52) by (51) and equation (53) by (51) 

 

20

40

98496

96500
c

c

kg

kg
=                                  (54) 

 
( )12020

9797352177.0 −= ccg                              (55) 

 

40

60

96500

86714
c

c

kg

kg
=                  (56)  

 
( )12040

8985906736.0 −= ccg                                    (57) 

From equation (55)            

 

( ) gcc ee log19797352177.0log 2020 −=                                                                       (58)            

From equation (57)   

 

( ) gcc ee log18985906736.0log 2040 −=                                                                        (59) 

Divide (59) by (58) 

 

( )
( ) gcc

gcc

e

e

e

e

log1

log1

9797352177.0log

8985906736.0log
2020

2040

−

−
=                                 (60) 

 
20222880263.5 c=                                     (61) 

 

1.086164248c =                                                                                                          (62)      

From equation (53) and (52) 
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( )

( )40

60

086164248.1

086164248.1

96500

86714

kg

kg
=                                   (63)  

 

g1937482.1158985906736.0 =                                       (64)     

gee log1937482.1158985906736.0log =                           (65)                     

 

ge
e log

1937482.115

8985906736.0log
=                                   (66)    

 

gelog10031303257.4 4 =− −             (67)                        

        
2570004031303.0−= eg                (68)                       

              

9995969509.0=g                                    (69)       

From equation (53) 
60

86714 ckg=                                    (70) 

 

( ) 4722266.142
9995969509.086714 k=          (71)     

 

k9441833755.086714 =                                    (72)      

 

21055.91840=k                                                                                                          (73) 

 

log
log

e

e

B
g

C

−
=                                     (74) 

 

log loge eB g C− =                                                                                                     (75) 

 

086164248.1log9995969509.0log eeB =−                                                             (76) 
610284487294.6 −−=− B                                                                                          (77) 

 

872940000062844.0=B                                                                                             (78) 

 
x

x Bc=                                                                                                                      (79) 

 

( )0.000006284487297 1.086164248
x

x =                   (80) 

 

( ) ( )1.086164248
91840.210546049 0.9995969509

x

xl =      (81) 
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( ) ( )

( ) ( )
1

1.086164248

1.086164248

91840.210546049 0.9995969509

91840.210546049 0.9995969509

x

x

xd

+

=

−

     (82) 

 

For Females 
20

98957 ckg=           (83) 

40

97952 ckg=           (84) 

60

91732 ckg=            (85)       

Divide equation (84) by (83) and (85) by (84) 

20

40

98957

97952
c

c

kg

kg
=

         (86)      

 

( )12020

9898440737.0 −= ccg                                   (87)       

40

60

97952

91732
c

c

kg

kg
=

         (88)      

 

( )12040

93649951.0 −= ccg          (89)           

From equation (87) 

 

( ) gcc ee log19898440737.0log 2020 −=                                   (90)      

From equation (89) 

 

( ) gcc ee log193649951.0log 2040 −=                                 (91)      

Divide (91) by (92) 

 

( )
( ) gcc

gcc

e

e

e

e

log1

log1

9898440737.0log

93649951.0log
2020

2040

−

−
=                                  (92) 

 
20427042235.6 c=                                    (93) 

 

097489964.1=c                                                                                                         (94) 

From equation (85) and (84) 

 
( )

( )40

60

097489964.1

097489964.1

97952

91732

kg

kg
=                                (95) 

 

g1741328.22493649951.0 =                                 (96) 

 

gee log1741328.22493649951.0log =                              (97) 
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ge
e log

1741328.224

93649951.0log
=                                   (98) 

 

gelog1027099613.1 4 =− −                                    (99) 

130001270996.0−= eg                                    (100) 

 

9998729085.0=g                         (101) 

From equation (85) 
60

91732 ckg=                                  (102) 

 

( ) 4810041.265
9998729085.091732 k=                              (103) 

 

k9668204064.091732 =                                                                                             (104)  

 

08259.94880=k                                                                                                          (105) 

c

B
g

e

e
log

log
−

=                                                                                                             (106)  

cgB ee loglog =−                                   (107)   

097489964.1log9998729085.0log eeB =−                                (108) 

 

30404005575.044860000551986.0 −=− B      (109) 

 
610230056027.2 −−=− B                                  (110) 

 

560270000022300.0=B                                  (111)   

 
x

x Bc=                                     (112) 

( )0.000002230056027 1.097489964
x

x =               (113)  

( ) ( )1.097489964
94880.08259 0.9998729085

x

xl =       (114) 

( ) ( )

( ) ( )
1

1.097489964

1.097489964

94880.08259 0.9998729085

94880.08259 0.9998729085

x

x

xd

+

=

−

     (115) 

Discussion of Result 

The constructed empirical curves are the approximates of the corresponding theoretical 

functions. From our results, we observed that mortality over all ages(C-value) for males is lower 

than that of females while the initial mortality(B-value) for male is higher than that of female. 

Subject to the inequalities in (39a) and comparing with standard results in Bowers et al. (1997), 

our results strictly satisfy the constraints that the rate of demographic ageing 1C  and initial 

mortality 0B  . Furthermore, based on our results the values of B and C  for both males and 

females lie within the expected interval 
6 3

1 1

10 10
B  and 

2 2108 10 112 10C− −    .  (116) 

From equations (80) and (81) above, the male probability density function is given by 
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( ) ( ) ( )

( ) ( )

( ) ( )

1.086164248

1.086164248

0.000006284487297 1.086164248

91840.210546049 0.9995969509

91840.210546049 0.9995969509

x t

x

x t

T x
f t

+

+
=


     (117) 

( ) ( ) ( )
( )

( )

1.086164248

1.086164248

0.9995969509
0.000006284487297 1.086164248

0.9995969509

x t

x

x t

T x
f t

+

+
=    (118) 

while from equations (112) and (113) the female density is 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

1.097489964

1.097489964

0.000002230056027 1.097489964

94880.08259 0.9998729085

94880.08259 0.9998729085

x t

x

x t

T x
f t

+

+
=


     (119) 

 

( ) ( ) ( )

( )

( )

1.097489964

1.097489964

0.000002230056027 1.097489964

0.9998729085

0.9998729085

x t

x

x t

T x
f t

+

+
=



     (120) 

 

0 0.000002230056027FEMALE = for female and the estimates of 0 0.000006284487297MALE = for 

male although mortality changes at initial stages of life within age interval 0 1x  and as a 

result of the variation in this interval, obtaining values for
0  is usually not unique. Furthermore, 

it is also possible that  the force of mortality at very old age  is greater than 1 due to the fact that 

force of mortality is not a probability and consequently one expects that its value may exceed 1 

towards the end of the mortality table.  

However, given an extra risk   involving a constant sum to the mortality intensity 

 then x

x x e     += + = +         (121) 

The force of interest ( )log 1e i = +        (122) 

( )
0

log

n

e n x x sP ds += − .         (123) 

Therefore,  

( ) ( )
0 0 0

log

n n n

E

e n x x s x sP ds ds ds   + += − + = − −        (124) 

( ) ( )
0

log log

n

E

e n x x s e n xP ds n P n  += − − = −      (125) 

 

( ) ( )log logE

e n x e n xP P n− = −        (126) 
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( )
( )

log

E

n x

e

n x

P
n

P
= −          (127) 

 

( )
( )

( ) ( ) ( ) ( ) ( )( )
E

nn x n nn E n

n x n x n x

n x

P
e e P e P e P v

P

    − + − +− − =  = =    (128) 

 

( ) ( ) ( ) ( )n nn n

n x n xP e P e e e
     − + − +− −=  =      (129) 

 

By definition, : J R → is a continuous function on an interval J R+ . If   a  piecewise 

differentiable continuous function :A J R→ such that ( ) ( )
dA

s A s
ds

= , then 

( )
( )

( )

S

C

d

A s e A c
  

=  and since v e   −=          

 

we have    = + , hence the force of interest has been increased correspondingly. Putting 

(121) in (124), we have, ( ) ( )
0 0

log

n n

E x s

e n xP e ds ds   + += − −     (130) 

( )
0

log

n
x s x x n

E

e n x

e e e
P n n

       

 
  

+ + + + + 
= − = − − 
 

    (131) 

and by (125), ( )log
x x n

e n x

e e
P

    

 

+ + +

= −       (132).  

Hence using (123),  
0

n

x n x

x sds e e      + + +

+ = −      (133) 

Conclusion 

The paper is motivated to study the actuarial properties of the Gompertz force of mortality and to 

provide explicit actuarial expressions to estimate model unknown parameters. Although our 

intention is to confirm the interval of validity within which the parameters fall, survival 

probabilities was also estimated at off grid points and the effect of an additional given extra risk 

  involving a constant sum to the mortality intensity was also investigated to capture the 

relationship between the extra risk and the interest rate intensity. 

This study would assist life offices in evaluating actuarial risks connected with death probabilities 

as we applied simple numerical algebraic procedure to compute the approximate values of the 

model parameters so as to fit the model to interval of validity. Life offices will understand how to 

apply an efficient method of analyzing mortality data from a defined population of insured thereby 

giving an inference into the Gompertz distribution. It is therefore necessary for life offices to allow 

for upward trend in life expectancy and decrease in mortality rates. The underlying principle of 

life insurance necessitates that premium advised to the insured should fall in line with his risk 

profile. An insured’s age structure seems to be the most influential factor in appraising risk profile 

and hence our construction can be used to compute mortality table and hence life annuity & life 

assurance products. Furthermore, sex is another important factor since it has been observed from 
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our results that male have higher level of mortality rate than female. Because of genetical and 

behavioral differences, life offices should advise measurable premiums to male and female 

depending on sex. Life offices may be motivated to assess policyholder’s risk profile accurately 

so as to permit competitive premiums as a result of market pressures. This is usually done by 

recognizing risk rating determinants which are cost effective in risk assessment process through 

actuarial techniques relevant to death probabilities calculations. It is clear that, the accuracy of the 

age-specific mortality rates is influenced by the accuracy of the age distribution of population and 

deaths. 
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