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Abstract: Let X and Y be real Banach spaces with duals X* and Y*, respectively. Let T: X = 2X and S:Y —
2Y"be maximal monotone operators. We discuss some known results on the maximality of the sum T + S
in the case X = Y and an important characterization of maximal monotone operators in general Banach
spaces. As our main result, we prove that the operator H:X XY = 2X Y defined by H(x,y) =
{(x*,y"):x" €Tx,y* € Sy}, x € X,y € Y}, is maximal monotone.
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1. Introduction

In what follows, X denotes a real Banach space with norm || || and X* denotes the dual space of X. The
evaluation of x* € X™ at x € X is denoted by (x*, x). Given a subset B of X, we denote its strong closure
and strong interior by cl B and int B, respectively. The effective domain of a set-valued (multivalued)

operator T: X — 2% " is defined as

D(T) = {x € X: Tx # ¢}
and the graph of T is defined as G(T) = {(x,x*) € X X X*":x* € Tx}.
A multivalued operator T: X — 2% is said to be monotone if for any x,y € D(T)
(x*—y*",x—y)=0forallx* € Tx,y* € Ty.
We say that T is maximal monotone if the graph of T has no proper monotone extension when X X X* is

partially ordered by the set inclusion. Equivalently, T is maximal monotone if for each (x,x*) € X X X*
such that

(x*—y*",x—y)=0forall (y,y*) € G(T),we have (x,x*) € G(T).

The theory of maximal monotone operators on real reflexive Banach spaces has been studied quite
extensively. For example, sufficient conditions on the operators on reflexive Banach spaces have been
studied for the sum of two maximal monotone to be maximal monotone (see, for example, [8]). We recall
that the sum of two monotone operators is always monotone but this property may fail to hold for maximal
monotonicity in general. The first result in this direction is given by Lescarret [6] for operators in Hilbert
spaces. In reflexive Banach spaces, Browder [3, 4] established such results when at least one addendum is
single-valued and maximal monotone. Specifically, if T; and T, are two monotone operators from X to X*
where T; is maximal, D(T,) = X, and T, is bounded single-valued and hemi continuous, then T; + T, is
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maximal monotone. Rockafellar [9] generalized the results of [3, 4] by studying the following two
conditions so that the sum T; + T, of two maximal monotone operators T; and T, from a reflexive real
Banach space X to its dual X* is maximal monotone:

D(T;) nint D(T,) = ¢,or there exists x Ecl D(T;) N ¢l D(T,) and T is locally bounded at x.

In the same context, Attouch [1] gave weaker condition in Hilbert spaces; namely, if 0 €
int(D (Ty)- D(TZ)), then T; + T, is a maximal monotone. This condition is weaker than the Rockafellar
condition D(T;) Nnint D(T,) # ¢ because

int D(T;) — D(T,) cint (D(Ty) - D(T,)).

Heisler’s result holds for nonreflexive Banach spaces. Specifically, the sum T; + T, of two maximal
monotone operators T; and T, defined from nonreflexive Banach space X to X* with D(T;) = D(T,) = X
is maximal monotone [11]. Several weaker sufficient conditions for such results in both reflexive and
general Banach spaces have been studied in recent years. The theory of maximal monotone operators on
nonreflexive Banach spaces is still developing. For further details on these topics, the reader is referred to
[1,2, 11].

In this paper, we study the maximality of an operator on the product space of two (possibly nonreflexive)
Banach spaces in terms of maximal monotone operators that are defined on the individual Banach spaces.
Specifically, given monotone operators T:X — 2% and S:Y — 2Y", we study the monotonicity and
maximal monotonicity of H:X x Y — 2X™*Y" defined by

H(x,y) = {(x*,y"):x* € Tx,y* € Sx}, x € D(T),y € D(S).
2. Preliminary Results

For any normed space X, a canonical mapping c: X — X™* is defined by c(x) = g, Vx € X. Here, for each
x € X, the linear functional g,:X* — R is given by g,(f) = f(x) for all f € X*. The canonical
mapping ¢ = g, is a linear isometry, and therefore c is an isomorphism from X onto its range R(C) € X**.
The weak* topology on X™ is defined below.

Definition 1. The weak™ topology is the smallest topology on X* which makes all the canonical mappings
Jx:X* = Rcontinuous. A set B € X* is an open set in the weak™ topology of X* if and only if for every
g € B thereexiste > 0and xq,x5,...,X, € X such that

{fex : (f-gx)| < e} cB.
We start with a classical compactness theorem (see [10]).

Theorem A (Banach-Alaoglu). The closed unit ball By = {x* € X*:||x"|| < 1} in X* is compact in its
weak” topology.

A net in X is a function defined on a directed set [ with values in X. If f : I — X is a net, then for each a
in I the at™ term f(a) of the net is denoted by x,, and the entire net is often denoted by (x,) 4e; Or simply

by (Xa)-

Example 1. Every sequence is a net with the directed set being N in its natural order.
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We next define the convergence of nets in topological spaces as in [7].

Definition 2. Let [ be a directed set with an ordering denoted by <. Let (x,)4e; be a net in a topological
space X and let x be an element of X. Then we say that (x,) converges to x, and x is called a limit point
of (x,) if for each neighborhood U of x, there is an ay in I such that x, € U whenever ay < a. This
convergence is expressed by writing x, — x or lim 4x, = x.

The following definition generalizes the notion of continuity in terms of net convergence in weak” topology.

Definition 3. Let X and Y be normed spaces and 7: X* — Y* an operator. Then 7 is said to be weak"-weak”
continuous on X* if lim,t(x;) = t(x*) for every net (x;) in X* that converges to x* € X*.

Definition 4. An operator T: X — 2% is said to be locally bounded at x € D(T) if there exists an open
neighborhood V' of x such that T (V') is bounded. If T is locally bounded at each point of U < D(T), then
T is said to be locally bounded on.

The following theorem addresses the local boundedness of monotone operators (see [9]).
Theorem B. Let T: X — 2% be monotone. Then T is locally bounded at each x € int D(T).

For multivalued operators, the notion of continuity is generally replaced with that of the upper
semicontinuity as defined below (e.g., see [5]).

Definition 5 (Upper Semi-continuity). Let X and Y be two linear topological spaces. A multivalued
operator T: X — 2Y is said to be upper semi-continuous if the set {x € X:Tx c U} is open in X whenever
UisopeninY .

Note that T : X — R is upper semicontinuous if and only if {x € X:Tx = a} is closed in D(T ) for every
a € R

We recall the following result from [5] that discusses sufficient conditions for a monotone operator to be
maximal monotone.

Theorem C. Let X be real Banach space and T : X — 2%~ a monotone operator.

(1) If T is maximal monotone, then for each x € D(T), Tx is convex and weak" closed, and T is norm-
weak” upper semicontinuous.

(i) If for each x € X,Tx is nonempty, convex, and weak™ closed subset of X* , and if T is norm -
weak” upper semicontinuous, then T is maximal monotone.

We next discuss some basic results about maximal monotone operators (e.g., see [11]) that will be used in
the proofs of our main results.

Lemma 1 (Simons, [11]). Let X be a Banach space and T:X — 2%~ a maximal monotone operator. Then
the following statements hold.

1. Tx is convex and weak* compact for any x € int D(T).

2. Assume that ((xa, x;)) is a bounded and norm-weak* converges to (x,x*) in G(T). Then
(x,x*) € G(T).

3. Lety € X.DefineT,:D(T) » RU {oo} by
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T, (x) =sup{{y, Ty): x € int D(T)}.

Then T, is real-valued and upper semicontinuous on int D(T).
We have the following theorem as a characterization of the maximal monotone operators with full domain.

Theorem 2.1 (Simons, [11]). Let D(T) = X and let T: X — 2X" be monotone. Then Tx is convex and weak”
compact for all x € X, and T,,: X - R U {0} is upper semicontinuous for all y € X if and only if T is

maximal monotone.

Proof.

Suppose T is maximal. Then from 1 and 3 of previous lemma, the if part is straightforward.
For the converse part, let (z,z *) € X X X* and
infs,sHecr(s —zs —z") = 0. (1)
We have to show that (z,z*) € G(T).
Let y be an arbitrary element of X. Let A > 0. Since D(T) = X, there exists

Ty, TY) €G(T): Ty = z + Ay.
Then, (Ay,Ty —z*) = (Th—2z,5;,—2z") = 0
and as a result, (y,s; —z*) = 0.
From the definition of Ty, Ty (sA) = (y,z").
As L —0+, sA - z then as T), is upper semicontinuous T, (z) = (y,z").
This implies Vy € X, sup(y,T(z)) = (y,z").
As T, is compact, z* € Tz.i.e.(z,z*) € G(T).
Now we present the Heisler's result.
Theorem 2.2 (Simons, [11]). Assume, for two maximal operators
T;:X —» 2X and T,: X - 2%7, D(Ty) = D(T,) = X . Then T; + T, is maximal monotone.
Proof.
Denote T = T; + T, . Then
D(T) = D(T,) nD(T,) = X.
As we know the sum of two weak” compact convex sets are also weak” compact and convex, for eachy €

X, T, is weak” compact and convex. Also, the sum of two upper semicontinuous mappings T, = (Ty), +

(T3), is upper semi-continuous. Then T = T; + T, is maximal monotone from theorem 2.1.
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3. Main Results

Let X and Y be two reals valued Banach spaces and X* and Y* be their duals. Let T : X — 2% and S :
Y — 2¥" be monotone operators. Define H : X XY — 2X>XY py
H(x,y) = {(x*,y*):x* € Tx,y* € Sx},(x,y) EX XY.
The monotonicity of H is given in the following theorem.
Theorem 3.1. The mapping H : X XY — 2X>Y" defined by

H(x,y) = {(x*,y"): x* € Tx,y* € Sx} forall (x,y) € X XY is monotone.

Proof.
Leta, b € X. Since T: X — 2% is monotone,
(a* —b*,a—b)=>0,a" € Ta and b* € Th. ()
Similarly, from the monotonicity of S: Y — ZY*, forallc,d € Y
(c*—d*,c—d)=0,c" €Scandd” € Sd. 3)

Clearly (a,c),(b,d) € X X Y .Then from the definition of H
(a*,c*) € H(a,c) and (b*,d*) € H(b,d).
We observe that
((a*,c*) — (b*,d"),(a,c) — (b,d)) = ((a*—b*,c*—d"),(a — b,c — d)).
Using the duality in (X X Y) X (X* X Y*) defined by
(Y9, () = (L x)+ (v y) (ny) € X XY, (x",y") € X* XY,
we obtain  (a* —b*,a —b)+(c"—d*,c—d) = 0O,

from the monotonicity of T and S. Thus H is monotone. o

The following result addresses the maximality of H whenever T and S are maximal monotone.

Theorem 3.2. Let X and Y be two real Banach spacesand T: X — 2¥ and S: Y — 2¥ are maximal
monotone operators. Then H : (X XY) — 2X7xY* by
H(x,y) = {(x*,y"): x* € Tx,y* € Sx} for (x,y) € X XY is maximal monotone.

Proof.

By Theorem 3.1, H is monotone. To show that H is maximal monotone, we will show in view of Theorem C that
Q) for each (x,y) € X X Y,H(x,y) is non-empty convex and weak — closed, and

(i) H is norm-to-weak ™ upper semicontinuous.

For each (x,y) € D(H), it follows from the maximal monotonicity of T and S that

HXY) = NGy, g ynecanix® y™) € X* X Y {(x", y) — (21, ¥1), (x,¥) — (x1,71)) = 0},
Which implies

HOLY) = Ny ynecan{®x ™) € X XY i (x™ —xf,x —x) +(y* —y1,y —y1) = 0},

Since T and S are maximal monotone, it follows that Tx and Sy are nonempty, convex and weak” closed,
and therefore, H(x, y) also shares all these properties. This proves (i). Since T is maximal monotone, T is
norm-to-weak” upper semicontinuous. Then for each x € X, each weak” neighborhood U of Tx in X x, and
each sequence {x,} in X such that x;; € Tx, and x,, = x, we have x,, € U for all sufficiently large n €
N. Similarly, from the maximality of S, it follows that for each y € Y, each weak” neighborhood V of
Sx inY”, and each sequence {y,, } in Y such that y; € S, andy, — y,wehavey, € V forall sufficiently
large n € N Suppose, on the contrary, that H is not weak” upper semicontinuous. Then there exists a point
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(x,y) € X XY, aweak’ neighborhood W of H(x,y) in X* X Y*, and a sequence {(x,,V,)} € X XY
such that (xy,yn) € H(x,,v,) and (x,,,y,) = (x,y) and (x;,,y,) € W for infinitely many values of
n € N. Consequently, there exist weak* neighborhoods U and V of x in X and y in Y, respectively, such
that (xp, v,) € U X V for infinitely many values of n. This is a contradiction. Therefore, H is norm-to-
weak” upper semicontinuous, which proves (ii). It follows from the part (ii) of Theorem C that H : X X
Y = 2% is maximal monotone.

4. Conclusion

In this paper, we discussed some requirements for the sum T + S of two maximal monotone mappings T
and S to be again a maximal monotone in the case X = Y and an important characterization of maximal
monotone operators in general Banach spaces. As our main result, we proved that the operator H: X X Y —
2XY"defined by H(x,y) = {(x*,y"):x* € Tx,y* € Sy},x € X,y € Y, is maximal monotone.
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