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Abstract: In this paper, we have proved the degree of approximation of function belonging to L[0,   by 

N ̈rlund Summability of Fourier-Laguerre series at the end point    . The purpose of this paper is to 

concentrate on the approximation relations of the function in L[0,   by N ̈rlund Summability of Fourier-

Laguerre series associate with the given function motivated by the works [3], [9] and [13].  
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1. Introduction 

The concepts of product summability methods are more powerful than the individual summability methods 

and it gives an approximation for wider class of functions than the individual methods [6]. A bulk number 

of researchers have studied the degree of approximation of a function using different summability means 

of its Fourier-Laguerre series [1], [5], [7], [10], [11], [14] and [15]. This can be done at the point after 

replacing the continuity condition in Szegö theorem by much lighter conditions.  

Let      be a Lebesgue measurable function in the interval       such that the integral 

∫     

 
         

   
     ,              (1.1) 

exists, where    
   

    is the n
th
 Laguerre polynomial of order      defined the generating function 

∑   
   

       
    =             

   

             (1.2) 

The Fourier series of the function      is given by 

      ∑     
        

               ,         (1.3) 

where the coefficients    are the defined by the following formulae 

         
     =∫     

 
           

   
          (1.4) 
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where                              
   =(

   
 

)    . 

Also, we write                    = 
 

      
                               (1.5) 

Let ∑    be a given infinite series with the sequence {  } of its partial sums. Let {  } be a sequence of  

real or complex constants with    as its non-vanishing n
th
 partial sum. The sequence to sequence 

transformation is given by  

                                                          
 

  
 ∑        

 
                                                                     (1.6)                                                                                                                   

which defines the sequence of N ̈rlund means of the sequence {  }, generated by the sequence of 

coefficients {  }  If      then ∑    or the sequence {  } to the sum S. If the sequence of N ̈rlund mean 

{  } is of bounded variation i.e. if  

                                       |       |         (1.7) 

then the series ∑   is said to be absolute N ̈rlund summable [5], [6] and [12]. The absolute N ̈rlund 

summability of a Fourier series has been studied by several researchers like Bor [5], [7], Mazhar [10], 

Fadden [11], Padhy, Tripathi and Mishra [14] and Siddiqui, Gi, Bohar and Brono [15]. 

In 1976, Yadav [19] was the first to establish a result on absolute N ̈rlund summability of Laguerre series 

at origin and in 1979, Beohar and Jadiya [2] established a result on the absolute N ̈rlund summability of 

Laguerre series at the point    . Later on, several researchers like Alghamdi & Mursaleen [1], Beohar 

and  Jadiya [2], [3], Khatri and Mishra [8], Karasniqi [9], Nigam and Sharma [13], Shanker [16], Tiwari 

and Kachhara [18] obtained the degree of approximations of L[0,   of the Fourier-Laguerre series by 

Cesaro mean  N ̈rlund, Euler, (C,1)(E,q),(C,2)(E,q) harmonic-Euler mean et al. Concerning the absolute 

N ̈rlund summability of Laguerre series Yadav [19] has proved the following theorem: 

Theorem 1.1: If {  } be a non-negative and non-increasing sequence of constant such that   

  = ∑      
     and ∑

 
       

 

  
  is convergent. i.e. ∑

 
       

 

  
   , then the Fourier series (3) is |    |  

summable at the end point    , provided that for some small positive  , 

                                                           (1.8) 

where 

                                           ∫  
  

 
 

 
  

 

 
   

 

   |     |   = ( 
  

 ) and F(x) is bounded in [0, ].               (1.9) 

   Where,        

                                                      =           ]. 
        

       
       (1.10) 

    and,                               

                                               = 
          ]         

       
 

      
        (1.11) 
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2. Main Results 

Before proceeding with the main result, we begin with recalling some Lemmas that are required to prove 

main theorem in this paper.   

Lemma 2.1: (Szego [17], p.177) Let   be arbitrary and real, c and   be fixed positive constants, and let 

   . Then 

                                                 
   

    = {
  

 

 
 

 

    ( 
    

 )     
 

 
    

                 
 

 
 

                         (2.1) 

Lemma 2.2: (Szeg ̈[17], p. 240) Let   be arbitrary and real,           Then we have for    , 

     
  

   
    

  |  
   

   |   {
 

 

  
 

 

                    

 
 

 
 

 

                     
                (2.2) 

   Lemma 2.3: (Bhatta [4] ) Let ∑   be an infinite series with    as its n
th
 partial sum and {  } be a non-

increasing sequence such that       If ∑
|  |

  
    i.e. convergent, then the series ∑     is |    | 

summable.                        

Considering the above facts, we prove the following theorem: 

Theorem 2.4: Let      be a non-negative, and non-increasing function of   such that     (
 

 
)     as 

   . Let {  } be a non-negative and monotonic non-increasing sequence of constants with    as its non-

vanishing n
th
 partial sum such that     ∑

|    |

  
      i.e. convergent.  Let 

  

 
       and w is a fixed 

positive constant. If 

                                                ∫ |
    

    |   
 

 
  = o* (

 

 
)+   as                                               (2.4) 

                                           ∫  
 

    
  

 
   

 

 
 

 
 |    |   = o* 

  

 
 

 

 
          +                               (2.5) 

and                                           ∫  
 

 
 

 
  

       

   |    |   = o[ 
       

 
       ] as               (2.6)                                     

then the Fourier-Laguerre series (1.3) is |    | summable at the point      

Proof: 

First of all , under the hypothesis (2.4), we prove  

                                                      ∫ |    |
 

 
   = o*      (

 

 
)+                     (2.7) 

For this, we have                      = ∫
|    |

      
 

 
 = o* (

 

 
)+ 

Then                                 |    | =       .      

Therefore,                   ∫ |    |
 

 
   =  ∫               

 

 
 

                                                        =            ] 
       ∫          

 

 
 

   (2.3) 
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                                                        =  *      (
 

 
)+   *      (

 

 
)+ 

                                                        =   *      (
 

 
)+ 

Then the proof of the theorem is as follows: 

                                              Since         
   

    = (   
 

)                      (2.8) 

   therefore                 = ∑   
 
     

   
      

                                       = ∑
 

      
 ∫              ∑   
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 ∫             

     
     

 

 
 

Again, due to the orthogonality of Laguerre polynomials, we have 

                = ∫     
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)       
     

      

                 =              (say)                               (2.9) 

First we consider   ,  

                                              |  | = ∫ |    |
 

 
 

  
         

                 = o       ∫ |    |  
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Next we consider     , using (2.1) and (2.4), we have  
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                      =       ], as                             (2.11) 

Considering    and using (2.2), (2.3) and (2.5), we have 
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                         =  (  
    

 ) o( 
       

      ) 

                        =       ], as                            (2.12) 

Again, considering   , using (2.2), (2.6) and (2.7), we have  

                    |  |=∫ |    |  
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                     =  (  
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 )∫  
 

   
       

   |    |  
 

 
 

                    =  ( 
    

 )  ( 
       

      ) 

                   =       ], as               (2.13) 

Now combining (2.10), (2.11), (2.12) and (2.13), and using         we get 

             |       |        ], as     and therefore|  |        ],   as    . 

Therefore applying (2.7), we have 

                             ∑
|  |

  
  ∑

|    |

  
         i.e. convergent. 

This completes the proof of the theorem. 

Conclusion 

In this paper, we have proved a theorem related to the degree of approximation of function belonging to 

L[0,   by N ̈rlund Summability of Fourier-Laguerre series at the end point    . This work establishes 

some of the results that characterize the approximation relations of the function in L[0,   by N ̈rlund 

Summability of Fourier-Laguerre series. In fact, these results can be used for further study in many 

practical problems in science and engineering. 
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