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1. Introduction 
 

In the theory of approximation, the quantum calculus has been studied for a long time. Quantum calculus was 
started by the well known mathematician Lupus [11], when he first proposed the q-variant of the Bernstein 
polynomials. T. Kim gave his contribution on q-type of polynomial in [9], [10]. In the same notions similar type 
of results on q-analogue of linear positive operators were obtained by [19], [20], [21] etc. Present paper deals 
with (p, q)-calculus (post-quantum calculus), which is an advanced extension of quantum calculus. Mursaleen et 
al. [12], introduced the Bernstein polynomials using (p, q)-calculus, which was further improved in [13]. 
(p, q)-calculus was introduced by the classical work of Sahai and Yadav [25]. Recently, a lot of work on (p, q)-
version of linear positive operators has been published in Acer et al. [2] [1], Aral and Gupta [5], Gupta [8], 
Mursaleen et al. [14] [15]. We also consider some more results on approximation of functions by positive linear 
operators using (p, q)-calculus given in ([3],[16],[17]). 
P. Maheshwari and M. Abid [18] published a paper on approximation of (p, q) Szasz-Beta-Stancu operators. To 
recall some definition and notations of (p, q)-calculus, we refer to authors [22], [23] and [24]. 
The     )-number is defined as 

[      
     
                [          

The (p, q)-factorial [       is defined as 

[        ∏[     
 

   
        [          

The (p, q)-binomial coefficient is given by 

[  ]    
[      

[        [                 
 
(p, q)-derivative is given as 

       )  
    )     )

    ) ,      
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The (p, q)-power basis is defined below 
    )         )      )        )             ) 

 
    )         )      )        )             ). 
 

We propose (p, q)-Beta function as,  

        )          ∫     

     )      
   
                                                     (1) 

 

(p,q)-Gamma function is defined as 

        )      )    

    )  [                                                           (2) 
 

Proposition 1. [23] The (p, q)-integration by parts is given by 

∫    )
 

 
       )         )   )     )   )  ∫    )

 

 
       )       

The (p, q)-Beta function of second kind [5] is given by 

        )          ∫     

      )      
 
          where        

The relation between (p, q)-Beta and (p, q)-Gamma functions is given as 
 

        )   
       )

  
      )

 
          
        ) . 

To approximate Lebesgue integrable function on the interval [   ), Agrawal and Thamar [4] introduced the 
following operators, which is an extension of Srivastava-Gupta operators [25], 
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where 
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We introduce the (p, q)-analogue of genuine Baskakov-Durrmeyer operators for  [   ) and           
 ,the operators are defined as  

         )  [       ∑     
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where     
     )  [      ]   
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It can be noted here, if we put p = q = 1, we get well known Baskakov Durrmeyer operators. 
 

2. Auxiliary Results 
 

 

In this section, we establish some basic results to prove our main theorems. 
 

Lemma 1. For   [   ) and           we have  
         )    

         )  
[      

  [       
 

          )  
[       

    [       [       
 

[     [      
       [       [       

  

Proof. By the definition (p, q)-Beta function given in (1), we get the following estimates 
(i) For f(t) = 1, we have 
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Lemma 2. For           we have the following explicit formulae for the central moments  

(i)           )  )       )[       [        
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Remark 1. For          and         , we may have that       [      
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To find the convergence of     )-Baskakov-Durrmeyer operators, we consider        and      are such 
that           andfor sufficiently large                  ,      and [           
 
3. Main Results 

 
Definition 1: Let    [   ), be the class of all function f, which are defined on the positive real axis and 
satisfy|   )|        ), where C is a positive constant depending on f. By    [   )   we mean, the 

subspaceof all functions      [   )  for which    | |  
   )
     is finite. The class     [   )is endowed with 

the norm 
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Theorem 1. Let       and      satisfy           and for sufficiently large               
then for each        [   )   we have  

      ‖         )   ‖    . 
Proof. By ([7], Theorem 4.1.4), it is sufficient to show that 

      ‖       (    )    ‖             (3.1) 

Since            )     the first condition of (3.1) is satisfied for k = 0. 
In view of Lemma 1, we have 
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Taking limit on both the sides as       
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The condition of (3.1) is satisfied for k=1. 
Again using Lemma 1, we obtain 
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which implies that  
   
   

‖            )    ‖      
Thus the proof is completed.  
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