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1. Introduction

LetI'(w) be the class of functions f(z) of the form:

f(@)=(-m)+Ya,(z-0) (1)

which are analytic and univalent in the open unit disk U = {Z zeC,|z|< 1} and normalized
with f(w)=0 and f'(w)—1=0, where w is an arbitrary fixed point in U . Let S denote the
class of analytic function that are univalent in U. Also, let T',(w) denote the class of analytic p-

valent functions having the form:
[,()=E-0)" +2 a,,(z-o)" 2)
k=1

in the unit disk U and satisfy the condition that f,(z)=0,|f,(z)|<1 and z €U . Seker andEker

[20] introduced and studied the following differential operator D"*” £ (z), for f,(z) T, (®)

such that

D'f,(2)=f,(2)



Jamiu O. Hamzat and Folorunso I. Akinwale/ Bi-Univalent Condition Associated with the Modified ........

(z-o) 60)

D'f,(2)=D(f,(2) ==L f'(z) = (= - w)P+Z(”; Jaw(z )"

szp(z): (Z;Q))Dl(fp(z)):(z_a))p +i(p;kj ak+p(z_a))p+k

and in general

D" f(2)=D(D"" f,(2))= (z—w)" + i(” ; d J a,,(z— )" (3)
where n € Ng = NU{0}. Similarly, we can write for functions f,(z) €', (@) using Aoul et al. [1]
such that

12 (DS, (=) =1, (),
L DS (2) = ( Al j DL+ EED 10 g @)Y
1+! 1+1

and

I (A, (2) = ( f l” jf 1D (2 )J(z “’) I (D () @)

It follows from equation (4) that
., 1+ AUp-D+1Y 1+ AUk+p-1D)+1Y) .
Iwm,z)fp(z){#j <z—co)"+2[ rp=h j @G- )
1+/ = 1+/
n €Ny, =NU{0}, A>0and [>0.

Trivially, one can show that

1;,(1,0)f,(2) = p"D"" 1,(2). (6)
It is noted here that the function / € S has an inverse f ' which is given by

[f@)=(-w), zeU

and
f(f_l(ﬂ))= (4 - ), {I ul<r,(f)in(f) Zi}.

We can also write that
gy =7 (1) = (U~ o) = a,(u - )’ +(2a; — a,)(u - w)’ = (5a; —5a,a, + a,)(p— )" +... .(7)
Here, let g, (1) be defined such that

g, ()= £ () = ()" + b, (- )™

where
=—a b . =2a’

p+l _ap+2 > e
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A function f is said to be bi-univalent in U if both /" and its inverse, f - , are univalent in U .

Suppose that X denote the class of all analytic bi-univalent functions in U, several authors have
studied the class X from different perspective and their results authenticated diversely in
literatures, see [2], [3], [4], [5], [8], [11], [12], [13], [14], [16], [21], [22]) among others.
However, their results seem to lack full stamina in addressing the coefficient problems for
functions in X associated with sigmoid function. Consequently, the present work aim at
investigating the bi-univalent condition for analytic p-valent function with some fixed points
as related to modified sigmoid function in the open unit disk. Few examples of bi-univalent
functions are given below:

and its corresponding inverse is £
-z 1—u
1, 1+z . . . et -1
—log and its corresponding inverse is —; .
2 -z e +1

1 : . e -1
logl—and its corresponding inverse is -
-z e

So, the class of bi-univalent functions is non-empty.

For the purpose of this work, we shall consider the following Lemmas.

Lemma 1.1 [18]: Let a function p € P be given by

p(z):l+2pkzk, zelU. ®)
k=1
Then
|p(2)|<2 keN, ©)
where p is the family of function analytic in U for which
p(0)=1, Re[p(z)]>0, zeU. (10)

Lemma 1.2 [6, 19]: Let the function 7(z) be given by
r(z):l+ickzk, zelU (11)
k=1
be convex in U. Also, let the function /(z) given by
l(z):1+§:lkzk, zelU (12)
k=1

be holomorphic in u. If

l(z)<r(z), zeU
then

|, <] |, keN

2. Sigmoid Function

Sigmoid function is referred to as special logistic function and defined by

1
l+e

g(z)=

-z °
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A sigmoid function is a bounded differentiable real function that is defined for all real input
values and has a positive derivative at each point. It is perfectly useful in geometric function

theory because of the following properties:

1. It outputs real numbers between 0 and 1.

2. It maps a large domain to a small range.

3. Itis aone to one function hence, the information is well-preserved.
4. It increases monotonically.

Just of recent, precisely in 2013, Fadipe-Joseph er al. [7] defined the modified sigmoid

function as @(z)=2g(z). They show among others that ¢(z) is a function with the positive real part

and that @(z) belongs to the class P of Caratheodory functions.

Fortunately, @(z) has the following series expansion

1

z
24

3 5

1
+_

1
=l+—-z—-
H)=l+7z 240"~

(13)

see also Hamzat and Makinde [10], Murugusundaramoorthy and Janani [15], Oladipo and

Gbolagade [17].

Definition 2.1: Let y:U — C be a convex univalent function in U and satisfying thefollowing

conditions:
y(0) =1 and Re{y(z)} >0 (z € U).
Further, let ¥(z) be defined such that

y(z)=1+ ZBkzk .
k=1

(14)

Now the function f,(z) is said to belongs to the class X"”(b,/,a, A,®,¢), if and only if

. 1
e (z—w I" (A,Df.(z
e )[p,, " )fp(>j R
s 1 P I T Bz w)
1D 1,2)
and
1 e'f(u—w)( L Iz,p(z,ngp(u)] "
S —— e R el
n + -
18, 0o, (0 (k=)

where b is any non-zero complex number, < denotes the subordination sign, A > 0,

[>0, —ISB<AS1,\§|<%,n € Ny = NU{0}, @ is arbitrary fixed point in U and p,z € U.

(15)

(16)
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Hence by the definition of subordination, it follows that

’

o (z—w)(l,,l;t,,,u,l)fp (z)J
p

1 | 1+ Ah(z-w)
Hy —pett=——""—L=ap(z)+(-a)§(z), ael0,]
b ln 17 (D, (2) 1+ Bh(z — w)
p
(17)
and
. 1
et?(,u—a))( n[:],p(ﬂ,,l)gp(lu)J
1+% 1 : —pet Zm—ﬂ:a);=aq(u)+(l—a)¢(y), a €[0,1]
" I, ,(A.Dg, (1) H—®

(18)
where p(z), q(2), §(z)e P(class of Caratheodory functions) such that
p(z):1+ipkzk, zelU (19)
=
and
4 =1+Y g, neU (20)

k=1

while ¢@(z) is as earlier defined in (13).
Special Remarks:

1. Suppose that { = 0 and a = 1 in the above definition then, we immediately have the
definition given by Hamzat and Adeleke [9].

2. Following the linear combination of p(z) and ¢(z), it is obvious that if letting & =0 in (17)
and (18), then the bi-univalent results obtained would be associated purely, with the modified
Sigmoid function @#(z) and when « =1, the results obtained would be associated purely with
the usual p(z) € P.

3. Main Results

Theorem 3.1: Let f,(2) e 2" (b,l,a, A, ®,¢) , then for 120, >0, a €[0,1],
n € Ny, =NU{0}and z€U,
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1+ A(p-D+1)"
al) gy (A2
‘a < +1
! 1+ Ap=D+1'(1+Ap+ D+ _(1+4p+] 2
1+/ 1+1 1+1
and
_ n P _ 2n
o, | < DB L Mo =D IV BT 4 o) gy gyp( A=D1}
r 2 1+ A(p+1)+1 4 1+ Ap+1
Proof:

Let f,(z) e 2"7(b,l,a, A,,() . Then from (17) and (18), it follows that

' I+ Ap+1 ’
2| ——F—— 1 a,,, =b(l+ap, -1 21
(1+A(p—1)+lj o =bl+a2p, -1) 21
and
n 2n
2 I+ A(p+1)+1 a., —ef 1+ Ap+1 & =abp,. 22)
1+A(p-D+1) 7 1+A(p-D+1) °
Also
: 1+ Ap+1 '
20| ——F—— | a,,, =-bll+a(2q, -1 23
(lw(p_le pu =—bl+a(2g, - 1) (23)
and
n 2n n
i 4(1+/1p+lj [ 1+Ap+l . —2e% 1+ A(p+1)+1 o —abg, 24)
1+1/ 1+ A(p-1)+I r 1+A(p-D+1) °*
since, b,,,=-a,, and b, , = 261127+1 —a,,, . Furthermore, from (21) and (23), it is obvious that
b i 1+p+1\" b 1+p+1Y
ap+1=5€ (1+0{(2p1—1))[1—+lJ :—Ee (1+a(2q,—1))(TI . (25)
which implies that
P =4q;- (26)

If we square both side (21) and (23) and then add, we have

2

¢H=§§;k+a@ﬂ—nY+0+aQ%—DYK

2n
1+/1(p—1)+lj | o

1+ Ap+1

Also, add equations (22) and (24), then
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n 2n
; 1+ A(p+1D)+! l+Ap+! )
262 - =ab(p, + 28

¢ [ (1+/1(p—l)+lj (1+/1(p—l)+l @y = 0b(P: ¥ 02) 28)

which implies that

2 abeic(p2+‘]z)

a,, = p — .
’ S oL+ Ap+D+1) _(1+dp+l ’
1+ A(p-1D+! I+ A(p-1)+I/
Recall that p(z),q(u) < A(U). With reference to equations (14), (19), (20) and Lemma (1.2), we

have

(29)

50
|pk|=pk(,)S|Bll, keN (30)
and
q"(0)
=P8 L ke G

Therefore, applying equations (30) and (31) in (29), we obtain

e alb||B,| o)

‘al)‘*'] n 2n
) I+ A(p+D+1) [ 1+Ap+l
1+ A(p-1)+I/ 1+ A(p-1)+!

which readily yields the expected bounds on the coefficient of a,,; as contained in Theorem 3.1.

Also, suppose that equation (24) is subtracted from (22), then

; I+ A(p+1)+1
4e g(amz _a;—l {%j = ab(p2 _qz) : (33)

Using equation (27) in (33), we have

0 .- abe pmgy) | e ((+a@p, -n) +(+ (2, ~)) ) 34)
4 I+ A(p+1)+1 2 1+ Ap+1
I+ A(p-1D+! I+ A(p-D+!

The application of equations (30), (31) and Lemma 1.1 in (34) yields

2 _ 2
PR YR E2CTEARY 3] )
) I+ A(p+1)+! 4 1+Ap+!
1+ A(p—1)+1 1+ A(p-1)+1
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which is the required bound on «a,,, as seen in Theorem 3.1 and this obviously completes the proof.

Now with various choices of the parameters /, 7, p, & and A in Theorem 3.1, several corollaries
are obtained. Few of them are stated below.

Let p =1 in Theorem 3.1, and then the following corollary is obtained.

Corollary 3.2: Let f,(z)eX" (b,l,a,A,w,{), thenfor 1 >0, >0, a €[0,1],

n € N, = NU{0}and z €U,

| |< albl| B, |

S Ap+D+1Y"_(1+2+1 2
1+1/ 1+1/

and

la Is“'“'Bl'( L+ jn+|b|2(1+a(2|3|—1))2( L+l Jzn.
’ 2 1+24+1 4 : 1+A+1

Suppose that p =@ =1 in Theorem 3.1, then the following corollary is obtained.
Corollary 3.3: Let f,(z) X" (b,,1,A,®,{), then for 1 >0, [>0,n € N, = NU{0} and

zeU, then

b B, |
2(1+/1(p+1)+1)”_[1+1+1j2"

WJS

1+/ 1+/

n 2n
|a3|g|b||B1]( 1+1 J+2|bIIBII( 1+1/ j .
2 1+2A4+!1 1+ A+

If p=a =1 and n =0 in Theorem 3.1, then the following corollary is obtained.

and

Corollary 3.4: Let f,(z) X" (b,1,1,A,,{), then for 1 >0, [>0and zeU, then

ja,|<\1511B, |

and

b||B
< LB a3,

Set p=a=A=land /=0 .

Then, we obtain the following corollary.
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Corollary 3.5: Let £;(z) eX"'(b,0,1,1,0,¢), then for n € Ny = NU{0} and z €U, then

D118, |
2.3" 2%

n 2n
Iaglsw{@ +2|b||31|@ }

Theorem 3.6: Let f,(z) e 2”7 (b,l,a, A, ®,(), then for any complex number y

|"2|S

and

., a2, [<——I2IB] L= [bP(1+a] B |-D)
e 2(1+,1(p+1)+1j"_ 4(1+/1p+zj2”
1+1 1+1

Concluding Remarks:

Ultimately, it is pertinent to note that one of the prime significant of the bounds obtained for the
initial coefficients |a,,, | and |a,,, | for function f, (z) € X" (b,l,a, 1, ®,{) is the information
about their geometric properties. For instance, the bounds can be usedin establishing the

, Hankel determinant and so on. In the future, these

Fekete-Szego functional ‘ap+2—l//af,+1

bounds can also be used in putting information into a special code (i.e data encryption) among
others.
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