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Abstract: Solving a large sparse quadratic eigenvalue problem (QEP),
QN u=(NM+XC+ K)u=0

numerically is a difficult task. We are interested in obtaining an eigenpair (\,u) of the QEP where the eigenvalue X lies
in a specified interval [a,b] from an initial pair (o, x) in which x € TR" is chosen arbitrarily. We propose a method, the
Parametrized Newton-Secant (PNS) that first transforms the QEP to an approximated linear form which has the same dimen-
sion as QEP, by using a secant slope matrix. Then the modified Newton method is applied to the secant linear form to obtain
the desired eigenpair in an interval. This method is especially useful to expeditiously obtain a good initial pair. This initial
pair can then be utilized in other methods (such as Jacobi-Davidson) that require such a pair to guarantee convergence to a
target eigenpair.

Keywords: Quadratic eigenvalue problem(QEP), Standard eigenvalue problem(SEP), Generalized eigenvalue problem(GEP),
Jacobi-Davidson method, Second Order Arnoldi method(SOAR), Lanczos method, Secant slope linear approximation(SSLA),
Parametrized Newton-Secant method(PNS).

1 Introduction

The Quadratic Eigenvalue Problem (QEP) finds the scalars A, called the eigenvalues, and the nonzero vectors u, called the
eigenvectors, of the quadratic matrix pencil Q(\) :

QNu= (NM+XC+ K)u=0,

where M is mass matrix, C' is damping matrix, and K is stiffness matrix. The QEP arises in a wide variety of applications
including vibration of structures, vibro-acoustic systems, fluid dynamics, signal processing, and micro-electric mechanical
systems. The vibration of mechanical structures is determined by natural frequencies and mode shapes where the frequencies
are related to the eigenvalues and the mode shapes are the associated eigenvectors of the quadratic pencil.

The quadratic eigenvalue problem is difficult to solve numerically because there does not exist any canonical form anal-
ogous to the real-Schur form for the standard eigenvalue problem or the generalized eigenvalue problem. In view of this fact,
an obvious approach for solving the QEP is to transform the QEP either to a standard eigenvalue problem:

| T ]

I 0] u u M

and solve the problem by the QR algorithm or to a generalized eigenvalue problem:
-C -K Au M 0 Au
= ] @
and solve by the QZ algorithm [3, 10]. Some difficulties with this conventional approach are encountered during the process
of linearization. For example the dimension of the problem becomes double in size and unfortunately, both the QR and

the QZ algorithm are known to be ineffective for large sparse problems. Certain desirable aspects of the QEP such as the
symmetric, positive or negative definite, sparse or tridiagonal etc. can be destroyed. Another difficulty is that the matrix M
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needs to be inverted, and if M is close to a singular matrix, then this approach fails. For large sparse problems, the Lanczos
method computes the largest and smallest eigenvalues by using the shift and invert method which requires a sizeable effort
[1]. There are two methods, the Second Order Arnoldi (SOAR) method and the Jacobi-Davidson method, that work directly
with the quadratic pencil without transforming the QEP to a linear form. The SOAR method generates an orthonormal basis
for the generalized Krylov subspace, G, (A, B,v) where A = M 'K and B = M ~'C, from an initial vector v [2]. The
Jacobi-Davidson method is a projection method. By using a few initial vectors, the method projects the QEP into a small
dimension problem. The reduced QEP is then solved by a standard technique. It is noted that these direct methods efficiently
compute only the largest eigenvalue and the associated eigenvector [2]. Also, these direct methods clearly depend on how
wisely the initial vector(s) is chosen. Unfortunately, there are no definite criteria on how to choose an initial vector. One
object of the paper is to expeditiously produce an effective initial vector.

In some applications such as in the control of resonance, what is needed is a few eigenvalues in a given interval. The
primary objective of this paper is to describe a method that effectively computes an eigenpair whose eigenvalue lies in this
intervals [a,b]. A Newton type method is preferred for this purpose because it can be immediately implemented without
changing the QEP to a linear form (1) or (2). One chooses an initial point («, z), where « is in the interval [a, b] but
x € IR™ is arbitrarily chosen. With this method, the structure of the QEP is preserved. Despite these desirable aspects of the
Newton method, given the complexity of the QEP, one obstacle remains. We must first approximate the quadratic pencil to a
linear form by using a secant slope matrix. The secant slope linear form is then iterated by a parametrized Newton method
which is a modification of the Newton method for the symmetric standard eigenvalue problem [11, 5]. We call the combined
method the parametrized Newton-Secant Method (PNS). The method is particularly suited for finding a targeted eigenvalue
in a prescribed interval and the associated eigenvector. However, the PNS method computes one eigenpair at a time. Our
numerical experiments on test matrices of dimensions up to 2000 show that the PNS method is much more accurate and faster
than the Jacobi-Davidson, SOAR or Lanczos methods.

2 The Parametrized Newton-Secant Method for Symmetric QEP

To describe the parametrized Newton-Secant method for the symmetric QEP, first we approximate the quadratic pencil Q(\)
by a linear form Q4()) in an interval [a, b] which is obtained by using a secant slope matrix. Then the parametrized Newton
method is applied to the approximated linear pencil Qs ()). Throughout this paper, we assume the Euclidean norm (l2) on a
vector and the induced matrix norm, the spectral norm ||| - |||, on a matrix.

2.1 Secant Slope Linear Approximation(SSLA) Q,(\):

Suppose Q(A) = A°M + AC + K is a symmetric quadratic pencil where M, C and K € IR™*" are symmetric. Let
f IR — IR"™*! be such that

f(A’u):< CTQ()\)u >: ( (AZMJ;AC+K)u )weRn’AeR

utu—1 u'u—1
The symmetric QEP is to solve f (A, u) = 0. For any two real numbers a; and s, a1 < g, we find the secant slope matrix
R89

(@3M + a1C + K) — (a3M + asC + K)
a1 — (X9

R,

= (a1 + O[Q)M + C.
The secant slope linear approximation (SSLA) Q4 (\) is defined by,

Qs(\) = Rs(A—a1) + Q)
=A—a1)((c1 + )M +C)+a2M +a1C + K
= )\((0[1 + O[Q)M + C) - alagM + K.
If wesetT = —ajaaM + K, then Qs(\) = ARs + T. We define

(ARs+T)u )

wlu—1

rovu = (

The following verifies that for A € [, as], if |aa — a1] — 0 then Qs(\) = Q(A), and hence fs(\,u) =~ f(A, u).
Let 6, = (/\ — Oél) and 05 = (O[Q — )\) for A\ € [Otl, 042]. Then

Qs()\) = ()\RS +T) =A ((041 + OZQ)M + C) — OélOZQM + K = ()\(Oél + 042) — 041012) M + AC + K
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= (AA =01+ A +82) — (A= 3)A+8)) M +AC + K
= (A2 4+6,10)M + \C + K. S
Thus,
QM) — Qs(MII| = [d182][|M]]].

Since 61 = (g — ) and dy = (1 —¢)(g — o) forsome t, 0 < ¢ < 1,

5162 = t(]. — t)(OCQ — 041)2 S (042 — a1)2.

B~

1
We conclude |||Q(A) — Qs( V]| < Z(ag — ay)?|||M]||. Thus, if |ag — a;| — 0 then Q(\) =~ Qs(N).

The above analysis shows our method depends strongly on the successful reduction of the gap, |a; — as|. In the
parametrized Newton-Secant method, a parameter s is chosen to achieve the goal.

2.2 The Parametrized Newton Method for the SSLA :
(@)
We write an eigenpair (A, u) as a column vector ( K ) € R™!. Let ( Z(i) ) be the i*" approximation of an eigenpair

< 1;\ ) where ) is assumed to be in the given interval [a, b]. The parametrized Newton method refines the approximation of

( K ) , iteratively, as follows:
) A ) ,
2D\ PO Qs(a®) Rz Qo (a2
it ) ) 92T 0 2T 0 _q

Qs(\) Rsu
2uT 0

where
} is the Jacobian matrix of fs(\, u).

We note that if () is not an eigenvalue of Q4()\) then Q,(a(?) is invertible. Assuming o) # 0, we can write

Qs(a®) R 4 204D 0 R 5 2@
97 0 ) ) o7 L a® -

(i)

Choose a parameter 7 > 0 so that the method takes the form [5]:

Qs(a®) Rz | / 26+ \ [T 0 0 RO ]/ 0
PO 0 QD ST 0 7 20T L a® )

ali

Then we have:
Qs(a(i))m(”l) + a(i+1)Rgi)x(i) — a(i)Rgi)x(i)

or
L+ — (au) _ a(m)) Q7 (o) RD 2D 4)

and o o
20" (1) = 7 (a:(l) z® 4 1) . &)

From (4) and (5), we obtain
LT+ (au) _ a<i+1>) 0T Q1 (W) RW 2.
Set
B9 = 20T Q- @RV (),
Then we have

g (mex(i) 4 1) — 3 (a@ _ a<i+1>)
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or

Since z(?) is normalized vector,

-
=0l - (6)
Now from (4) and (6) we obtain,
(i+1) ( ) (D)
Set
B0 — HQ:l(a“))RS%” _ ( DT ROQ-2(a)RW (z))E
After normalizing the vector (1), we have
i Q! (o Rz L 1 G pli) .G
et = Tl T (a0 R, )
I7Q5 (D) Rz® | BD
Thus, from (6) and (7) the parametrized Newton iteration for Q4(\) takes the form:
P = L () RO ®)
B
Q) — 0 _ T 9)

8@
The parametrized Newton method with the iteration (8) and (9) is called the parametrized Newton-Secant (PNS) method
if the parameter 7 is chosen to minimize the residual and also to ensure [T — ()| < |a() — a(*=1)|. For the purpose,
we need the following result.

ﬁ()

Lemma 2.1: Suppose o) is not an eigenvalue of Q4()\). Then

Proof: Since |5(V)| = |x(i)TQ;1(a(i))Rgi)x(i)| is the usual inner product of the vectors () and Q71 (o) Rz, by the

Cauchy-Schwarz inequality, we have [30)| < ||| |Q7 (a®)R{" 2. Thus, < 2@ = 1. 0

3(i
Since 7 is chosen to decrease the residual, we compute the following.

|Res(altD)|2 = |R;* (YR, + T) 2D |

2
_ |Ip-1 () _ Q' (@) R,z
- HRS <<a 5()>R +T> o

2
ﬁ;) (@) - TR 07 )Rt
_ 1 T O0-1(a® 0|
= ﬂf')2 I—ﬁ(i)QS ("R | x

1 . . . . . .
= i (1 50 (597 @) s 20T R0 e+

5;2)2 x(z‘)T (Qs_l(a(i))Rs)T (QS_1(a(i))RS> x(i))

_ ! 1—-27+ ﬁ()Q
3(i)2 g
2

(4)
Choose 7 = (ﬁA -
B@

) s for some positive number s. Then,

; g\ 2
| Res(a ) 7ﬂzi)2 ll 2<B(i) 5+ 50 s (10)
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It is easy to verify that the expression in (10) is decreasing for 0 < s < 1 and is minimized when s = 1 with its minimum

1 (2)
value — <1 — (BA) ) . For this reason, the Parametrized Newton-Secant (PNS) method takes the form;
B

()
. 1
B I e (L) ) IO (11
B
, N (r®)
it = o)X L g<s<1. (12)
B0

In the algorithm for the Parametrized Newton-Secant method, the parameter s ~ 1 is chosen to accomplish the reduction
of both the residual and the gap, |a"t1) — a(?)|. In the next section, we analyse the convergence of the method.

3 Convergence of the Parametrized Newton-Secant Method

Suppose [a, b] is the given interval where a target eigenvalue X exists. There are obvious initial choices for the starting
secant slope matrix R, those are o(*) = @ and a(!) = b. However, there is no definite criteria for choosing an initial approxi-
mation of the eigenvector. We verify that if the parameter s, 0 < s < 1 is chosen suitably so that the gap, |04(Z+1 )| —0
then the parameterized Newton-Secant method converges to an eigenpair of the QEP with an arbitrarily initial vector (%)
inside the given interval.

Lemma 3.1: Suppose A € IR"X” is nonsingular and let © € IR™, such that ||x|| = 1. Then

| Az||? = ZU] y] )

where o; > 0 are the singular values of A and Z y? =1.
j=1
Proof: Since A7 A is a symmetric positive definite matrix, there exists a real orthogonal matrix U such that
| Az||* = xTATAa: =2TUTYUz = (Uz)TS(Uxz),
o? 0
where ¥ = , 0; > 0 are the singular values of A.

2
0 o:

If weset Uz =y = (y1,%2, .-, Yn)”, then [jy|* = ZyJ =1and y"Xy = 20]2 2,

O

Lemma 3.2: Suppose A € R"*" is nonsingular and let 0; > 0, 01 > o3 > --- > o, are the singular values of A. Then
there exists a constant k > 0 such that ||Az|| = koy.

2

n 2
Proof: By Lemma (3.1), Za] T EEEDY (UJ) y2 | o1 = ko,
o1
Jj=1

Jj=1

[N

n 2 n
where k = Z (Z) yj2 >0 forZyj2 =1. 0

Jj=1
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The following is the well known Jensen’s Inequality [6]. Suppose
f: I — Risaconvex functionon I CR, andlet S={a;:0; €I,i=1,...,n}.

Then, f Zajyjz- < Zf(aj)y? for Zyjz =1.
j=1 j=1 j=1

Regarding the positive constant k£ in Lemma (3.2), we make the following observation for the case A = Q3 (a( ))Rq
when a?) ~ o*t1). Suppose oj, 01 > 09 > -+ > 0y, > 0 are the singular values of Q7 YD) R,, the SSLA at the i"
step of the PNS iteration. Then

n 2
B0 = Q7 (@O RaO? = oFKO" where k" = Y (2] 4%

: 01
Jj=1
Atthe (i + 1) step of the iteration, S+ = [|Q7 (1)) Rz 1|2 where
. 1 ) . ) .
e %Q?(a(”)Rsx(”. Thus, if o ~ oV, then Q7 (o V) Ry|| ~ [[|Q7 (o!”) Ry ||| : by continuity of
nonsingular quadratic form of Q7' (a”)R, . In this case,
. 5 ) 1 n 0_4 n o 4
BT~ —(Q (T R)?2D|P = (D oty | = =5 [ D (7) u
5 B? = B@)? S\o
0_4 n o 4 0_2 n o 4 1 n o 4
1 J 2 1 J 2 2 J 2
— 4 73 , = A 2] = : - . 13
o2k()? = (01) vi k(©)? ; <01> v 71\ k@2 ; ( 1> Yi )

4
a . . 1 i
Since +D* & ¢2k(+1)” | the equations in (13) shows that k(1" = — Z (JJ) y;?

Consider f(x) = x2. Then f is a convex function on IR, and the Jensen’s inequality asserts

n 2 n 2 n 4
f(k(i)’z) _ ¢ Z: <Zi‘> 2| < Zf ((Zi) )%2 — Z <Zi> y;. Therefore,

n 4 i
. 1 (o] ¢ 2
i+1)% J 2 — 1.(4)
k( ) = k(i)2 Zl <01> yj Z k(i)g - k .

We conclude that when the gap, [o*t1) — o(?)| is sufficiently small, the positive constants k() increases as i increases.
We write the observation as a lemma.

B

< € for some small ¢ > 0. Then B(i) = Ulk(i) for ED > 0 isan

Lemma 3.3: Suppose |t —

increasing function of i .

The set of all eigenvalues of a matrix A € IR™*" is called the spectrum of A and is denoted by o (A). The spectral radius
of A is denoted and defined as p(A) = max{ |\;| : \; € o(A) }. Itis well known that p(A) is a lower bound of every matrix
J

norms on A4, i.e., p(A) < [||A]|| for ||| - ||| is a matrix norm. Since o1, the largest singular value of A is the spectral matrix
norm of A, we obtain the following immediate consequence.

Corollary 3.1:  Suppose Q (D) € R™ ™ is nonsingular. Then 3 = o1k® > p(Q7 (a)R,) kD for kD > 0 is
an increasing function of i.

Before we present the main convergence result, we note some other facts of the eigenvalues of Qs(\) = ARs + T
Assume R, € IR™ ™ is invertible. Since Qs(\) = ARy + T = R (M + R;'T), the eigenvalues of Q4(\) are
the eigenvalues of the matrix —R; T, i.e., if the set { A1, Aa,---,\,} is the eigenvalues of Qs(\) then o(R;'T) =

{=X1, = A2, -+, =\, }. For ol € R, we have Q;'(aV)R, = (R;l(oz(i)Rs—|—T))_1 = (@ + R;7'T)~'. Thus,

: 1 1 1 .
1 (i) _ o . . . (2)
o(Qy (o) Ry) { O WG i W o } . If A, is the eigenvalue of (Q5()) that is closest to o',

then we see that p(Q7 ' (aV)R,) =

————— . Combining with Lemma (3.3), we have the following result.
la® — X g g
alt) — )\,
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Lemma 3.4: Suppose ), is the eigenvalue of Q4(\) such that |o) — \,| = min |a'D — X\;|, \; € 0(Qs(\)). Then
J

a (%) ]
0> for k) > 0 is an increasing function of i.
|O‘(l) - )‘p|
) . ) . 1
Proof: If [a(? — )\,| = min [a) — )|, then p(Q; (aD)Ry) = p((@DI+ R;IT)™) = FOEpwS The result
J al) — A\
follows from Corollary 3.1 . a

Theorem 3.1:  Suppose a9 and otV are two successive points obtained during the Parametrized Newton-Secant(PNS)
iteration such that the interval o), UtV contains an eigenvalue \, of Qs(N). If the gap oY —a()| — 0 as i
increases, |[Rest V| — 0.

, 1 () 2 (i) 2
Proof: The equation (10) ||Res( V|2 = — ll -2 (ﬁ ) s+ (ﬁA ) s?| <

for s =~ 1. By Corollary(3.1)

30 B B Tl
. 1 .
and Lemma(3.4), there is a positive constant k@ such that — < W\a(l) — )xp|2. Since, A, is in the interval
L) k
) ) ) . . 1 1 . ; 1
[a@, o] |a® — )| < oD — o], and therefore, — < — laFY) — a2 where — is decreas-
s KO 206)
ing as i increases. We conclude ||Res 1| — 0when [a(F) — a®| — 0, as desired. 0

Theorem (3.1) assures that the Parametrized Newton-Secant method converges inside the given interval provided the gap,
lattD) — )] — 0.

Algorithm: (Parametrized Newton-Secant Method for a symmetric QEP)
Input:

e The matrix M, C,and K € R™*" are symmetric positive definite matrices
e Interval [a, D]
e Chose initial points, «(®) and aV) € [a, b]
e Initial eigenvector z(*)

e Tolerance ¢, § where 0 < € < §
Output:

e An approximate eigenpair of the QEP whose eigenvalue is in the interval [a, b

For : =1,2,...
Step 1.

(a) Compute R = (=Y 4+ oM +Cand T = —(al=Y x oD)M + K
(b) Compute QW) =aDR+T

(c) Compute y(» = Rz

(d) Solve QUy+D) = y(0) for y(i+1)

(e) Compute S = ||y(+1)|

(f) Compute ) = x(i)Ty(iJrl)

, (4)
(g) Compute () = g(i)

Step 2. update (1)

, , , (@)
(a) if (7“(1))2 > e then ("t = () — %, for0<s<1
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S

(b) otherwise, alit!) = () — =

for0<s<1

=

(c) Check updated o/(+1)
If "tV is outside the interval [a, b], then choose appropriate 0 < s < 1)
2o to Step 2, so that o(*t1) falls inside the interval.

. 1 .
Step 3. Update z(it1) = —(i+D)

BG)
Step 4. Check the following:

() If |[QUFV2(+D)| < e STOP.
(b) If ||QUHDz(+1)|| < § then set s = 1 and go to Step 5.
(©) If |QUFV2(+1)| > 4, then go to Step 5.

Step 5. a'=D = o and o™ = a1 go to Step 1.
end For

4 Numerical Experiments

4.1 Numerical Experiments on PNS Method

The matrices we used in the examples are: (1) symmetric positive definite random sparse matrix which is generated from
Matlab routine SPRANDSYM. SPRANDSYM is a Matlab routine which generate random sparse symmetric matrix. This
matrix is generated by random Jacobi rotations applied to a diagonal matrix with the given eigenvalues or condition number.
(2) symmetric positive definite Toeplitz matrices (PDTOEP). This is also a Matlab routine. This routine, PDTOEP, generates
dense Toeplitz matrix not sparse matrix.
We illustrate the parametrized Newton-Secant method on matrices of size 500 x 500, 1500 x 1500 and 2000 x 2000. Let
M and C be symmetric positive definite random sparse matrices (SPRANDSYM) and K be a symmetric negative definite
random sparse matrix. We did experiments with different intervals in the positive spectrum. We use the following strategy. In
every iteration of the parametrized Newton-Secant method, s is chosen such that a new approximated eigenvalue stays within
the interval. Initially, we set s = 1. After a few iterations of the parametrized Newton-Secant method, if the norm of the
residual is less than § which is set to be greater than the given tolerance ¢, then we continue with s = 1.

In the following experiment, we let e; be the 7** column vector of the identity matrix and n be the dimension of matrices.
Weset § =107 and e = 107°.

Example (1) n = 500 with three different intervals.
(1a) Interval [2, 3.14], initial shift 2.40 and initial vector e;.
TABLE 4.1: n = 500

8@
80
0.75 | -0.888591839866 | 2.788015137830 | 396.062550110683
0.75 | -0.824506002734 | 2.911622728034 62.201443869010
0.75 | -0.976583257381 | 2.965903989807 | 5.649735521849

1 -0.999584169663 | 2.983444288313 0.169568441295

1 0.999999572762 | 02.983429603720 | 4.558 x 10~°

Iteration | s

eigenvalue(\) Residual

| W N —

(1b) Interval [0.7, 0.71], initial shift 0.701 and initial vector e .

TABLE 4.2: n = 500
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(@)
Iteration | s s o eigenvalue(\) | Residual
ﬁ 7
1 0.75000 | —0.034777 | 0.70187 4.7214
2 0.75000 | —0.71714 | 0.70212 0.19221
3 1.0000 —0.96777 | 0.70225 0.021382
4 1.0000 —0.99963 | 0.70226 3.2157 x 107°

(1c) Interval [0, 0.02], initial shift 0.01 and initial vector e;.

TABLE 4.3: n = 500

(@)
Iteration | s ﬁf . eigenvalue(\) | Residual
ﬂ )
1 0.75000 | —0.53511 | 0.014223 1.1561
2 0.75000 | —0.98086 | 0.014828 0.071046
3 1.0000 —0.99813 | 0.015032 0.0042717
4 1.0000 | 0.99999 0.015031 2.5001 x 10~7

Example (2). n = 1500 with one interval and three different shifts.

(2a) Interval [0.1, 0.11], initial shift 0.105 and initial vector e;.

TABLE 4.4: n = 1500

@
Iteration | s ﬁf . eigenvalue(\) | Residual
ﬂ 7
1 0.75000 | 0.022828 | 0.10458 35.845
2 0.75000 | —0.88948 | 0.10466 0.061900
3 1.0000 | —0.99961 | 0.10468 0.00083675
4 1.0000 | 1.0000 0.10468 5.9674 x 10~°

(2b) Interval [0.1, 0.11], initial shift 0.108 and initial vector e;.

TABLE 4.5: n = 1500

(O]
Iteration | s BZ : eigenvalue(\) | Residual
B
1 0.75000 | —0.0045477 | 0.10753 4.7912
2 0.75000 | 0.99754 0.10753 0.00090665
3 1.0000 1.0000 0.10753 1.9113 x 107

(2¢) Interval [0.1, 0.11], initial shift 0.109 and initial vector e;.

TABLE 4.6: n = 1500

(@)
Iteration | s s o eigenvalue(\) | Residual
ﬁ 2
1 0.10000 | —0.17368 | 0.10959 40.254
2 0.10000 | 0.55878 0.10957 0.42158
3 1.0000 | 0.99208 0.10939 0.026613
4 1.0000 | 0.99983 0.10939 1.2154 x 106
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Example (3). n = 2000 with one interval [2, 4] and two different shifts.
(3a) Interval [2, 4], initial shift 2.5 and initial vector e;.

TABLE 4.7: n = 2000

| Iteration [ s | eigenvalue()) | Residual

1 0.10000 | 2.61565 4534.217

2 0.10000 | 2.37239 1297.06

3 1.0000 | 2.50857 229.548

4 1.0000 | 2.53172 7.93789

5 1.0000 | 2.531496 0.005416535
6 1.0000 | 2.531496 2.469 x 1078

(3b) Interval [2, 4], initial shift 3.0 and initial vector e;.

TABLE 4.8: n = 2000

’ Iteration \ S \ eigenvalue(x) \ Residual ‘
1 0.10000 | 3.16275271286 | 8666.12071499020
2 0.10000 | 3.31508127996 | 8618.57912832938
3 0.10000 | 3.46692496474 | 8441.01289897658
4 0.10000 | 3.62031326568 | 8268.54640262043
5 1.0000 2.05358209480 | 2013.13374182046
6 1.0000 2.06315842496 | 96.96510414400
7 1.0000 2.06852741334 | 1.02638528028
8 1.0000 2.06850881549 | 2.0437152 x 10~7
9 1.0000 2.06850883279 | 1.2 x 1019

4.2 Numerical Results: The PNS Method Compares with Other Methods

The matrices we used in these examples are same set as above.

We present the numerical experiments that compare the Parametrized Newton Secant Method, the shift-invert Jacobi-
Davidson method, the shift-invert SOAR Method, and the shift-invert Lanczos Method. The experiments which compare the
Jacobi-Davidson method and PNS method, have the maximum number of iterations, 20 and the tolerance, 10~°.

Each table shows the results for the eigenvalue, norm of the residual and computation time in seconds, compared between
different methods.

1. Symmetric positive definite Toeplitz matrices M and C, a symmetric negative definite matrix K (PDTOEP) with an
initial vector e;.

TABLE 4.9: n = 500, interval [1.1, 1.2], shift=1.15

Methods Eigenvalue || Residual]| Time(seconds)
PNS 1.12490771776 2734892 x 1073 1.5288098
SOAR 1.124907717874 | 3.8595576 x 10~7 | 4.88283
Lanczos 1.1249077177 2.1449555 x 10~7 | 17.30051
Jacobi-Davison | —1.236321656 | 1.2208 x 10~ 12.90128

2. Sparse symmetric positive definite matrices M and C, a symmetric negative definite matrix K (SPRANDSYM) with an
initial vector ej.

TABLE 4.10: n = 500, interval [2.5, 2.7], shift = 2.6
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Methods Eigenvalue || Residual|| Time(seconds)
PNS 2.64285216201386 | 1.405562 x 10~10 | 2.1684139
SOAR 26428521620 7.91300864993 1.4820095
Lanczos 2.55231673263 4.90611859441 7.3008468
Jacobi-Davison | 0.259886504671 2.2008 x 107° 18.6577

3. In the experiments (3a) and (3b) we use the same matrices with different intervals.

(3a) Sparse symmetric positive definite matrices M and C, a symmetric negative definite matrix K (SPRANDSYM)
with an initial vector e;.

TABLE 4.11: n = 1000, interval [1.5, 1.7], shift=1.6

Methods Eigenvalue | Residual|| Time(seconds)
PNS 1.5474509664035 | 8.1415393 x 10~7 | 7.86245
SOAR 1.547450966 2.2077 x 10~° 23.6653
Lanczos 1.54745096636 91905 x 10~° 110.1367
Jacobi-Davison | —0.915333 1.1973 x 107° 58.391

(3b) Sparse symmetric positive definite matrices M and C, a symmetric negative definite matrix K (SPRANDSYM)
with an initial vector ej.

TABLE 4.12: n = 1000, interval [2.3, 2.5], shift=2.4

Methods Eigenvalue || Residual]| Time(seconds)
PNS 2.33829838914641 | 4.034473 x 10~% | 11.60647
SOAR 2.338298389 1.4542 x 10712 | 24.5545
Lanczos 2.338298389 5.341 x 10~ 12 129.8708
Jacobi-Davison | —0.91333 2.0529 x 10~ [ 59.46758

4. Sparse symmetric positive definite matrices M and C, a symmetric negative definite matrix K (SPRANDSYM) with an
initial vector ej.

TABLE 4.13: n = 1500, interval [2.3, 2.5], shift=2.4

Methods Eigenvalue || Residual]| Time(seconds)
PNS 2.35100491486958 | 4.386931 x 10~° | 27.28

SOAR 2.35206825045 0.0650630775 69.20
Lanczos 2.3591806610 44.319901271 388.91
Jacobi-Davison | -0.69409 8.4576 x 10~ 10 6.29

5. Sparse symmetric positive definite matrices M and C, a symmetric negative definite matrix K (SPRANDSYM) with an
initial vector ey.

TABLE 4.14: n = 2000, interval [2.5, 2.7], shift =2.6

Methods Eigenvalue | Residual]| Time(seconds)
PNS 2.551922233 | 2.355233 x 10~% | 83.320134
SOAR 2.554343874 | 144.901021 151.5549715
Lanczos 2.550342496 | 143.262457 1007.033255
Jacobi-Davison | -0.75258 4.6789 x 107° 35.66
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In every table it shows that all methods except the Jacobi-Davidson method compute eigenpairs accurately in the given
interval. However, the PNS method is the most efficient one by achieving the target eigenpair with the least computation time.
We also observe that as the size of the matrices increases, the computing time of the SOAR or the Lanczos method increases
at a much faster rate than the PNS method. The Jacobi-Davidson method converges to an eigenpair outside the interval.
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