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1 Introduction

Let S be the class of univalent functions f normalized by
(1.1) f(2) :z—i—Zanz”,
n=2

which are analytic on the unit disk U = {z € C : |2| < 1}. Let T be subclass
of § consisting of functions of the form;

(1.2) f)=2=> anz"  (an >0).

Definition 1.1. [7] A function f of the form (1.1) is said to be in the class
S(a, B,7) if it satisfies following condition:

JUCN |
(1.3) fc(())
(2y—1) (2 + (1 —2va)

< B zeU,

where 0 <a<1,0<f<land1/2<~y<1.
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Definition 1.2. [6] A function f of the form (1.1) is said to be in the class
K(a, B,7) if it satisfies following condition:

2f" 2)

i)
(1.4) i < B zeU,
(27 - D) +29(1 - )

where 0 <a<1,0<f<land 1/2 <~ <1.

The subclasses S(«, 8,7v) and K(a, 3,7) are the well-known subclasses of
starlike and convex functions of order o and type [, ~, respectively introduced
by Kulkarni [7] and Joshi et. al. [6]. Let T™(«, 3,7v) and C(a, 8,7) be sub-
classes of T defined by

T (o, 8,7) = S(, B,7) N T and C(a, B,7) = K(a, B,7) N'T

Also
f(z) € Cla,B,7) & 2f'(2) € T (av, B, 7).

We note that S(a,3,1) = S(a,f) and K(a,f,1) = K(a, ) are well-
known subclasses of starlike and convex functions of order o and type f,
respectively introduced by Gupta and Jain [8]. Also S(a,1,1) = S(«) and
K(a,1,1) = K(«a) are well-known subclasses of starlike and convex functions
of order a, respectively introduced by Robertson [13], MacGregor [9] and Schild
[14]. Further, T*(a, 1,1) = T*(a) and C(«, 1,1) = C(a) are the subclasses of
starlike and convex functions of order o with negative coefficients introduced
by Silverman [15].

In this paper, we consider three special functions, the Struve function of
the first kind H,, the Lommel function of the first kind S, , and the Bessel
function of the first kind J,. We know that the Bessel, Struve and Lommel
functions can be expressed as the infinite series

> )n 27’L+l/‘ _
(15) nZ:o n+1 (n+v+1) (2) ’ VLT
©° )n 2\ 2n+rv+1 1 B
1.6 = ; - &7
(16) ;F g (ntv+ )<2> vyt
and
(1.7)
S ( ) Z“"‘l oo (_l)nr(ﬂ_;+1)1‘\(ﬂ+;+1) <Z>2n ,U/ :i: v + 1 ¢ Z
v(2) = — - =) —_— :
: 4 = T(n+ B=UE3D (n 4 £E2E3) N2 2
for p,v € C.
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We know that the Bessel function J, is a solution of homogeneous Bessel
differential equation
22w (2) + 2w’ (2) + (22 — vH)w(z) = 0.

Also Struve function H,(z) and Lommel function S, ,(z) are a particular
solutions of the following non-homogeneous Bessel differential equations (see
[12]).

2.1 / 2 2 _w
R e e AV YRS

and
2w (2) + 2w’ (2) + (22 = v w(z) = 2T

Also note that the functions J,(z), H,(z) and S, ,,(2) are expressed in terms
of hypergeometric functions | F5 as follows.

) :
ae =3 p(iir1-2) ez
(Z) F(V—l—l)l 2(77V+7 4)7V¢ ’
v+1
(2 3 3 22 1
Hy=_ 3 (13,08 ) Ly
(Z) %F(V—F%)l 2<72,V—}—2, 4>7V+2¢ ’
and
() = P I-M_V+3 p+v+3 22 ‘,uj:y+1¢Z_
P T =+ D)(p+rv+ D)2\ 2 T 2 ) 2 '

For more information about these functions please see [16].

In this paper, we are interested in the normalized Bessel function of the first
kind 7, : U — C, the normalized Struve function of the first kind h, : U — C,
and normalized Lommel function of the first kind s,, : U — C, which are
defined as follows

(18)  ju(2) =T+ 155,02V =Y ﬁ+ vVEZ

(1.9)

hy(z):=T (g) r (1/ + ;) 2172 H,(2v2) = T;) (%):E’fl)': %)nz”+1;u+% ¢ 7",
and

(1.10) Suv(z) i =(p—v+1)(p+v+1)z7"5,.(2V2)
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= (=" nt1, pEV+H1 -
= Z —v+3 v+3 < ) ¢ Z".
= (), (), 2
Observe that
(1.11) Spu(2) = hy(z) and s,_1,,(2) = ju(2).

Recently, El-Ashwah et al. [3], Cho et al. [1] and Murugusundaramoorthy
and Janani [10] introduced some characterization of generalized Bessel func-
tions of first kind to be in certain subclasses of uniformly starlike and uniformly
convex functions. Motivated by various authors ([1],[2], [3], [4], [5], [10], [11]),
in the present paper, we have determined necessary and sufficient conditions
for the normalized Bessel function of the first kind, the normalized Struve func-
tion of the first kind and normalized Lommel function of the first kind to be in
Subclasses of analytic functions S(«, 3,7) and K(«, 3, 7) of starlike and convex
functions of order o and type (3, ~.

2 Characterizations on Lommel Functions

Following lemmas are useful to establish our main results.

Lemma 2.1. [7] (i) A sufficient condition for a function f of the form (1.1)
to be in the class S(a, B,7) is that

oo

(2.1) Z[n—1+ﬁ(1—n+2fyn—27a)] lan| < 287(1 — a).

(ii) A necessary and sufficient condition for a function f of the form (1.2)
to be in the T *(«, 8,7) is that

oo

(2.2) Z[n —1+8(1 —=n+2yn — 2ya)]a, < 287(1 — a).

Lemma 2.2. [6] (i) A sufficient condition for a function f of the form (1.1)
to be in the class K(a, 8,7) is that

oo

(2.3) Z n— 14 B(1 —n+ 2yn — 2va)]|an| < 28v(1 — «).

(ii) A necessary and sufficient condition for a function f of the form (1.2) to
be in the C(a, B,7) is that

oo

(2.4) Z nn—14+ (1 —n+2yn —2va)la, <2687(1 — a).

n=2
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If

z

(2.5) folz) = —— =2+ ) _(-)"" (2 € D),

14+2z

then using convolution principle, we define

S (2) = 5u,0(2) = fo(2).
Now we prove our main results.
Theorem 2.3. If u > v — 3, then the condition

86v(1 — )
(u—v+3)(p+v+3)

(2.6) (1= B+267)8,45,(1) +267(1 - a)susa,(1) <

suffices that s,,,(2) € S(a, B,7).

Proof. Since

> 1 TR 272 = N
Suw(2) =2+ Z p—v+3 p+v+3 z 2 £z
n=2 (T)n—l (T)n—l
By virtue of (i) in Lemma 2.1 | it is suffices to show that
= 1
Z[n—1—|—B(1—n—|—2fyn—27a)](u_y+3) (u+v+3) < 269(1 — «).
n=2 2 n—1 2 n—1
By simple computation, we have
= 1
M(avﬁafﬁﬂay):Z[n_1+6(1_n+27n_2'7a)] L—U13 TR
n=2 ( 2 )n—l ( 2 )’I’L—l
= 1
:Z[n+1+6(—1—n—|—27(n+2)—27@)](M_V+3) (M+V+3)
n=0 2 n—+1 2 n+1
> 1
= Z[(n + 1)(1 - ﬂ + 267) + 257(1 - a)] n—v+3 n+v+3
k=0 ( 2 )n—|—1 ( 2 )n—|—1

1-F+2 > 1
- (PL(_;+3)B)J(rM+5151)3) >_(n+1)

( p+2—v+43 ) . ( u+2—2ku+3 )

n=0 2 n

26v(1 - a) i 1
(5=512) (H57) = (5570, ()

n=0 n

2 2
+267(1 = a)spso,.0(1)]

Thus, we see that the last expression is bounded above by 287v(1 — «) if
condition (2.6) is satisfied. This completes the proof of Theorem 2.3 . O

_ (u—y+3> (M+u+3) (1= B4 289810 (1)
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If

(2.7) fl(z):,z(Q— 1i2) =Z+Z(—1)n+lzn+l (zeU)

and the function
tu,u(z) = Su,V(z) * f1 (z),

then we have the following result.

Theorem 2.4. For y > v — 3,

86v(1 — )
(p—v+3)(p+v+3)’

(2.8) (1=B4267)t,40, (1) +267(1 — )tug2,(1) <

is the necessary and sufficient condition fort, ., (z) to be in the class T*(c, 3, 7).
Proof. Since

1 n bETv+1

(2.9) t,(2) =2— — - 2" ¢ 7,
: 712232 (MT%)n—l (%H)n—l 2

then by using Lemma 2.1, togehter with the same techniques of Theorem 2.3,
we complete the proof.

O

Theorem 2.5. If u > v — 3, then the condition

(2.10) (1= B+267)5,12,(1) + 238y — aBfy — B+ 1)s,,45,,(1)

867(1 — )
(n—v+3)(u+v+3)

+2B7(1 — a)s42,,(1) <

suffices that s,,,(2) € K(a, 3,7).

Proof. By virtue of (i) in Lemma 2.2, it is suffices to show that

00 1
nn—14 (1 —n+ 2yn — 2ya)] (u—u—|—3) (M+V+3)
o 2 n—1 2 n—1
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By simple computation, we have

G(a, B,7; 1, v)

0
:Z n+2)n+1+p(— 1—n+2vn+47—27a)](u_y+3) (£ErE3)
n=0 2 n+1 2 n+1

Z (1= B+287)(n+1)(n) +2(1 - B+ 38y —afy)(n+1)

MRy ey gy sy
n+1 n+1

1 1
- (=572) () (1= B+267)s42,,(1)
2 P

+2(1 = B+ 367y — 045'7)5:1-%2,1/(1) +26~y(1 - a)5u+2,u(1)} .

Thus, we see that the last expression is bounded above by 28v(1 — «) if
(2.10) is satisfied. Hence, the proof. O

Theorem 2.6. For > v — 3,

(2.11) (1= B4267),2,(1) +2B8y —afy =B+ 1)t (1)

867(1 — )
p—v+3)(p+v+3)’

+207(1— 1) < ¢
is the necessary and sufficient condition for t, ,(z) to be in the class C(c, 3,7).
Putting v = 1 in Theorems 2.4 and 2.6, we obtain the following corollaries.

Corollary 2.7. The function t, (%) is a starlike function of order a(0 < a <
1) and type (0 < B < 1), if and only if

86(1 - a)
(u—v+3)(p+v+3)

(14 )42, (1) +28(1 — a)tusn, (1) <

Corollary 2.8. The function t, ,(2) is a convex function of order a(0 < o < 1)
and type (0 < B < 1), if and only if

(1 + ﬁ)tZ—FZ,V(l) + 2(26 - OZ,B + 1)t;L—|—2,I/(]')

85(1 — o)
(m=v+3)(u+tv+3)

+28(1 - O‘)tu+2,v(1) <
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3 Characterizations on Struve Functions

Taking © = v in Theorems 2.3-2.6, we obtain the corresponding results of
Struve function h,.

Theorem 3.1. If v > —%, then the condition

867(1 — )

(1) (L= B+287)002(1) +269(1 — bura(1) < g

suffices that b,(2) € S(a, B,7), where
(3.2) b,(z) :=hy(z) * =2+ Z o 1 §)nlszrl (1/ > —%) :

Theorem 3.2. For v > —5,

867(1 — a)
32v+3)

is the necessary and sufficient condition for h,(z) to be in the class T*(«, 3,7),
where

(3.3) (1= B+ 267, 45(1) +287(1 — a)h42(1) <

oo

(3.4) hy(2) = (hy(2) * f1(2)) = z — Z € 1 9 S+l (y > —%) :

n=2 5)7171 (V+ 2
Theorem 3.3. Ifv > —§ then the condition
(3.5) (1= B+287)hy45(1) + 238y — aBy — B+ 1)b;,45(1)

867(1 — )

+2687(1 — a)h,42(1) < 3(20+3)

suffices that b,(z) € K(a, 8,7).
Theorem 3.4. For v > —%,

(3.6) (1= B+287)hy5(1) + 238y — afy — B+ 1)k, (1)

2011 ahaa(t) < 70

is the necessary and sufficient condition for h,(z) to be in the class C(a, 3,7).
Putting v = 1 in Theorem 3.2 and 3.4, we have the following corollaries.

Corollary 3.5. The function h,(z) is a starlike function of order a(0 < v < 1)
and type (0 < B < 1) if and only if

(14 (1) + 2601~ @)hsal) < 308,

Corollary 3.6. The function h,(z) is a convez function of order a(0 < o < 1)
and type (0 < B < 1) if and only if

(1 + B)hyya(1) +2(28 — aB + )l 15(1) +2B8(1 — a)hy42(1) < ?’)fQ(i—i_-iO;))
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4 Characterizations on Bessel Functions

Taking ;4 = v —1 in Theorems 2.3-2.6, then we obtain the corresponding results
of Bessel function j, as following:

Theorem 4.1. If v > —1, then the condition

2 1—
A1) 1=+ 20)in(D) + 2001 - i () < FLET
suffices that j,(z) € S(a, B,7), where
. . _ - 1 n _
4B e = aE b =24 ), ey > Y
Theorem 4.2. Forv > —1,
2 1-—
43) (=B 2 () 42090 - @) (1) < 20T
is the necessary and sufficient condition for 3,(2) to be in the class T*(«, 3,7),
where
: - 1 .
(44) .]l/(z) = .]V(z) * fl(z) =z 712_:2 (]-)n—l(l/ + 1)n—1z (V > _1)

Theorem 4.3. If v > —1, then the condition

(4.5) (1= B+287)iy11(1) +2(38y —aBfy = B+ 1)j,41(1)
2 1-—
#2071 - aivia(t) < HIES
suffices that j,(z) € K(a, 3,7).
Theorem 4.4. Forv > —1,
(4.6) (1= B+287)7541(1) + 2387 — aBy — B+ 1)7,,1(1)
2 1-—
+287(1 — a)gu41(1) < %

is the necessary and sufficient condition for 3,(z) to be in the class C(«, 3,7).
Putting v = 1 in Theorems 4.2 and 4.4, we obtain the following corollaries.

Corollary 4.5. The function 3,(z) is a starlike function of order a(0 < o < 1)
and type (0 < B < 1), if and only if

25(1—@).

(L4811 (1) + 2801~ guia (1) < Z =
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Corollary 4.6. The function 3,(z) is a convex function of order a(0 < o < 1)
and type (0 < B < 1), if and only if

(1+B) gy (1) +228 —aB+1)7,,1(1) +28(1 — a)g41(1) < —2%1—1(;) -
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