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Abstract: The Elzaki Transform Homotopy Perturbation Method (ETHPM), a modified computational 
technique, is used in this article to solve the time-fractional reaction-diffusion equation that emerges in 
porous media. Herein fractional-order derivatives are considered in Caputo sense. To show how simple 
and effective the suggested method is, some specific and understandable examples are provided. The 
numerical results produced by the suggested technique show that the method is accurate and easy to use. 
The graphical illustrations of the approximate solutions to the porous media equation for different 
particular cases are the key characteristics of the current research. The solution obtained is very useful 
and significant to analyze the many physical phenomena.  
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1. Introduction 

Numerous problems in the real world have been solved using the theory and fundamental concepts of 
fractional calculus. As an extension of the conventional integer-order differential equations, fractional-
order differential equations are being utilized more often to describe problems in the domains of 
engineering, mechanics, fluid flow, biology, and physics. Fractional partial differential equations (FPDEs) 
are widely used in science and engineering, and as a result, research on FPDEs has grown significantly 
over the past several decades. The theory of fractional partial differential equations can be used to more 
accurately and systematically translate real-world problems. A novel automated brain segmentation 
technique for magnetic resonance imaging was developed by Ahlgren et al. [1] employing fractional 
signal modeling of a spoiled gradient-recalled echo (SPGR) sequence acquired at different flip angles. 
Sun et al. [2] presented fractional and fractal derivative models for temporary anomalous diffusion. Here, 
four models are thoroughly compared with one another. In order to solve the time-fractional Navier-
Stokes equation in a tube, Kumar et al. [3] devised a unique homotopy perturbation transform method. 
Murio [4] suggested an implicit unconditionally stable numerical strategy to address the one-dimensional 
linear time-fractional diffusion issue. The fractional-order diffusion equations were solved by Shah et al. 
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[5] using the Natural transform decomposition technique. The best approach for q-homotopy analysis was 
used by Darzi et al. [6] to solve partial differential equations with time-fractional derivatives. A space-
time fractional order non-linear Cahn-Hilliard issue was resolved by Pandey et al. [7] using an operational 
matrix approach and Laguerre polynomials. Pandey et al. [8] recommended an effective Laguerre 
collocation technique to generate the approximate order non-linear reaction-advection-diffusion 
equations. The first basic solutions of general fractional-order diffusion equations within the negative 
Prabhakar kernel were taken into consideration by Yang et al. [9]. The symmetry analysis approach to 
determine the symmetry of the time-fractional diffusion equation has been covered by Liu et al. [10].  

As a chemical moves from a zone of high concentration to one of low concentration, the diffusion process 
takes place. The dynamics of density profiles during the diffusion of a material are depicted by the 
diffusion type equation, which is a partial differential equation [11]. Fractional reaction-diffusion 
equations may be used to describe both shallow water waves in seas and ion-acoustic waves in plasma. 

The present study deals with the following time- fraction reaction-diffusion equation which arises in 
porous media [12] 

��

��� χ(ζ, τ) = D ���
���� χ(ζ, τ) − ςχ� ���

���� χ�(ζ, τ) + kχ(1 − χ) + f(ζ, τ) ,                                                      (1) 

Where 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ 1,  0 < 𝜌𝜌 ≤ 1, α� > 1, α� ≥ 2; with IC 

χ(ζ, 0) = χ�(ζ).                                                                                                                                           (2) 

Here, 𝜒𝜒(𝜁𝜁, 𝜁𝜁) is a state variable and describes the concentration of a substance/solute profile, D denotes 
the diffusion coefficient, average velocity of fluid is denoted by ς > 0, 𝑘𝑘 denotes the reaction coefficient 
and 𝑚𝑚, 𝑚𝑚 are integers. 

Here we will be applying ETHPM to find the approximate numerical solution of time-fractional reaction-
diffusion equation (1)-(2). The correctness and effectiveness of the provided technique are demonstrated 
by the three test examples. 

2. Basic definitions of fractional calculus and Elzaki Transform 

In this section, we present some basic definitions of fractional calculus that will be incorporated into this 
study, as follows [13-15].  

Definition 1. A real function  𝑓𝑓(𝑓𝑓) , 𝑓𝑓 > 0 is said to be in the space 𝐶𝐶� if 𝜇𝜇 𝜇 𝜇𝜇, there exists a real number 
𝑝𝑝 > 𝜇𝜇 and the function 𝑓𝑓�(𝑓𝑓) 𝜇 𝐶𝐶𝑡0, 𝑡) such that 𝑓𝑓(𝑓𝑓) = 𝑓𝑓�𝑓𝑓�(𝑓𝑓). Moreover, if  

𝑓𝑓(�) 𝜇 𝐶𝐶�, then 𝑓𝑓(𝑓𝑓) is said to be in the space 𝐶𝐶��,𝑚𝑚 𝜇 𝑛𝑛.  

Definition 2. The Riemann-Liouville fractional integral of order 𝛼𝛼 ≥ 0 for a function 𝑓𝑓(𝑓𝑓) is defined as  

I�𝑓𝑓(𝑓𝑓) =
⎩
⎨
⎧ 1

Γ(α) �(𝑓𝑓 − 𝜁𝜁)���𝑓𝑓(𝜁𝜁)𝑑𝑑𝜁𝜁,             𝛼𝛼 > 0
�

�
     𝑓𝑓(𝑓𝑓),                                                 𝛼𝛼 = 0     

 

Where Γ(∙) denotes the Gamma function. 
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Definition 3. The Riemann-Liouville fractional derivative of order 𝛼𝛼 𝛼 𝛼 for a function 𝑓𝑓𝑓𝑓𝑓𝑓 is defined as  

 D�𝑓𝑓𝑓𝑓𝑓𝑓 = ��

��� 𝐼𝐼���𝑓𝑓𝑓𝑓𝑓𝑓,  

                = 𝐼𝐼��� ��

��� 𝑓𝑓𝑓𝑓𝑓𝑓,      𝑛𝑛 𝑛 𝑛𝑛, 𝑛𝑛 𝑛 𝑛 𝑛 𝛼𝛼 𝑛 𝑛𝑛𝑛                                                                   

Definition 4. The Caputo fractional derivative of order 𝛼𝛼 𝛼 𝛼 is defined as   

D�𝑓𝑓𝑓𝑓𝑓𝑓 = �
���𝑓�𝑓

���  ,                                        𝛼𝛼 = 𝑛𝑛,   𝑛𝑛 𝑛 𝑛𝑛
�

�𝑓���𝑓 � �𝑓�𝑓𝑓�𝑓
𝑓���𝑓����� 𝑑𝑑𝑑𝑑,     𝛼 𝑛 𝑛𝑛 𝑛 𝑛 𝑛 𝛼𝛼 𝑛 𝑛𝑛,�

�
                                                  

where 𝑛𝑛 is an integer, 𝑓𝑓 𝛼 𝛼 and 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛 𝐶𝐶��𝑛 

Definition 5. The Elzaki transform of 𝑓𝑓𝑓𝑓𝑓𝑓 is defined [16] as  

𝐸𝐸[𝑓𝑓𝑓𝑓𝑓𝑓] = 𝐸𝐸[𝑓𝑓𝑓𝑓𝑓𝑓, 𝑣𝑣] = 𝑇𝑇𝑓𝑣𝑣𝑓 = 𝑣𝑣 � 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓��
��

� 𝑑𝑑𝑓𝑓, 𝑑𝑑� 𝑛 𝑣𝑣 𝑛 𝑑𝑑�, 𝑑𝑑�,𝑑𝑑� 𝛼 𝛼, 𝛼 𝑛 𝑓𝑓 𝑛 𝑡,                     (3)   

where  𝑓𝑓𝑓𝑓𝑓𝑓 is taken from the set A, which is defined as  

A = �𝑓𝑓𝑓𝑓𝑓𝑓;  ∃ 𝑀𝑀, 𝑑𝑑� 𝛼 𝛼, 𝑗𝑗 = 𝑛, 𝑗, |𝑓𝑓𝑓𝑓𝑓𝑓|  𝑛 𝑀𝑀𝑓𝑓
|�|
��, 𝑖𝑖𝑓𝑓 𝑓𝑓 𝑛 𝑓𝑛𝑛𝑓� � [𝛼, 𝑡𝑓�,                                 (4) 

here, constant M must be a finite number, 𝑑𝑑� and 𝑑𝑑� may be finite or infinite. 

Using duality of Laplace [17], Elzaki transform of the Caputo fractional derivative (given in definition 4) 
of order 𝛼𝛼 𝛼 𝛼, can be obtained [18] and get as 

𝐸𝐸[𝐷𝐷�𝑓𝑓𝑓𝑓𝑓𝑓, 𝑣𝑣] = �𝑓�𝑓
�� 𝑛 ∑ 𝑣𝑣�����𝑓𝑓𝑓�𝑓𝑓𝛼𝑓,        𝑛𝑛 𝑛 𝑛 𝑛 𝛼𝛼 𝑛 𝑛𝑛,������                                                          (5) 

In Eq. (5), 𝑇𝑇𝑓𝑣𝑣𝑓 is the Elzaki transform of the function 𝑓𝑓𝑓𝑓𝑓𝑓. 

Elzaki transform has many useful and important properties like linear property, scale property, shifting 
property, duality with Laplace transform ,and so forth. Further detail and properties about this transform 
can be found in [16-19]. 

3. Elzaki Transform Homotopy Perturbation Method 

To illustrate the basic idea of this method, we consider a general form of nonlinear, non-homogeneous 
partial differential equation as follows: 

𝐷𝐷��𝑢𝑢𝑓𝑥𝑥, 𝑓𝑓𝑓 = 𝐿𝐿𝑢𝑢𝑓𝑥𝑥, 𝑓𝑓𝑓 + 𝑛𝑛𝑢𝑢𝑓𝑥𝑥, 𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑥𝑥, 𝑓𝑓𝑓, 𝛼𝛼 𝛼 𝛼                                                                                 (6)               

With the following initial conditions 

 𝐷𝐷��𝑢𝑢𝑓𝑥𝑥, 𝛼𝑓 = 𝑔𝑔� , 𝑑𝑑 = 𝛼, 𝑘 , 𝑛𝑛 𝑛 𝑛, 𝐷𝐷��𝑢𝑢𝑓𝑥𝑥, 𝛼𝑓 = 𝛼, and 𝑛𝑛 = ⌊𝛼𝛼⌋                                                            (7)                             

In eq. (6),  𝐷𝐷�� denotes without loss of generality the Caputo fractional derivative operator, L represents a 
linear differential operator, 𝑛𝑛 stands for nonlinear differential operator and 𝑓𝑓𝑓𝑥𝑥, 𝑓𝑓𝑓 is a known function. 

Taking Elzaki transform on both sides of eq. (6), to get   



34

Vinod Gill, Harsh Vardhan Harsh, & Tek B. Budhathoki  / Computational Analysis of Fractional Reaction …Vinod Gill , Harsh Vardhan Harsh,& Tek B. Budhathoki  / Computational Analysis of Fractional Reaction … 

 

34 
 

 𝐸𝐸[𝐷𝐷��𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] = 𝐸𝐸[𝐿𝐿𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] + 𝐸𝐸[𝑁𝑁𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] + 𝐸𝐸[𝐸𝐸(𝑥𝑥𝑥 𝑥𝑥)],                                                          (8)                             

Using the differentiation property of Elzaki transform[16-19] and above initial conditions, we have 

𝐸𝐸[𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] =  𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] + 𝑣𝑣�𝐸𝐸[𝑁𝑁𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] +  𝑔𝑔(𝑥𝑥𝑥 𝑥𝑥)                                                                        (9)                            

Applying the inverse Elzaki transform on both sides of eq. (9), we obtain 

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) =  𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) + 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] + 𝑣𝑣�𝐸𝐸[𝑁𝑁𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)]�                                                                   (10)              

Where 𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) represents the term arising from the known function 𝐸𝐸(𝑥𝑥𝑥 𝑥𝑥) and the prescribed initial 
condition. 

Now, we implement the homotopy perturbation method, (see [20-22]) 

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) =  ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥)����                                                                                                                       (11)                            

And the nonlinear term can be decomposed as  

𝑁𝑁[𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] =  ∑ 𝑝𝑝�𝐻𝐻�(𝑢𝑢)����                                                                                                                    (12)                            

Where 𝐻𝐻�(𝑢𝑢) are He’s polynomials (see, [23-24]) and given by 

𝐻𝐻�(𝑢𝑢� 𝑥 𝑢𝑢�𝑥 … 𝑥 𝑢𝑢� ) = �
��

��

��� �𝑁𝑁�∑ 𝑝𝑝�𝑢𝑢����� �����  𝑥     𝑛𝑛 = 𝑛𝑥 𝑛𝑥 𝑛𝑥 …                                                         (13)                         

Substituting equations (11) and (12) in equation (10), we get  

 ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥)���� =  𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) + 𝑝𝑝�𝐸𝐸��[𝑣𝑣�𝐸𝐸(𝐿𝐿 ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) +���� ∑ 𝑝𝑝�𝐻𝐻�(𝑢𝑢)���� )]�.                          (14)                      

This is the coupling of the Elzaki transform and the Homotopy perturbation method using He’s 
polynomials. Comparing the coefficients of like powers of 𝑝𝑝 in eq. (14) on both sides, we obtain the 
following approximations as 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢)]� 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢)]� 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢)]� 
………………………………………………………………….. 
 
 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝑢𝑢���(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻���(𝑢𝑢)]�.                                                                          

Similarly, we can find rest of the terms and hence, we obtain the desired series solution. Thus, we 

approximate the analytical solution 𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) as   

 𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) = lim��� ∑ 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥)���� .                                                                                                          (15)                              

The series solution (15) converges very fast in a very few terms. 
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4. Solution of the time-fractional Reaction-Diffusion Equations 

In this part of the article, we have solved some fractional order one-dimensional non-linear partial 
differential equations  that originate in porous media by using ETHPM as mentioned in section 3.   

Example 1. The following non-linear fractional order PDE has many uses in rotating flow of liquid in a 
tube, waves in plasma, etc.  

��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) + �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 0 𝜁    𝜁𝜁 𝜏 0𝜁0 𝜏 𝜁𝜁 𝜏 𝜏𝜁 0 𝜏 𝜏𝜏 𝜏 𝜏                                    (16)                      

with IC 

𝜒𝜒(𝜁𝜁𝜁 0) = 𝜁𝜁.                                                                                                                                           (17)           

On putting 𝜏𝜏 = 𝜏𝜁 then exact solution of (16) is 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = �
���. 

Applying the Elzaki transform on (16), get as 

𝐸𝐸 � ��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� + 𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� = 0,                                                                       

By using the results of Elzaki transform and simultaneously using IC (17), we get  

𝐸𝐸[𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)] − 𝑣𝑣�𝜁𝜁 + 𝑣𝑣�𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� = 0,                                                               (18)    

Employing inverse Elzaki transform on (18), it yields 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =  𝜁𝜁 − 𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)�� = 0,                                                            (19)    

Again incorporating the homotopy perturbation method, (see [20, 21, 22]) 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =  ∑ 𝑝𝑝�𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)∞���                                                                                                                  (20)          

And the decomposition of nonlinear term as  

𝑁𝑁[𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)] =  ∑ 𝑝𝑝�𝐻𝐻�(𝜒𝜒)∞���                                                                                                               (21)          

Substituting (20) and (21), in (19), it reduces to  

 ∑ 𝑝𝑝�𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)∞��� =   𝜁𝜁 − 𝑝𝑝 �𝐸𝐸�� �𝑣𝑣�𝐸𝐸 �∑ 𝑝𝑝�𝐻𝐻�(𝜒𝜒)∞��� − ��(∑ ����(�𝜁�)∞��� )
����� ��� ,                             (22)         

Where 𝐻𝐻�(𝜒𝜒) are He’s polynomials (see, [23, 24]). Some He’s polynomials factors are  

 𝐻𝐻�(𝜒𝜒) = �
�� ����(�𝜁�)

� � 

𝐻𝐻�(𝜒𝜒) = �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)�  

𝐻𝐻�(𝜒𝜒) = �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) + ���(�𝜁�)

� �  

………………………………………………………………….. 
 
Comparing the coefficients of like powers of 𝑝𝑝 in eq. (22), its yields 
𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 𝜁  
𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �

�� ����(�𝜁�)
� � − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��𝜁  
On little simplification, we get  



36

Vinod Gill, Harsh Vardhan Harsh, & Tek B. Budhathoki  / Computational Analysis of Fractional Reaction …Vinod Gill , Harsh Vardhan Harsh,& Tek B. Budhathoki  / Computational Analysis of Fractional Reaction … 

 

36 
 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = − ���

�(���) ,  

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)� − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��𝜁  
On putting previously obtained value and after that little simplification, get as 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = �����

�(����) 𝜁   

Similarly 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) + ���(�𝜁�)

� � − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��𝜁  
On putting previously obtained value and after that little simplification, get as 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝜁𝜁 �4 + �(����)
��(���)��� ���

�(����) 𝜁  
………………………………………………………………….. 
 
Using the same procedure, we can extract more values, and by substituting the aforementioned values in 
(15), we get an approximate solution in the form of a series 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 − ���

�(���) + �����

�(����) − 𝜁𝜁 �4 + �(����)
��(���)��� ���

�(����)+….                                                         (23)         

Putting 𝜌𝜌 = 𝜌 in (23), we get 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 − 𝜁𝜁𝜁𝜁 + 𝜁𝜁𝜁𝜁� − 𝜁𝜁𝜁𝜁� + ⋯.                                                                                                   (24)     

This is identical to exact solution  

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = �
���.                                                                                                                                      (25)      

Example 2. Taking a non-linear fractional order PDE which is a specific occurrence(non-conservative 
case 𝒌𝒌 𝒌 𝒌𝒌) of our concern equation i.e. (1).  

On putting D = ς = 𝛼𝛼� = 𝑘𝑘 = 𝜌 and 𝛼𝛼� = 𝜌.5  in (1), it reduces into  

��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = ��.�

���.� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) − �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)� + �𝜌 − 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)�𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)𝜁                                                    (26)   

with the initial condition 𝜒𝜒(𝜁𝜁𝜁 𝜁) = 𝜁𝜁�. Jointly with this IC the exact solution of (26) is 

 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁� + 𝜁𝜁�.      
On using the computational technique (given in section 3) as applied for getting the solution of Example 
1, obtain the coefficients of power of 𝑝𝑝 as below 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁�𝜁 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ����
√� + 𝜁𝜁� − 4𝜁𝜁� − 𝜁𝜁�� ��

�(���) , 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ����
√� − ��

√� 𝜁𝜁
�
� − ��

�√� 𝜁𝜁
�
� + 𝜁𝜁� − 𝜌2𝜁𝜁� + 37𝜁𝜁� + 2𝜁𝜁𝜁� + 6𝜁𝜁�� ���

�(����) 𝜁     

      ………………………………………………………………….. 
 
Similar obtain further values; on putting these obtained values in (15), get solution of (26), in series form  
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𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁� + 𝜁𝜁� − ����√� + 𝜁𝜁� − 4𝜁𝜁� − 𝜁𝜁�� ��
�(���) + ����√� − ��

√� 𝜁𝜁
�
� − ��

�√� 𝜁𝜁
�
� + 𝜁𝜁� − 12𝜁𝜁� + 37𝜁𝜁� +

20𝜁𝜁� + 6𝜁𝜁�� ���
�(����) + ⋯.                                                                                                                   (27) 

Example 3. Taking a non-linear fractional order PDE which is a specific occurrence(conservative case 
𝒌𝒌 = 𝒌𝒌) of our concern equation i.e. (1).  

On putting D = ς = 𝛼𝛼� = 1 and 𝛼𝛼� = 1.5𝜁 𝑘𝑘 = 0𝜁𝑘𝑘 = 0𝜁 𝑘𝑘 = 2𝑘𝑘𝑘𝑘(1)𝜁 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 
��
��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =

��.�
���.� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) −

�
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)�𝜁                                                                                           (28) 

With the initial condition 𝜒𝜒(𝜁𝜁𝜁 0) = 𝜁𝜁 − 𝜁𝜁�.  

On using the computational technique (given in section 3) as applied for solution of Example 1, get the 
coefficients of power of 𝑝𝑝 as  

 𝑝𝑝�:𝑘𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 − 𝜁𝜁�𝜁 

 𝑝𝑝�:𝑘𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = �− ���
√� − 2𝜁𝜁 + 6𝜁𝜁� − 4𝜁𝜁�� ��

�(���) , 

 𝑝𝑝�:𝑘𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ���√��𝜁𝜁 −
��
√� 𝜁𝜁

�
� + 4𝜁𝜁 − 40𝜁𝜁� + 80𝜁𝜁� − 40𝜁𝜁�� ���

�(����)𝑘𝜁    
………………………………………………………………….. 
 
Similar obtain further values; on putting these obtained values in (15), get solution of (28), in series form 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 − 𝜁𝜁� + �− ���
√� − 2𝜁𝜁 + 6𝜁𝜁� − 4𝜁𝜁�� ��

�(���) 

                                               +���√� �𝜁𝜁 −
��
√� 𝜁𝜁

�
� + 4𝜁𝜁 − 40𝜁𝜁� + 80𝜁𝜁� − 40𝜁𝜁�� ���

�(����) + ⋯.           (29) 

 
5. Graphical Analysis of the Approximate Results 

In this section we are presenting some graphical analysis of the obtained approximate results as 

 
Fig. 1: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 = 0.5 

Fig. 2: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 = 0.7 
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Fig. 3: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 𝜌 𝜌 

Fig. 4: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 2, when 𝜌𝜌 𝜌 𝜌 

 

 

 

Fig. 5: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌𝜌𝜌 

 

 

 

 

 

Fig. 6: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌𝜌𝜌 
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Fig. 7: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌 
 

 
 

Fig. 8: The behavior of Solute concentration 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) vs. 𝜁𝜁 at 𝜁𝜁 𝜌 𝜌𝜁 for different values of 𝜌𝜌 for 
Example 3 

It has been observed from all graphs that the fractional order is better to describe the solution of the time-
fractional Reaction-Diffusion Equations, and give a free hand to adjust and control accordingly. 
 

6. Conclusion 

The major objective of this study is to demonstrate the usefulness of the combination of the homotopy 

perturbation technique and the novel integral transform "Elzaki transform" for obtaining both approximate and 

accurate solutions for nonlinear time-fractional reaction-diffusion equations. Graphs for different fractional 

order have been plotted to examine the various effects on solute concentration. The numerical result shows that 

the method used is very simple and straightforward to implement. Our findings provide interesting unifications 

and extensions of many results, hither to scattered in the literature. At the end, we can conclude that the 

ETHPM has nice refinement in all numerical methods and it can be used in solving many real world-problems. 
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