Bi-Univalent Condition Associated with the Modified Sigmoid Function

Jamiu Olusegun Hamzat ${ }^{1}$ and Folorunso Isola Akinwale ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Lagos, Nigeria
${ }^{2}$ Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
Email: ${ }^{1}$ jhamzat@unilag.edu.ng, ${ }^{2}$ emmanther2012@gmail.com

Abstract

In the present work, the authors define and determine the bounds on the first few coefficients of the function $f(z)$ belonging to a new class of analytic functions with complex order associated with modified sigmoid function in the open unit disk.

AMS Mathematics Subject Classification [2010]: 30C45.
Keywords: Analytic function, Univalent function, Differential operator, Modified sigmoid function.

1. Introduction

Let $\Gamma(\omega)$ be the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=(z-\omega)+\sum_{k=2}^{\infty} a_{k}(z-\omega)^{k} \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open unit disk $U=\{z: z \in C,|z|<1\}$ and normalized with $f(\omega)=0$ and $f^{\prime}(\omega)-1=0$, where ω is an arbitrary fixed point in U. Let S denote the class of analytic function that are univalent in U. Also, let $\Gamma_{p}(\omega)$ denote the class of analytic pvalent functions having the form:

$$
\begin{equation*}
f_{p}(z)=(z-\omega)^{p}+\sum_{k=1}^{\infty} a_{k+p}(z-\omega)^{k+p} \tag{2}
\end{equation*}
$$

in the unit disk U and satisfy the condition that $f_{p}(z)=0,\left|f_{p}(z)\right|<1$ and $z \in U$. Seker andEker [20] introduced and studied the following differential operator $D^{n+p} f_{p}(z)$, for $f_{p}(z) \in \Gamma_{p}(\omega)$ such that

$$
D^{0} f_{p}(z)=f_{p}(z)
$$

$$
\begin{aligned}
& D^{1} f_{p}(z)=D\left(f_{p}(z)\right)=\frac{(z-\omega)}{p} f^{\prime}(z)=(z-\omega)^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right) a_{k+p}(z-\omega)^{p+k} \\
& D^{2} f_{p}(z)=\frac{(z-\omega)}{p} D^{1}\left(f_{p}(z)\right)=(z-\omega)^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)^{2} a_{k+p}(z-\omega)^{p+k}
\end{aligned}
$$

and in general

$$
\begin{equation*}
D^{n+p} f_{p}(z)=D\left(D^{n+p-1} f_{p}(z)\right)=(z-\omega)^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)^{n} a_{k+p}(z-\omega)^{p+k} \tag{3}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Similarly, we can write for functions $f_{p}(z) \in \Gamma_{p}(\omega)$ using Aoul et al. such that

$$
\begin{gathered}
I_{\omega, p}^{0}(\lambda, l) f_{p}(z)=f_{p}(z), \\
I_{\omega, p}^{1}(\lambda, l) f_{p}(z)=\left(\frac{1-\lambda+l}{1+l}\right) I_{\omega, p}^{0}(\lambda, l) f_{p}(z)+\frac{\lambda(z-\omega)}{1+l}\left(I_{\omega, p}^{0}(\lambda, l) f_{p}(z)\right)^{\prime}
\end{gathered}
$$

and

$$
\begin{equation*}
I_{\omega, p}^{n}(\lambda, l) f_{p}(z)=\left(\frac{1-\lambda+l}{1+l}\right) I_{\omega, p}^{n-1}(\lambda, l) f_{p}(z)+\frac{\lambda(z-\omega)}{1+l}\left(I_{\omega, p}^{n-1}(\lambda, l) f_{p}(z)\right)^{\prime} . \tag{4}
\end{equation*}
$$

It follows from equation (4) that

$$
\begin{equation*}
I_{\omega, p}^{n}(\lambda, l) f_{p}(z)=\left(\frac{1+\lambda(p-1)+l}{1+l}\right)^{n}(z-\omega)^{p}+\sum_{k=1}^{\infty}\left(\frac{1+\lambda(k+p-1)+l}{1+l}\right)^{n} a_{p+k}(z-\omega)^{k+p} \tag{5}
\end{equation*}
$$

$n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \lambda \geq 0$ and $l \geq 0$.
Trivially, one can show that

$$
\begin{equation*}
I_{0, p}^{n}(1,0) f_{p}(z)=p^{n} D^{n+p} f_{p}(z) \tag{6}
\end{equation*}
$$

It is noted here that the function $f \in S$ has an inverse f^{-1} which is given by

$$
f^{-1}(f(z))=(z-\omega), z \in U
$$

and

$$
f\left(f^{-1}(\mu)\right)=(\mu-\omega),\left\{|\mu|<r_{0}(f): r_{0}(f) \geq \frac{1}{4}\right\} .
$$

We can also write that
$g(\mu)=f^{-1}(\mu)=(\mu-\omega)-a_{2}(\mu-\omega)^{2}+\left(2 a_{2}^{2}-a_{3}\right)(\mu-\omega)^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)(\mu-\omega)^{4}+\ldots$
Here, let $g_{p}(\mu)$ be defined such that

$$
g_{p}(\mu)=f_{p}^{-1}(\mu)=(\mu-\omega)^{p}+\sum_{k=1}^{\infty} b_{p+k}(\mu-\omega)^{p+k},
$$

where

$$
b_{p+1}=-a_{p+1}, b_{p+2}=2 a_{p+1}^{2}-a_{p+2}, \ldots .
$$

A function f is said to be bi-univalent in U if both f and its inverse, f^{-1}, are univalent in U. Suppose that Σ denote the class of all analytic bi-univalent functions in U, several authors have studied the class Σ from different perspective and their results authenticated diversely in literatures, see [2], [3], [4], [5], [8], [11], [12], [13], [14], [16], [21], [22]) among others. However, their results seem to lack full stamina in addressing the coefficient problems for functions in Σ associated with sigmoid function. Consequently, the present work aim at investigating the bi-univalent condition for analytic p-valent function with some fixed points as related to modified sigmoid function in the open unit disk. Few examples of bi-univalent functions are given below:

1. $\frac{z}{1-z}$ and its corresponding inverse is $\frac{\mu}{1-\mu}$.
2. $\frac{1}{2} \log \frac{1+z}{1-z}$ and its corresponding inverse is $\frac{e^{2 \mu}-1}{e^{2 \mu}+1}$.
3. $\log \frac{1}{1-z}$ and its corresponding inverse is $\frac{e^{\mu}-1}{e^{\mu}}$.

So, the class of bi-univalent functions is non-empty.
For the purpose of this work, we shall consider the following Lemmas.
Lemma 1.1 [18]: Let a function $p \in P$ be given by

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}, \quad z \in U . \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
|p(z)| \leq 2 \quad k \in \mathbb{N} \tag{9}
\end{equation*}
$$

where p is the family of function analytic in U for which

$$
\begin{equation*}
p(0)=1, \mathfrak{R} e[p(z)]>0, \quad z \in U \tag{10}
\end{equation*}
$$

Lemma 1.2 [6, 19]: Let the function $r(z)$ be given by

$$
\begin{equation*}
r(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}, \quad z \in U \tag{11}
\end{equation*}
$$

be convex in U . Also, let the function $l(z)$ given by

$$
\begin{equation*}
l(z)=1+\sum_{k=1}^{\infty} l_{k} z^{k}, \quad z \in U \tag{12}
\end{equation*}
$$

be holomorphic in u. If

$$
l(z) \prec r(z), \quad z \in U
$$

then

$$
\left|l_{k}\right| \leq\left|c_{1}\right|, \quad k \in \mathbb{N}
$$

2. Sigmoid Function

Sigmoid function is referred to as special logistic function and defined by

$$
g(z)=\frac{1}{1+e^{-z}}
$$

\qquad

A sigmoid function is a bounded differentiable real function that is defined for all real input values and has a positive derivative at each point. It is perfectly useful in geometric function theory because of the following properties:

1. It outputs real numbers between 0 and 1 .
2. It maps a large domain to a small range.
3. It is a one to one function hence, the information is well-preserved.
4. It increases monotonically.

Just of recent, precisely in 2013, Fadipe-Joseph et al. [7] defined the modified sigmoid function as $\phi(z)=2 g(z)$. They show among others that $\phi(z)$ is a function with the positive real part and that $\phi(z)$ belongs to the class P of Caratheodory functions.
Fortunately, $\phi(z)$ has the following series expansion

$$
\begin{equation*}
\phi(z)=1+\frac{1}{2} z-\frac{1}{24} z^{3}+\frac{1}{240} z^{5}-\ldots \tag{13}
\end{equation*}
$$

see also Hamzat and Makinde [10], Murugusundaramoorthy and Janani [15], Oladipo and
Gbolagade [17].
Definition 2.1: Let $\gamma: U \rightarrow \mathbb{C}$ be a convex univalent function in U and satisfying thefollowing conditions:

$$
\gamma(0)=1 \text { and } \mathfrak{R e}\{\gamma(z)\}>0(z \in U)
$$

Further, let $\gamma(z)$ be defined such that

$$
\begin{equation*}
\gamma(z)=1+\sum_{k=1}^{\infty} B_{k} z^{k} \tag{14}
\end{equation*}
$$

Now the function $f_{p}(z)$ is said to belongs to the class $\Sigma^{n, p}(b, l, \alpha, \lambda, \omega, \zeta)$, if and only if

$$
\begin{equation*}
1+\frac{1}{b}\left\{\frac{e^{i \zeta}(z-\omega)\left(\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) f_{p}(z)\right)^{\prime}}{\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) f_{p}(z)}-p e^{i \zeta}\right\} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left\{\frac{e^{i \zeta}(\mu-\omega)\left(\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) g_{p}(\mu)\right)^{\prime}}{\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) g_{p}(\mu)}-p e^{i \zeta}\right\} \prec \frac{1+A(\mu-\omega)}{1+B(\mu-\omega)} \tag{16}
\end{equation*}
$$

where b is any non-zero complex number, \prec denotes the subordination sign, $\lambda \geq 0$,
$l \geq 0,-1 \leq B<A \leq 1,|\zeta|<\frac{\pi}{2}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \omega$ is arbitrary fixed point in U and $\mu, z \in U$.

Hence by the definition of subordination, it follows that

$$
\begin{equation*}
1+\frac{1}{b}\left\{\frac{e^{i \zeta}(z-\omega)\left(\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) f_{p}(z)\right)^{\prime}}{\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) f_{p}(z)}-p e^{i \zeta}\right\}=\frac{1+A h(z-\omega)}{1+B h(z-\omega)}=\alpha p(z)+(1-\alpha) \phi(z), \alpha \in[0,1] \tag{17}
\end{equation*}
$$

and
$1+\frac{1}{b}\left\{\frac{e^{i \zeta}(\mu-\omega)\left(\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) g_{p}(\mu)\right)^{\prime}}{\frac{1}{p^{n}} I_{\omega, p}^{n}(\lambda, l) g_{p}(\mu)}-p e^{i \zeta}\right\}=\frac{1+A h(\mu-\omega)}{1+B h(\mu-\omega)}=\alpha q(\mu)+(1-\alpha) \phi(\mu), \alpha \in[0,1]$
where $p(z), q(z), \phi(z) \in P($ class of Caratheodory functions) such that

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}, \quad z \in U \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
q(\mu)=1+\sum_{k=1}^{\infty} q_{k} \mu^{k}, \mu \in U \tag{20}
\end{equation*}
$$

while $\phi(z)$ is as earlier defined in (13).

Special Remarks:

1. Suppose that $\zeta=0$ and $\alpha=1$ in the above definition then, we immediately have the definition given by Hamzat and Adeleke [9].
2. Following the linear combination of $p(z)$ and $\phi(z)$, it is obvious that if letting $\alpha=0$ in (17) and (18), then the bi-univalent results obtained would be associated purely, with the modified Sigmoid function $\phi(z)$ and when $\alpha=1$, the results obtained would be associated purely with the usual $p(z) \in P$.

3. Main Results

Theorem 3.1: Let $f_{p}(z) \in \sum^{n, p}(b, l, \alpha, \lambda, \omega, \zeta)$, then for $\lambda \geq 0, l \geq 0, \alpha \in[0,1]$, $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in U$,

$$
\left|a_{p+1}\right| \leq \sqrt{\frac{\alpha\left|b \| B_{1}\right|\left(\frac{1+\lambda(p-1)+l}{1+l}\right)^{2 n}}{2\left(\frac{1+\lambda(p-1)+l}{1+l}\right)^{n}\left(\frac{1+\lambda(p+1)+l}{1+l}\right)^{n}-\left(\frac{1+\lambda p+l}{1+l}\right)^{2 n}}}
$$

and

$$
\left|a_{p+2}\right| \leq \frac{\alpha|b|\left|B_{1}\right|}{2}\left(\frac{1+\lambda(p-1)+l}{1+\lambda(p+1)+l}\right)^{n}+\frac{|b|^{2}}{4}\left(1+\alpha\left(2\left|B_{1}\right|-1\right)\right)^{2}\left(\frac{1+\lambda(p-1)+l}{1+\lambda p+l}\right)^{2 n}
$$

Proof:

Let $f_{p}(z) \in \sum^{n, p}(b, l, \alpha, \lambda, \omega, \zeta)$. Then from (17) and (18), it follows that

$$
\begin{equation*}
2 e^{i \zeta}\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{n} a_{p+1}=b\left(1+\alpha\left(2 p_{1}-1\right)\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
2 e^{i \zeta}\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n} a_{p+2}-e^{i \zeta}\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n} a_{p+1}^{2}=\alpha b p_{2} \tag{22}
\end{equation*}
$$

Also

$$
\begin{equation*}
2 e^{i \zeta}\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{n} a_{p+1}=-b\left(1+\alpha\left(2 q_{1}-1\right)\right) \tag{23}
\end{equation*}
$$

and
$e^{i \zeta}\left[4\left(\frac{1+\lambda p+l}{1+l}\right)^{n}-\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}\right] a_{p+1}^{2}-2 e^{i \zeta}\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n} a_{p+2}=\alpha b q_{2}$
since, $b_{p+1}=-a_{p+1}$ and $b_{p+2}=2 a_{p+1}^{2}-a_{p+2}$. Furthermore, from (21) and (23), it is obvious that

$$
\begin{equation*}
a_{p+1}=\frac{b}{2} e^{i \zeta}\left(1+\alpha\left(2 p_{1}-1\right)\right)\left(\frac{1+\lambda p+l}{1+l}\right)^{n}=-\frac{b}{2} e^{i \zeta}\left(1+\alpha\left(2 q_{1}-1\right)\right)\left(\frac{1+\lambda p+l}{1+l}\right)^{n}, \tag{25}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
p_{1}=q_{1} . \tag{26}
\end{equation*}
$$

If we square both side (21) and (23) and then add, we have

$$
\begin{equation*}
a_{p+1}^{2}=\frac{b^{2}}{8 e^{2 i \zeta}}\left[\left(1+\alpha\left(2 p_{1}-1\right)\right)^{2}+\left(1+\alpha\left(2 q_{1}-1\right)\right)^{2}\right]\left(\frac{1+\lambda(p-1)+l}{1+\lambda p+l}\right)^{2 n} . \tag{27}
\end{equation*}
$$

Also, add equations (22) and (24), then

$$
\begin{equation*}
2 e^{i \zeta}\left[2\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n}-\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}\right] a_{p+1}^{2}=\alpha b\left(p_{2}+q_{2}\right) \tag{28}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
a_{p+1}^{2}=\frac{\alpha b e^{i \zeta}\left(p_{2}+q_{2}\right)}{2\left[2\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n}-\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}\right]} . \tag{29}
\end{equation*}
$$

Recall that $p(z), q(\mu) \subset h(U)$. With reference to equations (14), (19), (20) and Lemma (1.2), we have

$$
\begin{equation*}
\left|p_{k}\right|=\left|\frac{p^{k}(0)}{k!}\right| \leq\left|B_{1}\right|, \quad k \in \mathbb{N} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|q_{k}\right|=\left|\frac{q^{k}(0)}{k!}\right| \leq\left|B_{1}\right|, \quad k \in \mathbb{N} . \tag{31}
\end{equation*}
$$

Therefore, applying equations (30) and (31) in (29), we obtain

$$
\begin{equation*}
\left|a_{p+1}\right|^{2}=\frac{\alpha|b|\left|B_{1}\right|}{2\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n}-\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}} \tag{32}
\end{equation*}
$$

which readily yields the expected bounds on the coefficient of a_{p+1} as contained in Theorem 3.1. Also, suppose that equation (24) is subtracted from (22), then

$$
\begin{equation*}
4 e^{i \zeta}\left(a_{p+2}-a_{p+1}^{2}\right)\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)=\alpha b\left(p_{2}-q_{2}\right) \tag{33}
\end{equation*}
$$

Using equation (27) in (33), we have

$$
\begin{equation*}
a_{p+2}=\frac{\alpha b e^{-i \zeta}\left(p_{2}-q_{2}\right)}{4\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n}}+\frac{b^{2} e^{-2 i \zeta}\left(\left(1+\alpha\left(2 p_{1}-1\right)\right)^{2}+\left(1+\alpha\left(2 q_{1}-1\right)\right)^{2}\right)}{8\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}} \tag{34}
\end{equation*}
$$

The application of equations (30), (31) and Lemma 1.1 in (34) yields

$$
\begin{equation*}
\left|a_{p+2}\right| \leq \frac{\alpha|b|\left|B_{1}\right|}{2\left(\frac{1+\lambda(p+1)+l}{1+\lambda(p-1)+l}\right)^{n}}+\frac{|b|^{2}\left(\left(1+\alpha\left(2\left|B_{1}\right|-1\right)\right)^{2}\right)}{4\left(\frac{1+\lambda p+l}{1+\lambda(p-1)+l}\right)^{2 n}} \tag{35}
\end{equation*}
$$

which is the required bound on a_{p+2} as seen in Theorem 3.1 and this obviously completes the proof.
Now with various choices of the parameters l, n, p, α and λ in Theorem 3.1, several corollaries are obtained. Few of them are stated below.

Let $p=1$ in Theorem 3.1, and then the following corollary is obtained.

Corollary 3.2: Let $f_{1}(z) \in \sum^{n, 1}(b, l, \alpha, \lambda, \omega, \zeta)$, then for $\lambda \geq 0, l \geq 0, \alpha \in[0,1]$,
$n \in \mathbb{N}_{0}=\mathbb{N} U\{0\}$ and $z \in U$,

$$
\left|a_{2}\right| \leq \sqrt{\frac{\alpha|b|\left|B_{1}\right|}{2\left(\frac{1+\lambda(p+1)+l}{1+l}\right)^{n}-\left(\frac{1+\lambda+l}{1+l}\right)^{2 n}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha|b|\left|B_{1}\right|}{2}\left(\frac{1+l}{1+2 \lambda+l}\right)^{n}+\frac{|b|^{2}}{4}\left(1+\alpha\left(2\left|B_{1}\right|-1\right)\right)^{2}\left(\frac{1+l}{1+\lambda+l}\right)^{2 n}
$$

Suppose that $p=\alpha=1$ in Theorem 3.1, then the following corollary is obtained.

Corollary 3.3: Let $f_{1}(z) \in \sum^{n, 1}(b, l, 1, \lambda, \omega, \zeta)$, then for $\lambda \geq 0, l \geq 0, n \in \mathbb{N}_{0}=\mathbb{N} U\{0\}$ and $z \in U$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{|b|\left|B_{1}\right|}{2\left(\frac{1+\lambda(p+1)+l}{1+l}\right)^{n}-\left(\frac{1+\lambda+l}{1+l}\right)^{2 n}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|b|\left|B_{1}\right|}{2}\left[\left(\frac{1+l}{1+2 \lambda+l}\right)^{n}+2|b|\left|B_{1}\right|\left(\frac{1+l}{1+\lambda+l}\right)^{2 n}\right]
$$

If $p=\alpha=1$ and $n=0$ in Theorem 3.1, then the following corollary is obtained.
Corollary 3.4: Let $f_{1}(z) \in \Sigma^{0,1}(b, l, 1, \lambda, \omega, \zeta)$, then for $\lambda \geq 0, l \geq 0$ and $z \in U$, then

$$
\left|a_{2}\right| \leq \sqrt{|b|\left|B_{1}\right|}
$$

and

$$
\left|a_{3}\right| \leq \frac{|b|\left|B_{1}\right|}{2}\left[1+2|b|\left|B_{1}\right|\right] .
$$

Set $p=\alpha=\lambda=1$ and $l=0$.
Then, we obtain the following corollary.

Corollary 3.5: Let $f_{1}(z) \in \Sigma^{n, 1}(b, 0,1,1,0, \zeta)$, then for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in U$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{|b|\left|B_{1}\right|}{2.3^{n}-2^{2 n}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|b|\left|B_{1}\right|}{2}\left[\left(\frac{1}{3}\right)^{n}+2|b|\left|B_{1}\right|\left(\frac{1}{2}\right)^{2 n}\right]
$$

Theorem 3.6: Let $f_{p}(z) \in \Sigma^{n, p}(b, l, \alpha, \lambda, \omega, \zeta)$, then for any complex number ψ

$$
\left|a_{p+2}-\psi a_{p+1}^{2}\right| \leq \frac{\alpha|b|\left|B_{1}\right|}{2\left(\frac{1+\lambda(p+1)+l}{1+l}\right)^{n}-}+\frac{(1-\psi)|b|^{2}\left(1+\alpha\left(2\left|B_{1}\right|-1\right)\right)^{2}}{4\left(\frac{1+\lambda p+l}{1+l}\right)^{2 n}} .
$$

Concluding Remarks:

Ultimately, it is pertinent to note that one of the prime significant of the bounds obtained for the initial coefficients $\left|a_{p+1}\right|$ and $\left|a_{p+2}\right|$ for function $f_{p}(z) \in \Sigma^{n, p}(b, l, \alpha, \lambda, \omega, \zeta)$ is the information about their geometric properties. For instance, the bounds can be used in establishing the Fekete-Szego functional $\left|a_{p+2}-\psi a_{p+1}^{2}\right|$, Hankel determinant and so on. In the future, these bounds can also be used in putting information into a special code (i.e data encryption) among others.

References

[1] Aouf, M. K., Shamandy, A., Mostafa, A. O. and Madian, S. M. (2010). A subclass of M-W starlike functions. Acta Universitatis Apulensis, 21: 135-142.
[2] Brannan D. A. and Taha, T. S. (1986). On some classes of bi-univalent functions.Studia Univ. Babes-Bolyai Math., 31: 71-77.
[3] Bulut, S. (2016). Coefficient estimates for general subclasses of m-fold symmetric an- alytic biunivalent functions. Turk. J. Math., 40: 1386-1397.
[4] Caglar, M., Orhan H. and Yagmur, N. (2013). Coefficient bounds for new subclasses of biunivalent functions, Filomat 27(7): 1165-1171. DOI 10.2298/FIL1307165C.
[5] Deniz, E. (2013). Certain subclasses of bi-univalent functions satisfying subordination conditions, J. Classical Annl. ,2(1): 49-60.
[6] Duren, P. L. (1983). Univalent functions, vol. 259, Springer-Verlag. New York, Berlin, Heidelberg, Tokyo.
[7] Fadipe-Joseph, O. A., Oladipo A. T. and Ezeafulukwe, U. A. (2013). Modified sigmoidfunction in univalent function theory. Int. J. Math. Sci. Engr. Appl., 7(7): 313-317.
\qquad
[8] Hamidi S. G. and Jahangiri, J. M. (2014). Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Int. J. Math., 25, 1450064.
[9] Hamzat, J. O. and Adeleke, O. J. (2015). A new subclass of $p-$ valent functions defined by Aouf et al. derivative operator. Int. J. Pure and Appl. Math., 101: 33-41.
[10] Hamzat J. O. and Makinde, D. O. (2018). Coefficient bounds for Bazilevic functionsinvolving logistic sigmoid function associated with conic domains. Int. J. Math. Anal.Opt.: Theory and Appl., vol. 2018(2): 392-400.
[11] Hamzat, J. O., Oladipo A. T. and Fagbemiro, O. (2018). Coefficient bounds for certain new subclass of m-fold symmetric bi-univalent functions associated with conicdomains. Trends Sci. and Tech. J. 3(2B): 807-813.
[12] Hamzat J. O. and El-Ashwah, R. M. (2021). Some properties of a generalized multiplier transform on analytic p-valent functions. Ukraine J. Math., Accepted.
[13] Hamzat, J. O. (2021). Some properties of a new subclass of m-fold symmetric bi- Bazilevic functions associated with modified sigmoid Functions. Tbilisi Math. J., 14(1): 107-118. DOI: $10.32513 / \mathrm{tmj} / 1932200819$.
[14] Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Ame. Math. Soc.,18:63-68.
[15] Murugusundaramorthy G. and Janani, T. (2015). Sigmoid function in the space of uni-valent λ Pseudo starlike functions. International Journal of Pure and Applied Mathe- matics, 101(1): 33-41.
[16] Netanyahu, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32: 100-112.
[17] Oladipo, A. T. and Gbolagade, A. M. (2014). Subordination results for logistic sigmoid activation function in the space of univalent functions in the unit disk. Adv. Comp. Sci.Eng., 12(2): 61-79.
[18] Pommerenke, C.(1975).Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[19] Rogosinski, W. (1943). On the coefficients of subordinate functions. Proc. London Math. Soc. (Ser.2), 48: 48-82.
[20] Seker, S. S. and Eker, B. (2007). On a class of multivalent functions defined by Salageanoperator. General Mathematics, 15:154-163.
[21] Srivastava, H. M., Bulut, S., Caglar, M. and Yagmur N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 27(5): 831-842. DOI $10.2298 /$ FIL1305831S.
[22] Srivastava, H. M., Murugusundaramoorthy, G. and Vijaya, K. (2013). Coefficient es- timates for some families of Bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator. Journal of Classical Analysis, 2(2): 167-181.

