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Abstract:  Hypergeometric functions are transcendental functions that are applicable in various 
branches of mathematics, physics, and engineering. They are solutions to a class of differential equations 
called hypergeometric differential equations. Kummer obtained six solutions for the hypergeometric 
differential equation and twenty connection formulae. This research work has extended those connection 
formulas to other six solutions ),(),(),(),(),( 54321 xyxyxyxyxy and )(6 xy to show that each solution 

can be expressed in terms of linear relationship among three of the other solutions. 
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1. Introduction and Motivation 

Before Proceeding with the main work, we shall now introduce some basic notations,definitions and 
preliminaries that are used in this paper. 

 

1.1 Hypergeometric Function[12] 

The Gaussian hypergeometric function );;,(12 xcbaF  is a special function represented by the 
hypergeometric series,  
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Where na)(  is called the Pochhammer  symbol and is defined as  
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(ii)   ,10 a for oa        

If the value of a,b,c Z+ in (1.1.1) then it is convergent for 1z [13] and if ,a and b are the positive 

integers, }1,...,1,0{  ac and }1,...,1,0{  bc , then the hypergeometric series (1.1.1) is a  
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polynomial of degree a or b , If c = a and b = c then it is not possible to define );;,(12 zcbaF [3]. In this 

case, 

);;,(12 xcbaF = k

k
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 = bx  )1(    …(1.1.3) 

If ,0)Re(  bac 0)Re()Re(  bc in (1.1.1) then it can be expressed in the form of gamma 
function through the Guass Kummer identity; 
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     … (1.1.4) 

The series (1.1.1) is a solution of a second-order linear ordinary hypergeometric differential equation 
known as Guass Hypergeometric differential equation[12],  

0'))1(('')1(  abyyxbacyxx     …(1.1.5) 

1.2 The solutions at the singularities 

The equation (1.1.5) has a regular singularity at ,0x 1, and infinity [5, 16]. The table given below, 
commonly known as Riemann Scheme table, shows the of local exponents of the hypergeometric 
differential equations at the variate values of x 

x = 0 x =1 x =  
0 0 a

1c c  a  b b
 

According to Riemann scheme, the difference of the local exponent is not an integer. This condition is 
called the generic condition. In this condition the fundamental system of solutions are defined at each 
singular points.[4]. The fundamental solutions of this differential equation in different singular points are 
as below.[2] 

(i) For singularity at 0x , 

);;,()( 121 xcbaFxy                   … (1.2.1) 

and );2;1,1()( 12
1

2 xccbcaFxxy c                               …(1.2.2) 

(ii) For singularity at ,1x  

)1;1;,()( 123 xcbabaFxy                    …(1.2.3) 

         and )1;1;,()( 124 xbacbcacFxzy bac       …(1.2.4) 

(iii) For singularity at ,x  

)1;1;1,()( 125 x
bacaaFxxy a          …(1.2.5) 

and  )1;1;1,()( 126 x
abcbbFxxy b                    …(1.2.6) 

1.3 Local Solutions and Connection formula 

These six solutions published by Kummer, has four forms related to one another by Euler transformation 
giving twenty four forms in total [11]. These twenty four solutions are known as Kummer’s solution of 
hypergeometric differential equation. For details, we refer [2, 8].  
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1.4 Connection Formulas 

The six formulas as mentioned by Kummer [2, 8] for three parameters a, b, c and combination of three 
solutions,[14,15] with the property (1.1.4) will give 2036 C connection formulae as the principle 
branches of Kummer’s solution[1, 2, 10]. They are listed as follows;  
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2. Research Objective 
  

In 1837, Kummer introduced the solution to the Kummer differential equation which is known as 

Confluent hypergeometric function. In the meantime he had discovered twenty four solutions for the 

same, which subsequently formed the twenty formulas as the branches of Kummer solution [13]. They are 

listed in relations (1.4.1-1.4.20). In this paper, our objective is to find the relations between any four sets 

of solutions and also to express any one of them as the linear combination of the other three solutions.  

 
3. Main Result 

In section 1.4, the connection formulas for six different solutions, each consisting of two different 
solutions are presented. The extension of connection formula refers to the combination of any three 
solutions for a given solution. Each extension formulas is obtained as the combination of three different 
solutions. The combination of six formulas taken four at a time constitute of 124

6 C solutions. The six 
extension of connection formula are already evaluated by Poudel et.al [9] The remaining six connection 
formulas will be obtained in this research paper. Those results are presented as follows. 
 

2.1 Extension formula 

1. 
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The proof of the above extension formulas are as follows; 

2.1 Derivation of the extension formula for (2.1.1) 

From (1.4.1) and (1.4.11), we get 
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This proves the extension formula (2.1.1). 

Applying the similar derivations from the given relations we obtain the formulae (2.1.2)-(2.1.6). From 
formulas (1.4.2) and (1.4.12), we get the connection formula for )(2 xy in(2.1.2), Similarly using the 

formulas (1.4.13) and (1.4.18) we get the connection formula for )(3 xy in (2.1.3),from (1.4.14) and 

(1.4.17), we get the connection formula for )(4 xy in(2.1.4), from (1.4.15) and (1.4.20), we get the 

connection formula for )(5 xy in (2.1.5) and finally from (1.4.6) and (1.4.10), we get the formula for 

)(6 xy in (2.1.6). 
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3. Conclusion 

The hypergeometric function is the solution of the Gaussian hypergeometric differential equation[1]. 
Kummer has obtained six solutions and twenty connecting formulas for the second-order hypergeometric 
differential equation. By the help of these formulas listed in (1.3.1-1.7.6) and (1.4.1-1.4.20) respectively, 
for the hypergeometric differential equation, we have obtained additional six extensions [(2.1.1)-(2.1.6)] 
of the connecting formulas for ),(1 xy )(2 xy ),(3 xy )(4 xy , xy (5 ) and )(6 xy . Every solution are 
expressed as the linear combination of other three solutions. These solutions are highly applicable in 
various branches of applied sciences. 
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