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Abstract

In this paper we have determined some necessary and sufficient con-
ditions of normalized Lommel function sµ,ν , Struve function hν and
Bessel function jν of the first kind to be in the subclasses S(α, β, γ)
and K(α, β, γ) of starlike and convex functions of order α and type β, γ,
in the unit disk U .
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1 Introduction

Let S be the class of univalent functions f normalized by

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which are analytic on the unit disk U = {z ∈ C : |z| < 1}. Let T be subclass
of S consisting of functions of the form;

(1.2) f(z) = z −
∞∑

n=2

anz
n (an ≥ 0).

Definition 1.1. [7] A function f of the form (1.1) is said to be in the class
S(α, β, γ) if it satisfies following condition:

(1.3)

∣∣∣∣∣∣

zf ′(z)
f(z) − 1

(2γ − 1) zf
′(z)

f(z) + (1− 2γα)

∣∣∣∣∣∣
< β; z ∈ U,

where 0 ≤ α < 1, 0 < β ≤ 1 and 1/2 < γ ≤ 1.
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Definition 1.2. [6] A function f of the form (1.1) is said to be in the class
K(α, β, γ) if it satisfies following condition:

(1.4)

∣∣∣∣∣∣

zf ′′z)
f ′(z)

(2γ − 1) zf
′′(z)

f ′(z) + 2γ(1− α)

∣∣∣∣∣∣
< β; z ∈ U,

where 0 ≤ α < 1, 0 < β ≤ 1 and 1/2 < γ ≤ 1.

The subclasses S(α, β, γ) and K(α, β, γ) are the well-known subclasses of
starlike and convex functions of order α and type β, γ, respectively introduced
by Kulkarni [7] and Joshi et. al. [6]. Let T ∗(α, β, γ) and C(α, β, γ) be sub-
classes of T defined by

T ∗(α, β, γ) = S(α, β, γ) ∩ T and C(α, β, γ) = K(α, β, γ) ∩ T .

Also

f(z) ∈ C(α, β, γ) ⇔ zf ′(z) ∈ T ∗(α, β, γ).

We note that S(α, β, 1) = S(α, β) and K(α, β, 1) = K(α, β) are well-
known subclasses of starlike and convex functions of order α and type β,
respectively introduced by Gupta and Jain [8]. Also S(α, 1, 1) = S(α) and
K(α, 1, 1) = K(α) are well-known subclasses of starlike and convex functions
of order α, respectively introduced by Robertson [13], MacGregor [9] and Schild
[14]. Further, T ∗(α, 1, 1) = T ∗(α) and C(α, 1, 1) = C(α) are the subclasses of
starlike and convex functions of order α with negative coefficients introduced
by Silverman [15].

In this paper, we consider three special functions, the Struve function of
the first kind Hν , the Lommel function of the first kind Sµ,ν and the Bessel
function of the first kind Jν . We know that the Bessel, Struve and Lommel
functions can be expressed as the infinite series

(1.5) Jν(z) =

∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ ν + 1)

(z
2

)2n+ν

; ν /∈ Z−,

(1.6) Hν(z) =

∞∑
n=0

(−1)n

Γ(n+ 3
2 )Γ(n+ ν + 3

2 )

(z
2

)2n+ν+1

; ν +
1

2
/∈ Z−

and

(1.7)

Sµ,ν(z) =
zµ+1

4

∞∑
n=0

(−1)nΓ(µ−ν+1
2 )Γ(µ+ν+1

2 )

Γ(n+ µ−ν+3
2 )Γ(n+ µ+ν+3

2 )

(z
2

)2n

;
µ± ν + 1

2
/∈ Z−,

for µ, ν ∈ C.
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We know that the Bessel function Jν is a solution of homogeneous Bessel
differential equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = 0.

Also Struve function Hν(z) and Lommel function Sµ,ν(z) are a particular
solutions of the following non-homogeneous Bessel differential equations (see
[12]).

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) =
(z/2)ν−1

√
πΓ(ν + 1

2 )

and

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = zµ+1.

Also note that the functions Jν(z), Hν(z) and Sµ,ν(z) are expressed in terms
of hypergeometric functions 1F2 as follows.

Jν(z) =

(
z
2

)ν
Γ(ν + 1)

1F2

(
1; 1, ν + 1;−z2

4

)
; ν /∈ Z−,

Hν(z) =

(
z
2

)ν+1

√
π
4Γ

(
ν + 3

2

) 1F2

(
1;

3

2
, ν +

3

2
;−z2

4

)
; ν +

1

2
/∈ Z−,

and

Sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;

µ− ν + 3

2
,
µ+ ν + 3

2
;−z2

4

)
;
µ± ν + 1

2
/∈ Z−.

For more information about these functions please see [16].
In this paper, we are interested in the normalized Bessel function of the first

kind jν : U → C, the normalized Struve function of the first kind hν : U → C,
and normalized Lommel function of the first kind sµ,ν : U → C, which are
defined as follows

(1.8) jν(z) := Γ(ν + 1)z1−
ν
2 Jν(2

√
z) =

∞∑
n=0

(−1)n

(1)n(ν + 1)n
zn+1; ν /∈ Z−,

(1.9)

hν(z) := Γ

(
3

2

)
Γ

(
ν +

3

2

)
z1−

ν
2 Hν(2

√
z) =

∞∑
n=0

(−1)n(
3
2

)
n

(
ν + 3

2

)
n

zn+1; ν+
1

2
/∈ Z−,

and

(1.10) sµ,ν(z) := (µ− ν + 1)(µ+ ν + 1)z−µSµ,ν(2
√
z)
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=
∞∑

n=0

(−1)n(
µ−ν+3

2

)
n

(
µ+ν+3

2

)
n

zn+1;
µ± ν + 1

2
/∈ Z−.

Observe that

(1.11) sν,ν(z) = hν(z) and sν−1,ν(z) = jν(z).

Recently, El-Ashwah et al. [3], Cho et al. [1] and Murugusundaramoorthy
and Janani [10] introduced some characterization of generalized Bessel func-
tions of first kind to be in certain subclasses of uniformly starlike and uniformly
convex functions. Motivated by various authors ([1],[2], [3], [4], [5], [10], [11]),
in the present paper, we have determined necessary and sufficient conditions
for the normalized Bessel function of the first kind, the normalized Struve func-
tion of the first kind and normalized Lommel function of the first kind to be in
Subclasses of analytic functions S(α, β, γ) and K(α, β, γ) of starlike and convex
functions of order α and type β, γ.

2 Characterizations on Lommel Functions

Following lemmas are useful to establish our main results.

Lemma 2.1. [7] (i) A sufficient condition for a function f of the form (1.1)
to be in the class S(α, β, γ) is that

(2.1)

∞∑
n=2

[n− 1 + β(1− n+ 2γn− 2γα)] |an| ≤ 2βγ(1− α).

(ii) A necessary and sufficient condition for a function f of the form (1.2)
to be in the T ∗(α, β, γ) is that

(2.2)

∞∑
n=2

[n− 1 + β(1− n+ 2γn− 2γα)]an ≤ 2βγ(1− α).

Lemma 2.2. [6] (i) A sufficient condition for a function f of the form (1.1)
to be in the class K(α, β, γ) is that

(2.3)

∞∑
n=2

n[n− 1 + β(1− n+ 2γn− 2γα)]|an| ≤ 2βγ(1− α).

(ii) A necessary and sufficient condition for a function f of the form (1.2) to
be in the C(α, β, γ) is that

(2.4)
∞∑

n=2

n[n− 1 + β(1− n+ 2γn− 2γα)]an ≤ 2βγ(1− α).
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If

(2.5) f0(z) =
z

1 + z
= z +

∞∑
n=1

(−1)nzn+1 (z ∈ U),

then using convolution principle, we define

sµ,ν(z) = sµ,ν(z) ∗ f0(z).

Now we prove our main results.

Theorem 2.3. If µ > ν − 3, then the condition

(2.6) (1− β + 2βγ)s′µ+2,ν(1) + 2βγ(1− α)sµ+2,ν(1) ≤
8βγ(1− α)

(µ− ν + 3)(µ+ ν + 3)

suffices that sµ,ν(z) ∈ S(α, β, γ).

Proof. Since

sµ,ν(z) = z +

∞∑
n=2

1(
µ−ν+3

2

)
n−1

(
µ+ν+3

2

)
n−1

zn;
µ± ν + 1

2
/∈ Z−.

By virtue of (i) in Lemma 2.1 , it is suffices to show that

∞∑
n=2

[n− 1 + β(1− n+ 2γn− 2γα)]
1(

µ−ν+3
2

)
n−1

(
µ+ν+3

2

)
n−1

≤ 2βγ(1− α).

By simple computation, we have

M(α, β, γ;µ, ν) =
∞∑

n=2

[n− 1 + β(1− n+ 2γn− 2γα)]
1(

µ−ν+3
2

)
n−1

(
µ+ν+3

2

)
n−1

=
∞∑

n=0

[n+ 1 + β(−1− n+ 2γ(n+ 2)− 2γα)]
1(

µ−ν+3
2

)
n+1

(
µ+ν+3

2

)
n+1

=

∞∑
k=0

[(n+ 1)(1− β + 2βγ) + 2βγ(1− α)]
1(

µ−ν+3
2

)
n+1

(
µ+ν+3

2

)
n+1

=
(1− β + 2βγ)(
µ−ν+3

2

) (
µ+ν+3

2

)
∞∑

n=0

(n+ 1)
1(

µ+2−ν+3
2

)
n

(
µ+2+ν+3

2

)
n

+
2βγ(1− α)(

µ−ν+3
2

) (
µ+ν+3

2

)
∞∑

n=0

1(
µ+2−ν+3

2

)
n

(
µ+2+ν+3

2

)
n

=

(
µ− ν + 3

2

)(
µ+ ν + 3

2

)[
(1− β + 2βγ)s′µ+2,ν(1)

+2βγ(1− α)sµ+2,ν(1)] .

Thus, we see that the last expression is bounded above by 2βγ(1 − α) if
condition (2.6) is satisfied. This completes the proof of Theorem 2.3 .
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If

(2.7) f1(z) = z

(
2− 1

1 + z

)
= z +

∞∑
n=1

(−1)n+1zn+1 (z ∈ U)

and the function

tµ,ν(z) := sµ,ν(z) ∗ f1(z),

then we have the following result.

Theorem 2.4. For µ > ν − 3,

(2.8) (1− β +2βγ)t′µ+2,ν(1) + 2βγ(1−α)tµ+2,ν(1) ≤
8βγ(1− α)

(µ− ν + 3)(µ+ ν + 3)
,

is the necessary and sufficient condition for tµ,ν(z) to be in the class T ∗(α, β, γ).

Proof. Since

(2.9) tµ,ν(z) = z −
∞∑

n=2

1(
µ−ν+3

2

)
n−1

(
µ+ν+3

2

)
n−1

zn;
µ± ν + 1

2
/∈ Z−,

then by using Lemma 2.1, togehter with the same techniques of Theorem 2.3,
we complete the proof.

Theorem 2.5. If µ > ν − 3, then the condition

(2.10) (1− β + 2βγ)s′′µ+2,ν(1) + 2(3βγ − αβγ − β + 1)s′µ+2,ν(1)

+2βγ(1− α)sµ+2,ν(1) ≤
8βγ(1− α)

(µ− ν + 3)(µ+ ν + 3)

suffices that sµ,ν(z) ∈ K(α, β, γ).

Proof. By virtue of (i) in Lemma 2.2, it is suffices to show that

∞∑
n=2

n[n− 1 + β(1− n+ 2γn− 2γα)]
1(

µ−ν+3
2

)
n−1

(
µ+ν+3

2

)
n−1

≤ 2βγ(1− α).
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By simple computation, we have

G(α, β, γ;µ, ν)

=
∞∑

n=2

n[n− 1 + β(1− n+ 2γn− 2γα)]
1(

µ−ν+3
2

)
n−1

(
µ+ν+3

2

)
n−1

=

∞∑
n=0

(n+ 2)[n+ 1 + β(−1− n+ 2γn+ 4γ − 2γα)]
1(

µ−ν+3
2

)
n+1

(
µ+ν+3

2

)
n+1

=
∞∑

n=0

[(1− β + 2βγ)(n+ 1)(n) + 2(1− β + 3βγ − αβγ)(n+ 1)

+ 2βγ(1− α)]
1(

µ−ν+3
2

)
n+1

(
µ+ν+3

2

)
n+1

=
1(

µ−ν+3
2

) (
µ+ν+3

2

) [(1− β + 2βγ)s′′µ+2,ν(1)

+2(1− β + 3βγ − αβγ)s′µ+2,ν(1) + 2βγ(1− α)sµ+2,ν(1)
]
.

Thus, we see that the last expression is bounded above by 2βγ(1 − α) if
(2.10) is satisfied. Hence, the proof.

Theorem 2.6. For µ > ν − 3,

(2.11) (1− β + 2βγ)t′′µ+2,ν(1) + 2(3βγ − αβγ − β + 1)t′µ+2,ν(1)

+2βγ(1− α)tµ+2,ν(1) ≤
8βγ(1− α)

(µ− ν + 3)(µ+ ν + 3)
,

is the necessary and sufficient condition for tµ,ν(z) to be in the class C(α, β, γ).

Putting γ = 1 in Theorems 2.4 and 2.6, we obtain the following corollaries.

Corollary 2.7. The function tµ,ν(z) is a starlike function of order α(0 ≤ α <
1) and type β(0 < β ≤ 1), if and only if

(1 + β)t′µ+2,ν(1) + 2β(1− α)tµ+2,ν(1) ≤
8β(1− α)

(µ− ν + 3)(µ+ ν + 3)
.

Corollary 2.8. The function tµ,ν(z) is a convex function of order α(0 ≤ α < 1)
and type β(0 < β ≤ 1), if and only if

(1 + β)t′′µ+2,ν(1) + 2(2β − αβ + 1)t′µ+2,ν(1)

+2β(1− α)tµ+2,ν(1) ≤
8β(1− α)

(µ− ν + 3)(µ+ ν + 3)
.
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3 Characterizations on Struve Functions

Taking µ = ν in Theorems 2.3-2.6, we obtain the corresponding results of
Struve function hν .

Theorem 3.1. If ν > − 1
2 , then the condition

(3.1) (1− β + 2βγ)h′ν+2(1) + 2βγ(1− α)hν+2(1) ≤
8βγ(1− α)

3(2ν + 3)

suffices that hν(z) ∈ S(α, β, γ), where

(3.2) hν(z) := hν(z) ∗ f0(z) = z +
∞∑

n=2

1(
3
2

)
n−1

(
ν + 3

2

)
n−1

zn+1

(
ν > −1

2

)
.

Theorem 3.2. For ν > − 3
2 ,

(3.3) (1− β + 2βγ)�′ν+2(1) + 2βγ(1− α)�ν+2(1) ≤
8βγ(1− α)

3(2ν + 3)
,

is the necessary and sufficient condition for �ν(z) to be in the class T ∗(α, β, γ),
where

(3.4) �ν(z) := (hν(z) ∗ f1(z)) = z −
∞∑

n=2

1(
3
2

)
n−1

(
ν + 3

2

)
n−1

zn+1

(
ν > −1

2

)
.

Theorem 3.3. If ν > − 3
2 , then the condition

(3.5) (1− β + 2βγ)h′′ν+2(1) + 2(3βγ − αβγ − β + 1)h′ν+2(1)

+2βγ(1− α)hν+2(1) ≤
8βγ(1− α)

3(2ν + 3)

suffices that hν(z) ∈ K(α, β, γ).

Theorem 3.4. For ν > − 3
2 ,

(3.6) (1− β + 2βγ)�′′ν+2(1) + 2(3βγ − αβγ − β + 1)�′ν+2(1)

+2βγ(1− α)�ν+2(1) ≤
8βγ(1− α)

3(2ν + 3)

is the necessary and sufficient condition for �ν(z) to be in the class C(α, β, γ).

Putting γ = 1 in Theorem 3.2 and 3.4, we have the following corollaries.

Corollary 3.5. The function �ν(z) is a starlike function of order α(0 ≤ α < 1)
and type β(0 < β ≤ 1) if and only if

(1 + β)�′ν+2(1) + 2β(1− α)�ν+2(1) ≤
8β(1− α)

3(2ν + 3)
.

Corollary 3.6. The function �ν(z) is a convex function of order α(0 ≤ α < 1)
and type β(0 < β ≤ 1) if and only if

(1 + β)�′′ν+2(1) + 2(2β − αβ + 1)�′ν+2(1) + 2β(1− α)�ν+2(1) ≤
8β(1− α)

3(2ν + 3)
.
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4 Characterizations on Bessel Functions

Taking µ = ν−1 in Theorems 2.3-2.6, then we obtain the corresponding results
of Bessel function jν as following:

Theorem 4.1. If ν > −1, then the condition

(4.1) (1− β + 2βγ)j′ν+1(1) + 2βγ(1− α)jν+1(1) ≤
2βγ(1− α)

(ν + 1)

suffices that jν(z) ∈ S(α, β, γ), where

(4.2) jν(z) := jν(z) ∗ f0(z) = z +
∞∑

n=2

1

(1)n−1(ν + 1)n−1
zn(ν > −1).

Theorem 4.2. For ν > −1,

(4.3) (1− β + 2βγ)′ν+1(1) + 2βγ(1− α)ν+1(1) ≤
2βγ(1− α)

(ν + 1)
,

is the necessary and sufficient condition for ν(z) to be in the class T ∗(α, β, γ),
where

(4.4) ν(z) := jν(z) ∗ f1(z) = z −
∞∑

n=2

1

(1)n−1(ν + 1)n−1
zn(ν > −1).

Theorem 4.3. If ν > −1, then the condition

(4.5) (1− β + 2βγ)j′′ν+1(1) + 2(3βγ − αβγ − β + 1)j′ν+1(1)

+2βγ(1− α)jν+1(1) ≤
2βγ(1− α)

(ν + 1)

suffices that jν(z) ∈ K(α, β, γ).

Theorem 4.4. For ν > −1,

(4.6) (1− β + 2βγ)′′ν+1(1) + 2(3βγ − αβγ − β + 1)′ν+1(1)

+2βγ(1− α)ν+1(1) ≤
2βγ(1− α)

(ν + 1)

is the necessary and sufficient condition for ν(z) to be in the class C(α, β, γ).

Putting γ = 1 in Theorems 4.2 and 4.4, we obtain the following corollaries.

Corollary 4.5. The function ν(z) is a starlike function of order α(0 ≤ α < 1)
and type β(0 < β ≤ 1), if and only if

(1 + β)′ν+1(1) + 2β(1− α)ν+1(1) ≤
2β(1− α)

(ν + 1)
.
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Corollary 4.6. The function ν(z) is a convex function of order α(0 ≤ α < 1)
and type β(0 < β ≤ 1), if and only if

(1 + β)′′ν+1(1) + 2(2β − αβ + 1)′ν+1(1) + 2β(1− α)ν+1(1) ≤
2β(1− α)

(ν + 1)
.
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Abstract: Mushroom is a reproductive structure produced by some fungi that has a high level of protein 
and a rich source of vitamin B. It aids in the prevention of cancer, weight loss, and immune system 
enhancement. There are numerous thousands of mushroom species within the world and a 
few are edible and a few are noxious due to noteworthy poisons on them. Hence, it is a vital errand to 
distinguish between edible and harmful mushrooms. This paper focuses on comparing the performance of 
two tree-based classification algorithms, Random Forest and Reduced Error Pruning (REP) Tree, for the 
classification of edible and poisonous mushrooms. In this paper, mushroom dataset from UCI machine 
learning repository has been classified using Random Forest and REP Tree classifiers. The evaluation of 
these two algorithms using accuracy, precision, recall and F-measure shows that the Random Forest 
outperforms REP Tree algorithm with value of 100% for accuracy, precision, recall and F- measure. The 
performance of Random Forest is 100% and is better with respect to REP Tree classifier. 
 

Keywords: Mushroom Dataset, Random Forest, REP Tree, 10-fold cross-validation Confusion 
Matrix. 
 
1. Introduction 

 

Classification is a supervised machine learning technique that categorizes a data instance in a dataset into 
a predefined class. Classification algorithms require labeled data set that learn how to assign a class label 
to the data given to the algorithm after learning. There are many different classification tasks and many 
different classification algorithms that may be used for classification problems. Each class in the dataset is 
assigned a label and the main use of classification is to predict the class labels. “Data classification is a 
two-step process, consisting of a learning step (where a classification model is constructed) and a 
classification step (where the model is used to predict class labels for given data)” [5]. 
 

As of late, numerous distinctive calculations are utilized in classification and numerous analysts have 
done their investigation to classify noxious and edible mushrooms utilizing distinctive 
classification calculations on mushroom dataset. The known species of mushroom are roughly 14,000 in 
the world and there are 2000 edible species. Among these edible mushrooms, approximately 200 are wild 
species [9]. 
 

This study focuses on comparing two tree-based classification algorithms Random Forest [2],[6],[10] and 
REP Tree [8],[13],[18] for the classification of edible and poisonous mushrooms based on mushroom 
datasets [14]. These algorithms have been evaluated based four performance evaluation parameters 
accuracy, precision, recall and F-measure. Finally, the comparison of these algorithms has been made in 
order to decide the better algorithm for mushroom classification. 
 

2. Literature Review 
 

There are different researches for mushroom classification that use different classification algorithms to 
classify poisonous and edible mushrooms. 


