Statistical Convergence Estimates for (p,q)-Baskakov-Durrmeyer Type Operators

Prerna Sharma
Department of Basic Science
Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut (UP), India
E-mail:mprerna_anand@yahoo.com

Abstract

This paper concerns with the study of(p, q)-analogue of genuine Baskakov- Durrmeyer type operators. We establish the direct approximation theorem, a weighted approximation theorem followed by the estimations of the rate of convergence of these operators for functions of polynomial growth on the interval $[0$, $\infty)$.

AMS Subject Classification: 41A25, 41A30

Keywords: q-Beta function, q-analogue, Weighted approximation, Baskakov operators.

1. Introduction

In the theory of approximation, the quantum calculus has been studied for a long time. Quantum calculus was started by the well known mathematician Lupus [11], when he first proposed the q-variant of the Bernstein polynomials. T. Kim gave his contribution on q-type of polynomial in [9], [10]. In the same notions similar type of results on q-analogue of linear positive operators were obtained by [19], [20], [21] etc. Present paper deals with (p, q)-calculus (post-quantum calculus), which is an advanced extension of quantum calculus. Mursaleen et al. [12], introduced the Bernstein polynomials using (p, q)-calculus, which was further improved in [13].
(p, q)-calculus was introduced by the classical work of Sahai and Yadav [25]. Recently, a lot of work on (p, q) version of linear positive operators has been published in Acer et al. [2] [1], Aral and Gupta [5], Gupta [8], Mursaleen et al. [14] [15]. We also consider some more results on approximation of functions by positive linear operators using (p, q)-calculus given in ([3],[16],[17]).
P. Maheshwari and M. Abid [18] published a paper on approximation of (p, q) Szasz-Beta-Stancu operators. To recall some definition and notations of (p, q)-calculus, we refer to authors [22], [23] and [24].
The (p, q)-number is defined as

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}, \quad n=0,1,2 \ldots \text { and }[0]_{p, q}=0 .
$$

The (p, q)-factorial $[n] p, q$! is defined as

$$
[n] p, q!=\prod_{k=1}^{n}[k]_{p, q}, \quad n \geq 1, \quad[0] p, q!=1 .
$$

The (p, q)-binomial coefficient is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}=\frac{[n] p, q!}{[n-k] p, q![k] p, q!}, \quad 0 \leq k \leq n .
$$

(p, q)-derivative is given as

$$
D_{p, q} f(x)=\frac{f(p x)-f(q x)}{(p-q) x}, x \neq 0 .
$$

The (p, q)-power basis is defined below

$$
(x \oplus y)_{p, q}^{n}=(x+y)(p x+q y)\left(p^{2} x+q^{2} y\right) \ldots\left(p^{n-1} x+q^{n-1} y\right)
$$

$(x \ominus y)_{p, q}^{n}=(x-y)(p x-q y)\left(p^{2} x-q^{2} y\right) \ldots\left(p^{n-1} x-q^{n-1} y\right)$.
We propose (p, q)-Beta function as,

$$
\begin{equation*}
B_{p, q}(m, n)=p^{n / 2} q^{m / 2} \int_{0}^{\infty / A} \frac{x^{m-1}}{(1+\oplus x)_{p, q}^{n+m}} d_{p, q} t, \quad m, n \in N, \tag{1}
\end{equation*}
$$

(p, q)-Gamma function is defined as

$$
\begin{equation*}
\Gamma_{p, q}(n+1)=\frac{(p \ominus q)_{p, q}^{n}}{(p-q)^{n}}=[n]_{p, q}!, \quad 0<q<p \tag{2}
\end{equation*}
$$

Proposition 1. [23] The (p, q)-integration by parts is given by

$$
\int_{a}^{b} g(p x) D_{p, q} h(x) d_{p, q} x=g(b) h(b)-g(a) h(a)-\int_{a}^{b} h(q x) D_{p, q} g(x) d_{p, q} x
$$

The (p, q)-Beta function of second kind [5] is given by
$B_{p, q}(m, n)=p^{n / 2} q^{m / 2} \int_{0}^{\infty} \frac{x^{m-1}}{(1+\oplus p x)_{p, q}^{n+m}} d_{p, q} x$, where $m, n \in N$.
The relation between (p, q)-Beta and (p, q)-Gamma functions is given as

$$
B_{p, q}(m, n)=q^{\frac{2-m(m-1)}{2}} p^{\frac{-m(m+1)}{2}} \frac{\Gamma_{p, q} m \Gamma_{p, q} n}{\Gamma_{p, q}(m+n)}
$$

To approximate Lebesgue integrable function on the interval [$0, \infty$), Agrawal and Thamar [4] introduced the following operators, which is an extension of Srivastava-Gupta operators [25],

$$
\begin{equation*}
G_{n}(f, x)=(n-1) \sum_{k=1}^{\infty} s_{n, k}(x) \int_{0}^{\infty} s_{n, k-1}(t) f(t) d t+p_{n, 0} f(0) \tag{3}
\end{equation*}
$$

where

$$
s_{n, k}(x)=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{(1+x)^{n+k}}
$$

We introduce the (p, q)-analogue of genuine Baskakov-Durrmeyer operators for $x \in[0, \infty)$ and $0<q<p \leq$ 1,the operators are defined as

$$
\begin{equation*}
G_{n}^{p, q}(f, x)=[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)} \times \int_{0}^{\infty / A} s_{n, k-1}^{p, q}(t) f(t) d_{p, q} t+p_{n, 0}^{p, q}(x) f(0) \tag{4}
\end{equation*}
$$

where $s_{n, k}^{p, q}(x)=\left[\begin{array}{c}n+k-1 \\ k\end{array}\right]_{p, q} \frac{x^{k}}{(1 \oplus x)_{p, q}^{n+k}}$.
It can be noted here, if we put $p=q=1$, we get well known Baskakov Durrmeyer operators.

2. Auxiliary Results

In this section, we establish some basic results to prove our main theorems.
Lemma 1. For $x \in[0, \infty)$ and $0<q<p \leq 1$, we have

$$
\begin{gathered}
G_{n}^{p, q}(1, x)=1 \\
G_{n}^{p, q}(t, x)=\frac{[n]_{p, q} x}{p q[n-2]_{p, q}} \\
G_{n}^{p, q}\left(t^{2}, x\right)=\frac{[n]_{p, q} x^{2}}{p^{2} q^{4}[n-2]_{p, q}[n-3]_{p, q}}+\frac{[n]_{p, q}[2]_{p, q} x}{p^{-n+4} q^{3}[n-2]_{p, q}[n-3]_{p, q}} .
\end{gathered}
$$

Proof. By the definition (p, q)-Beta function given in (1), we get the following estimates
(i) For $f(t)=1$, we have

$$
\begin{aligned}
G_{n}^{p, q}(1, x)= & {[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)} \int_{0}^{\infty / A} s_{n, k-1}^{p, q}(t) d_{p, q} t+s_{n, 0}^{p, q}(x) } \\
& =[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \int_{0}^{\infty / A} \frac{t^{k-1}}{(1 \oplus x)_{p, q}^{n+k-1}} d_{p, q} t+s_{n, 0}^{p, q}(x) \\
& =[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \frac{B_{p, q}(k, n-1)}{p^{(n-1) / 2} q^{k / 2}}+s_{n, 0}^{p, q}(x) \\
& =\sum_{k=0}^{\infty} p^{\frac{n}{2}} q^{\frac{k}{2}} S_{n, k}^{p, q}(p x)=1 .
\end{aligned}
$$

(ii) For $f(t)=t$, we have

$$
\begin{aligned}
G_{n}^{p, q}(t, x)= & {[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)} \int_{0}^{\infty / A} s_{n, k-1}^{p, q}(t) t d_{p, q} t } \\
& =[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \int_{0}^{\infty / A} \frac{t^{k}}{(1 \oplus t)_{p, q}^{n+k-1}} d_{p, q} t \\
& =[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \frac{B_{p, q}(k+1, n-2)}{p^{(n-2) / 2} q^{(k+1) / 2}} \\
& =\frac{1}{[n-2]_{p, q}} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) \frac{p^{(n-1)^{2}+k} q^{k(k-1)}}{p^{\frac{n-2}{2}} q^{\frac{k+1}{2}}}[k]_{p, q} \\
& =\frac{[n]_{p, q} x}{p q[n-2]_{p, q}} \sum_{k=0}^{\infty} p^{(n+1) / 2} q^{k / 2} s_{n+1, k}^{p, q}(p x)=\frac{[n]_{p, q} x}{p q[n-2]_{p, q}} .
\end{aligned}
$$

(iii) When $f(t)=t^{2}$, we get

$$
\begin{aligned}
G_{n}^{p, q}\left(t^{2}, x\right)= & {[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)} \int_{0}^{\infty / A} s_{n, k-1}^{p, q}(t) t^{2} d_{p, q} t } \\
= & {[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \int_{0}^{\infty / A} \frac{t^{k+1}}{(1 \oplus t)_{p, q}^{n+k-1}} d_{p, q} t } \\
& =[n-1]_{p, q} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) p^{(n-1)^{2}+k} q^{k(k-1)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{p, q} \frac{B_{p, q}(k+2, n-2)}{p^{(n-3) / 2} q^{(k+2) / 2}} \\
& =\frac{1}{[n-2]_{p, q}[n-3]_{p, q}} \sum_{k=1}^{\infty} s_{n, k}^{p, q}(x) \frac{p^{(n-1)^{2}+k} q^{k(k-1)}}{p^{\frac{n-3}{2}} q^{\frac{k+2}{2}}}[k]_{p, q}[k+1]_{p, q} \\
& =\frac{[n]_{p, q} x^{2}}{p^{2} q^{4}[n-2]_{p, q}[n-3]_{p, q}} \sum_{k=0}^{\infty} p^{(n+2) / 2} q^{k / 2} s_{n+2, k}^{p, q}(p x) \\
& =\frac{[2]_{p, q}[n]_{p, q} x}{p^{-n+4} q^{3}[n-2]_{p, q}[n-3]_{p, q}} \sum_{k=0}^{\infty} p^{(n+1) / 2} q^{k / 2} s_{n+1, k}^{p, q}(p x) \\
& =\frac{[n]_{p, q} x^{2}}{p^{2} q^{4}[n-2]_{p, q}[n-3]_{p, q}}+\frac{[n]_{p, q}[2]_{p, q} x}{p^{-n+4} q^{3}[n-2]_{p, q}[n-3]_{p, q}} .
\end{aligned}
$$

Lemma 2. For $0<q<p \leq 1$, we have the following explicit formulae for the central moments

$$
\begin{equation*}
G_{n}^{p, q}((t-x), x)=\frac{(1-p q)[n]_{p, q} x+[2]_{p, q} x p q}{p q[n-2]_{p, q}} \tag{i}
\end{equation*}
$$

(ii)

$$
G_{n}^{p, q}\left((t-x)^{2}, x\right)=\left(\frac{[n]_{p, q}[n+1]_{p, q}}{p^{2} q^{4}[n-2]_{p, q}[n-3]_{p, q}}-\frac{[n]_{p, q}[2]_{p, q}}{p q[n-2]_{p, q}}+1\right) x^{2}+\frac{[n]_{p, q}[2]_{p, q} x}{p^{-n+4} q^{3}[n-2]_{p, q}[n-3]_{p, q}} .
$$

Remark 1. For $0<q<1$ and $q<p \leq 1$, we may have that $\lim _{n \rightarrow \infty}[n]_{p, q}=\frac{1}{(q-p)}$.
To find the convergence of (p, q)-Baskakov-Durrmeyer operators, we consider $p=p_{n}$ and $q=q_{n}$ are such that $0<q_{n}<p_{n} \leq 1$ andfor sufficiently large $n, p_{n} \rightarrow 1, q_{n} \rightarrow 1, p_{n}^{n} \rightarrow a, q_{n}^{n} \rightarrow b$ and $[n]_{p_{n}, q_{n}} \rightarrow \infty$.

3. Main Results

Definition 1: Let $C_{x^{2}}[0, \infty)$, be the class of all function f, which are defined on the positive real axis and satisfy $|f(x)| \leq C\left(1+x^{2}\right)$, where C is a positive constant depending on f. By $C_{x^{2}}[0, \infty)$, we mean, the subspaceof all functions $f \in C_{x^{2}}[0, \infty)$, for which $\lim _{|x| \rightarrow \infty} \frac{f(x)}{1+x^{2}}$ is finite. The class $C_{x^{2}}^{*}[0, \infty)$ is endowed with the norm

$$
\|f\|_{x^{2}}=\sup _{x \in[0, \infty)} \frac{|f(x)|}{1+x^{2}} .
$$

Theorem 1. Let $p=p_{n}$ and $q=q_{n}$ satisfy $0<q_{n}<p_{n} \leq 1$ and for sufficiently large $n, p_{n} \rightarrow 1, q_{n} \rightarrow 1$, then for each $f \in C_{x^{2}}^{*}[0, \infty)$, we have

$$
\lim _{n \rightarrow \infty}\left\|G_{n}^{p_{n}, q_{n}}(f)-f\right\|_{x^{2}}=0
$$

Proof. By ([7], Theorem 4.1.4), it is sufficient to show that

$$
\lim _{n \rightarrow \infty}\left\|G_{n}^{p_{n}, q_{n}}\left(t^{k}, x\right)-x^{k}\right\|_{x^{2}}=0, k=0,1,2 .(\mathbf{3 . 1})
$$

Since $G_{n}^{p_{n}, q_{n}}(1, x)=1$, the first condition of (3.1) is satisfied for $k=0$.
In view of Lemma 1, we have

$$
\begin{gathered}
\left\|G_{n}^{p_{n}, q_{n}}(t, x)-x\right\|_{x^{2}}=\sup _{x \in[0, \infty)} \frac{\left.\mid G_{n}^{p_{n}, q_{n}}(t, x)-x\right) \mid}{1+x^{2}} \\
\leq\left(\frac{[n]_{p_{n}, q_{n}}}{p_{n} q_{n}[n-2]_{p_{n}, q_{n}}}-1\right) \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}} \leq\left(\frac{[n]_{p_{n}, q_{n}}}{p_{n} q_{n}[n-2]_{p_{n}, q_{n}}}-1\right) .
\end{gathered}
$$

Taking limit on both the sides as $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty}\left\|G_{n}^{p_{n}, q_{n}}(t, x)-x\right\|_{x^{2}}=0
$$

The condition of (3.1) is satisfied for $k=1$.
Again using Lemma 1, we obtain

$$
\begin{aligned}
\left\|G_{n}^{p_{n}, q_{n}}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}}= & \sup _{x \in[0, \infty} \frac{\left.\mid G_{n}^{p_{n}, q_{n}}\left(t^{2}, x\right)-x^{2}\right) \mid}{1+x^{2}} \\
\leq & \left(\frac{[n]_{p_{n}, q_{n}}[n+1]_{p_{n}, q_{n}}}{p_{n}{ }^{2} q_{n}{ }^{4}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}-1\right) \sup _{x \in[0, \infty)} \frac{x^{2}}{1+x^{2}} \\
& +\left(\frac{[n]_{p_{n}, q_{n}}[2]_{p_{n}, q_{n}}}{p_{n}{ }^{-n+4} q_{n}{ }^{3}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}\right) \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}} \\
\leq & \left(\frac{[n]_{p_{n}, q_{n}}[n+1]_{p_{n}, q_{n}}}{p_{n}{ }^{2} q_{n}{ }^{4}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}-1\right)+\left(\frac{[n]_{p_{n}, q_{n}}[2]_{p_{n}, q_{n}}}{p_{n}{ }^{-n+4} q_{n}{ }^{3}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}\right),
\end{aligned}
$$

which implies that

$$
\lim _{n \rightarrow \infty}\left\|G_{n}^{p_{n}, q_{n}}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}}=0
$$

Thus the proof is completed.

Definition 2: Let $C_{B}[0, \infty)$ be the space of all real valued uniformly continuous and bounded function f on the interval $[0, \infty)$. For $f \in C_{B}[0, \infty)$ the Peetre's K -functional is defined as
$K_{2}(f, \delta)=\inf \left\{\|f-g\|+\delta\left\|g^{\prime \prime}\right\| ; g \in C_{B}^{2}[0, \infty)\right\}$.
where $\delta>0$ and $C_{B}^{2}[0, \infty)=\left\{g \in C_{B}[0, \infty) ; g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\}$. By Devore and Lorentz [6], there exists anabsolute constant $P>0$ such that

$$
K_{2}(f, \delta) \leq P \omega_{2}(f, \sqrt{\delta})
$$

where the second order modulus of continuity is defined as

$$
\omega_{2}(f, \sqrt{\delta})=\sup _{0<|h| \leq \sqrt{\delta}} \sup _{0 \leq x \leq \infty}|f(x+2 h)-2 f(x+h)+f(x)|,
$$

and the usual modulus of continuity is given by

$$
\omega(f, \delta)=\sup _{0<|h| \leq \sqrt{\delta}} \sup _{0 \leq x \leq \infty}|f(x+h)-f(x)| .
$$

Theorem 2. Let $f \in C_{B}[0, \infty)$ and $x \geq 0$, then there exists a constant $P>0$, such that

$$
\left\|G_{n}^{p_{n}, q_{n}}(f, x)-f(x)\right\| \leq P \omega_{2}\left(f, \sqrt{\delta_{n}^{p_{n}, q_{n}}(x)}\right)
$$

where

$$
\begin{aligned}
& \delta_{n}^{p_{n}, q_{n}}(x)=\left(\frac{[n]_{p_{n}, q_{n}}[n+1]_{p_{n}, q_{n}}}{p_{n}{ }^{2} q_{n}{ }^{4}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}-\frac{[n]_{p_{n}, q_{n}}[2]_{p_{n}, q_{n}}}{p_{n} q_{n}[n-2]_{p_{n}, q_{n}}}+1\right) x^{2} \\
&+\frac{\left[n p_{p_{n}, q_{n}}[2]_{p_{n}, n_{n}} x\right.}{p_{n}{ }^{-n+4} q_{n}{ }^{3}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}} .
\end{aligned}
$$

Proof. Let $g \in C_{B}^{2}[0, \infty)$, then by Taylor's expansion

$$
g(t)=g(x)+g^{\prime}(x)(t-x)+\int_{x}^{t}(t-k) g^{\prime \prime}(k) d k, \quad t \in[0, \infty)
$$

which implies that

$$
G_{n}^{p_{n}, q_{n}}(g, x)-g(x)=G_{n}^{p_{n}, q_{n}}\left(\int_{x}^{t}(t-k) g^{\prime \prime}(k) d k ; x\right)
$$

Hence

$$
\begin{aligned}
& \left|G_{n}^{p_{n}, q_{n}}(g, x)-g(x)\right| \leq G_{n}^{p_{n}, q_{n}}(t-x)^{2}\left\|g^{\prime \prime}\right\| \\
& =\left[\left(\frac{\left[n p_{n, q_{1}}[n+1] p_{n}, q_{n}\right.}{\left.p_{n}{ }^{2} q_{n}{ }^{4}[n-2]\right]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}-\frac{[n]]_{p_{n}, q_{n}}[2] p_{n_{n}, q_{n}}}{p_{n}, q_{n}[n-2]_{p_{n}, q_{n}}}+1\right) x^{2}+\frac{[n] p_{n}, q_{n}[2]_{p_{n}, q_{n} x}}{p_{n}{ }^{-n+4} q_{n}{ }^{3}[n-2] p_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}\right]\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Also by Lemma 1, we have

$$
\left|G_{n}^{p_{n}, q_{n}}(f, x)\right| \leq\|f\| .
$$

Therefore, we have

$$
\begin{aligned}
&\left|G_{n}^{p_{n}, q_{n}}(f, x)-f(x)\right| \leq\left|G_{n}^{p_{n}, q_{n}}(f-g, x)-(f-g)(x)+\left|G_{n}^{p_{n}, q_{n}}(g, x)-g(x)\right|\right| \\
& \leq 2\|f-g\|+\left[\left(\frac{[n]_{p_{n}, q_{n}}[n+1]_{p_{n}, q_{n}}}{p_{n}^{2} q_{n}{ }^{4}[n-2]_{p_{n}, q_{n}}[n-3]_{p_{n}, q_{n}}}-\frac{[n]_{p_{n}, q_{n}}[2]_{p_{n}, q_{n}}}{p_{n} q_{n}[n-2]_{p_{n}, q_{n}}}+1\right) x^{2}\right. \\
&\left.+\frac{\left[n p_{n, q_{n}}[2] p_{p_{n}, q_{n} x} x\right.}{p_{n}{ }^{-n+4} q_{n}^{3}[n-2]_{p_{n}, q_{n}}[n-3] p_{p_{n}, q_{n}}}\right]\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Taking the infimum on the right hand side over all $g \in C_{B}^{2}[0, \infty)$ and applying the Peetre's K-functional, we get the required result.
$\left\|G_{n}^{p_{n}, q_{n}}(f, x)-f(x)\right\| \leq P \omega_{2}\left(f, \sqrt{\delta_{n}^{p_{n}, q_{n}}(x)}\right)$.

References

[1] Acar, A., Aral, A. and Mohiuddine, S. A. (2016). On Kantorovich modification of (p, q)-Baskakov Operators. J. Inequal. Appl., (98): DOI: 10.1186/s13660-016-1045-9
[2] Acar, T., Mohiuddine,S. A. andMursaleen, M. (2018). Approximation by (p, q)-Baskakov-DurrmeyerStancu operators. Complex Anal. Oper. Theory, 12(6): 1453-1468.
[3] Ansari, K. J. and Karaisa, A. (2017). On the approximation by Chlodowsky type generalization of (p, q)Bernstien operators. Int. J. Nonlinear Anal. Appl., 8(2): 181-200.
[4] Agrawal,P. N. and Thamar, K. J. (1998). Approximation of unbounded functions by a new sequence of linear positive operatorss. Math.Anal. Appl., 225: 660-672.
[5] Aral, A. and Gupta, V. (2016).(p,q)-type Beta functions of second kind.Adv. Oper. Theory, 1(1): 134-146.
[6] Devore, R. A. and Lorentz, G. G. (1993).Constructive Approximation, Springer, Berlin.
[7] Gadzhiev, A. D.(1976). Theorem of the type of P. P Korovkin type theorems, presented at the international conference on the theory of approximation of functions Mat. Zametki, 20(5): 781-786.
[8] Gupta, V. (2018). (p, q)-Szasz-Mirakyan-Baskakov operators. Complex Anal. Oper. Theory, 12(1): 17-25.
[9] Kim,T. (2007). q-Euler numbers and polynomials associated with p-adic q-integrals.J. of Nonlinear Math. Phys.,14(1): 15-27.
[10] Kim, T. (2011). A note on q-Bernstein polynomials. Russ. J. Math. Phys., 18(73).
[11] Lupas, A. (1987). A q-analogue of the Bernstein operators. In: Seminar on Numeri. and Stat. Calculus , 9: 85-92.
[12] Mursaleen, M., Ansari K. J. and Khan A. (2015). On (p, q)-analogue of Bernstein operators. Appl. Math. Comput.,266: 874-882.
[13] Mursaleen, M., Ansari K. J. and Khan A. (2016). On (p, q)-analogue of Bernstein operators. Erratum: Appl. Math. Comput., 278: 70-71).
[14] Mursaleen, M., Ansari, K. J. and Khan, A. (2015). Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Appl.Math. Comput., 264: 392-402.
[15] Mursaleen, M., Nasiruzzaman, M.,. Khan, A. and Ansari, K. J. (2016). Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers. Filomat, 30(3): 639-648.
[16] Mursaleen, M., Nasiruzzaman, M., Ansari, K. J. and Alotaibi, A. (2017). Generalized (p, q)-Bleimann-Butzer-Hahn operators and some approximation results. J. Ineq. Appl., 2017(310): 2017, DOI 10.1186/s13660-017-1582-x.
[17] Mursleen , M., Alotaibi , A. and Ansari, K. J. (2016). On a Kantrovich variant of (p, q)-Szasz-Mirakjan Operators. J. Func. Space, Article ID 1035253, 9 pages, http:dx.doi.org/10.1155/2016/1035253.
[18] Maheshwari, P.and Abid, M. (2020). Approximation by (p, q)-Szasz-Beta-Stancu operators operators. Arabian J. of Mathematics, 9: 191-200.DOI 10.1007/s40065-019-0240-1.
[19] Maheshwari, P. (2018). Approximation properties of certain q-genuine Szasz operators. Complex Anal. Oper. Theory, 12(1): 27-36.
[20] Maheshwari, P. and Sharma, D. (2012). Approximation by q-Baskakov-Beta-Stancu operators. Rend. Circ. Mat. Palermo., 61:297-305.
[21] Prakash, O., Sharma, D. and Maheshwari, P. (2015). Certain generalized q-operators. Demonstratio Mathematica, 3(48): 404-412.
[22] Sadjang, P. N.(2015). On the (p, q)-Gamma and the (p, q)-Beta function, arXiv 1506, 0739v1 [Math NT]
[23] Sadjang, P. N. (2013). On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. arXiv: 1309.3934v1 [Math.QA]
[24] Sahai, V. and Yadav, S. (2007). Representations of two parameter quantum algebras and (p, q)special functions. J. Math. Anal. Appl., 335(1): 268-279.
[25] Srivastava, H. M. and Gupta, V. (2003). A certain family of summation-integral type operators. Math. Comput. Model, 37:1307-1315.

