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previous years. The reasons could include deteriorating quality of schooling, increased opportunities 
abroad, or other competing fields attracting talent. Nonetheless, the data signals the need for 
interventions to boost interest in engineering and bolster high school teaching and resources. 
Addressing these gaps proactively through counselling, upgraded curriculum, teacher training, etc. 
can help reverse the concerning enrolment patterns. More effective high school preparation will 
translate into increased applicants and better performance. 

This paper aims to bridge the existing knowledge gap between high school and engineering 
education by developing predictive models based on high school academic records. The scope 
includes students applying for engineering programs at the Institute of Engineering under Tribhuvan 
University. The objectives are to predict entrance exam scores and admission probability using 
machine learning techniques. The research questions are: 1) How accurately can high school 
performance predict engineering entrance outcomes? 2) What are the capabilities of different machine 
learning models for this predictive task? Machine learning techniques like logistic regression and 
LSTM networks are applied to high school and entrance datasets to uncover patterns and trends that 
can enable data-driven decision-making around admissions. 

Data mining, also known as knowledge discovery in databases (KDD), employs a multitude 
of techniques and algorithms to extract valuable insights from vast datasets. When applied to the 
educational domain, termed as "educational data mining," these techniques can unveil patterns and 
correlations previously unseen. Algorithms such as decision trees, neural networks, linear regression, 
and random forests are particularly adept at predicting outcomes based on historical data, enabling 
educational stakeholders to anticipate student performance trends and act proactively. 

For instance, a student's performance in high school, analysed holistically across various 
parameters-grade-wise and subject-wise results, demographics, school type, and more-can serve as a 
predictive indicator of their potential success in higher education. Especially in contexts where high 
school graduates aspire for competitive admissions in tertiary institutions, such predictive models can 
be invaluable. As a case in point, for admissions to engineering programs under Tribhuvan University, 
students are assessed through a rigorous computer-based entrance examination by the Institute of 
Engineering, which evaluates proficiency in subjects like Mathematics, Physics, Chemistry, and 
English, all grounded in the high school curriculum. Thus, a student's high school academic record 
becomes a significant predictor of their entrance score and subsequent success in the program. 

This paper aims to bridge the existing knowledge gap between high school and engineering 
education by developing a predictive model based on high school academic records. Such a model can 
assist in identifying students at risk, guiding admission decisions, and formulating strategies to ensure 
every student's optimal academic progression. 

2. Background Study 

Predicting student entrance scores based on prior academic performance utilizes information 
extraction. Analysing student data, including exam scores, enables institutions to develop predictive 
models for identifying students needing extra support. Educational data mining explores predictive models 
for academic performance using machine learning techniques (Chen et al.,[2]). Educational institutions are 
amassing extensive datasets encompassing student activities, attendance patterns, geographical locations, 
family backgrounds, and more. Nevertheless, this wealth of data typically gets harnessed for generating 
basic queries and conventional reports that seldom reach the appropriate individuals in a timely manner to 
enable informed decision-making (Kabakchieva, [8]). Dien et al. study deep learning methods for student 
performance prediction, considering data preprocessing strategies (Dien et al., [4]). In Nepal, research 
explores hyper-parameter tuning for student grade prediction using neural networks (Rimal et al., [14]). 
GPA prediction employs Boruta algorithm and random forest with single and multiple-layer models. 
Artificial neural networks forecast student performance. Educational data mining evaluates classification 
algorithms for student success prediction(Gochhait & Rimal, [7]; Meghji et al., [10]; Naser et al., [11]). 
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where g(t) is trend, s(t) is seasonality, h(t) is holidays, and e(t) is noiseKey estimated parameters as,  
slope k = 0.01304175, intercept m = 1.02369371,noise sigma_obs = 0.00457194. 

 

Prophet automatically detected change points in the time series and modelled trend nonlinearity.It 
incorporated uncertainty estimates in its forecasts. The effects of holidays were captured using additional 
delta parameters in the model. Regularization helped avoid overfitting the training data. Overall, the three 
complementary models provided insights into exam outcomes, score patterns, and temporal trends. 

4. Results and Discussion 

The analysis demonstrated the capability of machine learning techniques for predictive modelling 
of engineering entrance exam outcomes. Correlation analysis using heatmaps revealed entrance scores are 
positively associated with high school grades. Heatmap showed entrance exam scores correlated positively 
with SEE (0.43) and PCL (0.39) results. Entrance math score had very strong correlation (0.89) with final 
entrance score, while PCL math correlation was weaker (0.19).Logistic regression achieved high accuracy 
of 97% in classifying pass versus fail status, as evidenced by ROC curve, precision and recall metrics. 
LSTM networks attained reasonable accuracy levels between 65-85% for forecasting entrance scores on a 
yearly basis, though performance declined in later years likely due to irrelevant training data and potential 
COVID-19 impacts. 

Facebook Prophet excelled at forecasting decreasing temporal trends in both the entrance score 
threshold and average scores of admitted candidates based on historical data. Prophet model accurately 
forecasted decreasing trend in entrance score thresholds, from 52 in 2017 to 38 in 2022.Prophet also 
predicted declining trend in average scores of eligible candidates, from 69.60 in 2017 to 61.71 in 2022.For 
threshold forecasting, Prophet model achieved MAE of 3.279, MSE of 13.820, and RMSE of 3.717.For 
average score forecasting, Prophet model obtained MAE of 2.694, MSE of 8.484, and RMSE of 
2.912.Prophet obtained mean absolute errors around 3 for threshold and 2.7 for average score predictions. 
Overall, the complementarity of logistic regression, LSTM and Prophet models provided insights into 
student outcomes, complex score patterns, and changing trends to support data-driven decision making 
around admissions. 
Logistic Regression 

Table 1. Confusion matrix for performance of Logistic Regression model 

 Predicted (Yes) Predicted (No) 
Actual (Yes) TP=1495 FN=40 
Actual (No) FP=27 TN=780 

 

Figure 3 AUC ROC curve for performance of Logistic Regression 
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Figure 4. Iteration wise precision and accuracy curve for performance of Logistic Regression 

Figure 4 depicts precision over training iterations for the logistic regression model, showing a 
high precision consistently maintained between 0.97-0.99. This highlights the model's capability for 
accurate positive predictions throughout the training process. A flat accuracy line of 0.97 across 
iterations, indicating an unchanging high accuracy rapidly attained within the first few iterations, 
without improvement from extended training. 

LSTM 

Table 2 Actual and predicted (using LSTM) values of entrance score for randomly selected students 

SN Actual Entrance Score (A) Predicted Entrance Score (P) Ratio = P/A 
1 103 77.88 0.756 
2 61.9 51.28 0.828 
3 79.5 62.6 0.787 
4 46.5 44.04 0.947 
5 89 73.65 0.827 
6 113.5 98.07 0.864 
7 129 98.97 0.767 
8 99.5 84.15 0.845 

 

 

Figure 5 Plot of actual and predicted values of entrance score from table 2 
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Figure 5 plots the actual versus predicted entrance scores for 8 sample students to demonstrate the 

LSTM model's score forecasting capability. The predicted scores align fairly closely to the actual values, 

with some minor variability. This indicates the LSTM network can reasonably predict entrance exam 

performance for individual students based on their academic history, though some variance persists 

between actual and predicted scores. 

 

Figure 6 Prediction Plot: Prediction Values & actual values using LSTM 

Figure 6 visually evaluates the trained LSTM model's overall predictive accuracy on the test set 
through a regression plot. The tight fit of predicted scores to the ideal y = x line and high R-squared of 0.89 
highlight excellent correlation between true and predicted outcomes. This shows the LSTM model attains 
strong predictive capabilities, able to generalize well to new unseen data. 

 

Prophet 

Table 3 Historical records of year wise Threshold Score and Average Score of Eligible Applicants 

Year 2017 2018 2019 2020 2021 2022 

No of Applicants 12309 11184 NA 12708 11037 9404 
No of Eligible Candidates 6377 6335 NA 6725 6879 6722 
Entrance Threshold Score 52 49 NA 46 42 38 
Average Score of Eligible Candidates 69.60 68.42 NA 65.98 64.52 61.71 

 

Figure 7 Trend of Entrance Threshold Score as forecasted by Prophet Model 
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