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Abstract 

The Himalayan monal Lophophorus impejanus is a montane bird exhibiting a seasonal migration to 

avoid harsh winter. However, the knowledge of the suitable habitat and level of connectivity across 

the range for the species is not available. To close this knowledge gap relevant for the species' 

conservation, species distribution modelling with presence-only data and relevant environmental 

variables was used to determine the range-wide distribution of the species. The distribution of the 

species is mainly constrained by habitat and climatic variables. The connectivity of the species was 

modeled using the distribution model output. The study presented a currently contiguous area of 

suitable habitat available for the species that are well connected with evidence of metapopulation in 

the range edges. The study also found that the current network of protected areas is not sufficient to 

ensure the connectivity of the species. Conservation of the currently suitable habitat is necessary to 

ensure the species is conserved. 

Keywords: Ecological niche modelling; Maxent; National bird; Patch importance; Link importance 

 

1 | Introduction 

The Himalayan monal (Lophophorous impejanus; 

Phasianidae; Galliformes; hereafter HM) inhabits 

forests and grasslands at elevations between 

approximately 2000–4500 m in Afghanistan, Pakistan, 

India, Nepal, Bhutan, China, and Myanmar (Del Hoyo 

et al. 1994; Grimmet et al. 2016). Altitudinal migrations, 

to avoid harsh winter conditions in highly seasonal 

climates, have been reported (DNPWC & DFSC 2018). 

While threats, including poaching, forest fires,  habitat 

encroachment by livestock, and climate change, 

continue to cause population declines and habitat 

fragmentation throughout its range (DNPWC & DFSC 

2018; Fuller & Garson 2000), it continues to be listed as 

Least Concern as it does not yet meet the criteria of any 

threat category (Birdlife International 2016). 

Quantification of habitat quality within the HM range is 

one of the first prerequisites for the implementation of 

an evidence-based conservation measure. However, the 

exact quantification of habitat quality needs 

demographic and population parameters along with the 

response of the species to a certain environmental 

variable (Thuiller & Munkemuller 2009), which is 

lacking for the species. Correlative habitat suitability 

models (HSM; Thuiller & Munkemuller 2009) can be 

used as an alternative to determine the quality of the 

habitat available for the species and identify areas of 

conservation concern. While attempts to identify the 

suitable habitat for HM has been done, these studies 

were either limited to a small part of a country (Rai et al. 

2020), an ecoregion (Chettri et al. 2021), or used as a 

proxy for other species (Dunn et al. 2015) with no 

specific conservation implementation. The present 

study intends to identify suitable habitats and the 

degree of connectivity of HM with the objectives 

specifically to a. determine the habitat suitability of HM 

across the Himalayas, b. identify important variables 

that determine the habitat suitability, and, c. quantify 

the degree of connectivity of the habitat cores as 

identified from the habitat suitability model and 

protected area network in the Himalayas. 
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2 | Materials and methods 

2.1 | Study area 

The study area encompasses an area of approximately 

141,292 sq. km of the Himalayan region with an 

altitudinal range between 85 m asl to above 7000 m. It 

consists of the mountainous area of Myanmar, India, 

Bhutan, China, Nepal, and Pakistan ranging between 

71°19' - 98°34' E and 26°28' - 35°34' N. 

2.2 | Occurrence data and environmental variables 

All the occurrence data used to build the models were 

retrieved from the GBIF website. All the direct 

observation and museum specimen datasets from eBird 

Observation Datasheet and GalliForm: Galliformes 

occurrence records (GBIF 2021) were used. Occurrence 

data were removed if the coordinate uncertainty was >5 

km. The data points that were between 1500–5000 m 

which equals the 500 m buffer to the known altitudinal 

limits of the species (2000–4500 m; Birdlife International, 

2016) were added to reduce positional uncertainty. 

Furthermore, all the duplicated presence points were 

removed and a bias file using the Gaussian Kernel 

Density method was created using the dismo package in 

R to reduce the bias in the observations (Boria et al. 

2014). A total of 3681 geo-referenced coordinates were 

retrieved, which was reduced to a final set of 252 

unique, geo-referenced presence points available for the 

analysis. 

A candidate set of environment variables that are likely 

to contribute to the distribution of HM were collected 

which included bioclimatic variables, habitat-related 

variables, and topographic variables. All the bioclimatic 

variables and elevation data with a resolution of 2.5 

minutes were retrieved from CHELSA Climatology 

Database (Karger et al. 2017). The elevational data was 

used to compute the three topographic variables used 

for the study- slope, eastness, and northness of the 

mountain. Net Primary Productivity and Potential 

Evapotranspiration were used as variables related to 

productivity. Additionally, distance and proportion of 

forest, grassland, and a mosaic of grassland and forest 

as habitat-related variables were used which might 

affect the distribution of the species. All the presence 

data and environmental variables were reprojected to 

Albers Equal Area Conical Projection as the projected 

coordinate system is suitable to be used in the 

Himalayan region Multicollinearity between all the 

variables were checked before proceeding with model 

training. The Pearson correlation coefficient was used to 

estimate the correlation between the variables. Finally, 

16 environmental variables of which five bioclimatic 

variables, three topographical variables, and eight 

habitat-related variables were selected (Table 1, Fig. S1) 

that were considered uncorrelated (r>|0.75|). 

 
Figure 1. The presence points used for model building, the species range, and the study area 
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2.3 | Habitat suitability modelling 

The final set of variables (Table 1) was used to train the 

suitability model.  Maximum Entropy Model (Maxent; 

Phillips et. al. 2006) was used to predict the habitat 

suitability of the species. The selected model is suitable 

for presence-only data, has superior predictive power in 

comparison to other distribution models (Elith et 

al. 2006; Wisz et al. 2008), and can handle the non-linear 

relationship between predictors and response variables 

(Elith et al. 2006).Twenty replicates were ran following 

Bradsworth et al (2017) for each model using 60% of the 

available presence points and 2500 background points 

obtained from the bias file. The remaining presence 

locations were used for validating the model where 

True Skill Statistics (TSS; Allouche et al. 2006) and Area 

of the curve (AUC) under Receiving Operating Curve 

(ROC, Fielding & Bell 1997) were used. All the models 

were run in R (R Core team 2021) using the package sdm 

(Naimi & Araujo 2016). Finally, the continuous 

suitability values were converted into presence and 

absence using the threshold that maximizes the TSS (Liu 

et al. 2016). Before running the final model, the 

regularization multiplier and features in the R 

environment were fine-tuned using ENMeval 2.0 (Kass 

et al. 2021). A combination of linear, quadratic, or hinge 

features with a regularization multiplier ranging from 

one to five were tested to determine the optimal model 

to be used for the final run. Delta AICc was used as the 

criteria for the determination of the optimal model with 

the ∆AICc value of zero being the best model. 

The correlation test available in the sdm package (Naimi 

& Araújo 2016) was used to determine the importance 

of each variable in each model. The test is performed by 

randomly permuting the variable under investigation; 

the correlation between the predicted value and 

permuted value is calculated. The higher the correlation 

between the values, the lower is the variable 

importance; as the permutation affects the prediction 

(Naimi & Araújo 2016; Thuiller et al. 2009). The measure 

of variable importance is then expressed as “1-

correlation” (Thuiller et al. 2009). The variable 

importance was calculated from the mean variable 

importance of all the models pooled. 

2.4 | Quantification of landscape and protected 

area connectivity 

Graph-theoretic connectivity analysis was used to 

quantify the level of connectivity of the landscape and 

the network of protected areas for the species. 

Particularly, the total number of components in the 

landscape and the integral index of connectivity 

(Pascual-Hortal & Saura 2006) were used to determine 

the level of connectivity. To define the core area or 

habitat nodes, the habitat suitability score above 0.5 was 

used from the obtained habitat suitability model. The 

available shapefiles of protected areas for the region 

were used, the suitable habitat core within the protected 

areas was clipped, and the habitat node was used to 

quantify the level of connectivity of protected areas. The 

Euclidean distance between the habitat core or 

protected areas was used as the edge of the graph for 

the connectivity analysis for both cases. As the 

Table 1. Final candidate set of environmental variables selected for the model building. 

Variable Meaning of the Variable Source 

Bio 8 Mean temperature of the wettest quarter CHELSA Climatology 

Bio 11 Mean Temperature of the warmest quarter CHELSA Climatology 

Bio 14 Precipitation of the driest month CHELSA Climatology 

Bio 15 Precipitation seasonality CHELSA Climatology 

Bio 18 Precipitation of warmest quarter CHELSA Climatology 

Slope Slope of the mountain SRTM 

Eastness Position of aspect with respect to the East Calculated From SRTM 

Northness Position of aspect with respect to the North Calculated From SRTM 

NPP Net Primary Productivity MODIS  

PET Potential Evapotranspiration CGAIRCSI 

DIST_ECOTONE Distance from Mosaic vegetation between cropand, grassland and forest MODIS Landcover Data 

DIST_FOREST Distance from forest (canopy cover >60% and height >2m) MODIS Landcover Data 

DIST_GRASS Distance to grassland MODIS Landcover Data 

PROP_EDGE %age of mosaic vegetation in a 3x3 pixels moving window MODIS Landcover Data 

PROP_FOREST %age of forest in a 3x3 pixels moving window MODIS Landcover Data 

PROP_GRASS %age of grassland in a 3x3 pixels moving window MODIS Landcover Data 

 



Nepalese Journal of Zoology 6(1)  Baral   

4 

connectivity analysis requires a threshold distance for 

the connectivity, a distance of 8 km-the threshold based 

on the recorded migration distance of a sympatric 

pheasant, Satyr Tragopan (Tragopan satyra, Norbu et al., 

2013) was used. 

3 | Results 

3.1 | Model performance and influencing 

variables 

All the model runs (n=20) performed very well 

(AUC>0.8) to predict the distribution. The average AUC 

of the model was found to be 0.83 (SD=0.016), while the 

average TSS was 0.56 (SD=0.03). Because all the models 

present a very good fit for the prediction and did not 

present a large difference in the prediction ability, all 

the models were used for the ensemble. The relative 

variable importance for the distribution is given in Fig. 

2. The measure of variable importance showed the 

climatic variable temperature of the coldest quarter to 

be the most important variable to determine the 

 
Figure 2. Relative variable importance of all the modelled 
candidate set of predictors to define the distribution of L. 
impejanus. 

 
 Figure 3. The habitat suitability model of Lophophorus impejanus as predicted by the Maxent model. The predicted presence 

only is shown in the model after using the threshold to maximize the TSS. 
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distribution across the range with a 52% contribution to 

the model. The major variables that contributed to the 

distribution came under the habitat variables category 

with distance to the forest (26.4%), Distance to the edge 

(7.5%), and proportion of the distance to edge (5.7%) 

occupying the next top three positions in the model. All 

of the topographic variables, however, had only very 

little contribution (Fig. 2). 

Of the total suitable habitat available, India constituted 

the largest suitable habitat followed by China and 

Nepal. All three countries jointly contributed to 

approximately 79% of the total habitat available in the 

Himalayas (Table 2, Fig. 3). On the contrary, Myanmar 

had the least suitable area. Within a country, Bhutan 

had the highest proportion of suitable habitat with 56% 

of its total area suitable. Nepal followed next with 27% 

of its area classified as suitable. China held the largest 

area suitable within the protected area network 

followed by Nepal and Bhutan. Pakistan had the least 

representation of suitable habitat within the protected 

area network (Table 2). 

 

3.2 | Landscape and protected area connectivity 

The connectivity analysis showed the presence of 

multiple components (24) for the habitat core (Fig. 4). 

The independent components for the habitat core were 

concentrated towards the eastern and western limit of 

the distribution with a single component forming the 

central region of the core habitat. The connectivity 

analysis also showed that the central region had a 

higher contribution for the overall connectivity for both 

habitat patches and corridors while the patches and 

corridors at the extreme showed relatively low 

importance. The existing network of the protected area 

also showed the presence of multiple components (42) 

with only a few protected areas in China, Bhutan, and 

Nepal showing high connectivity (Fig. 5). 

4 | Discussion 

The study presents the first regional assessment of the 

distribution of the HM across the Himalayas. Although 

earlier attempts to model the regional habitat suitability 

has been done (Dunn et al. 2015, Dunn et al. 2016), these 

studies were either used as a proxy for other species 

 
Figure 4. Topological map of the relative importance of habitat core and corridors for connectivity 
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(Dunn et al. 2015) or not directly used to inform the 

distributional status in the Himalaya (Dunn et al. 2016). 

Still, other modeling exercises performed were 

performed on a small spatial scale (Rai et al. 2020, 

Chettri et al. 2021). This study presents the regional 

habitat connectivity and quantifies the connectivity 

between protected area networks for the first time for 

HM. Since connectivity for the species has not yet been 

modeled in other parts of the range, this study presents 

a novel finding which can serve as an important 

decision-making tool in the conservation as well as 

protected area management. 

The model presented the temperature of the coldest 

quarter as the most important variable to determine its 

distribution in the region. Indeed, the Himalayan region 

is characterized by the abrupt change in altitude causing 

the climate to vary within a short distance (Bach & Price 

2013). This variation in climatic conditions has made the 

region one of the major biodiversity hotspots in the 

world (Myers et al. 2000). The HM as a mountainous 

species (DNPWC & DFSC 2018) might be limited by the 

temperature extremes prevalent across the North-South 

direction of the region. Although the birds can tolerate 

a range of climatic extremes with the help of 

physiological processes (Ruskannen et al. 2021, Root 

1988), the processes gradually diminish as the 

physiological threshold is reached (Root 1988) above 

which the species cannot exist. This study found that the 

HM is mainly limited by the extremes in temperature. 

Shrinivasan et al. (2018) found that the temperature 

 
Figure 5. Topological map of the relative importance of protected area and corridors for connectivity 

 

 Table 2. Country-wise distribution of predicted suitable habitat estimated by the Maxent model  

Country % suitable habitat in study area (in the country) % suitable habitat in protected area network 

Bhutan 9 (58) 20 

China 22 (0.5) 31 

India 39 (3) 17 

Myanmar 2 (0.7) 12 

Nepal 18 (27) 21 

Pakistan 10 (3) 0.1 
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variability in the Himalayan region was one of the major 

reasons to limit the range of birds. Similarly, Root (1988) 

found that the extreme climate influences the 

metabolism in passerine birds in their northern 

boundaries which consequently limited the distribution 

of the passerines. HM might experience similar 

physiological distress due to the extreme temperatures 

which might have limited the distribution of the species. 

The altitudinal migration of the HM (DNPWC & DFSC 

2018) can also be considered as proof that it uses 

behavioral mechanisms to escape the temperature 

extremes.  

The vegetation or habitat-related variables were also 

found to have a significant impact on the distribution. 

Particularly the importance of distance to forest, 

distance to forest-grassland mosaic indicates the 

preference of the species around the forest-grassland 

edge. Bird diversity is shown to be higher in areas with 

higher spatial heterogeneity (Maskell et al. 2019). 

Moreover, HM requires both the habitat types as it feeds 

on open grassland (Soldatini et al. 2009) and shelters in 

forests (DNPWC & DFSC 2018). These reasons might 

explain the preference of grassland and forest mosaics 

by HM. 

The habitat connectivity analysis showed that most of 

the habitat is presently connected for HM but the 

greater number of components suggest the existence of 

metapopulation (Minor & Urban 2008) in these regions. 

The visual analysis implies the naturally fragmented 

habitat in the range extremes with very little to no 

connectivity according to the current knowledge on the 

dispersal of the species. While the naturally fragmented 

habitats may reduce the risk of disease spread 

(McCallum & Dobson 2002), the cost of reduced gene 

flow is much higher for the persistence of the 

population. Likely, the range limits of the HM are 

determined by the effects of reduced gene flow rather 

than the climatic variables. To persist the genetic 

diversity of these metapopulations, human aided 

dispersal and careful planning on infrastructure 

development need to be done so as not to further 

increase the already fragmented habitat. China, Nepal, 

India, and Bhutan can be considered as the core area for 

the distribution of the HM. Therefore, these countries 

will have the most important role in determining it’s the 

fate. While the current status of the habitat might be 

undisturbed at most of the parts (Das et al. 2017), 

encroachment of the habitat might soon be seen as the 

human population increases and so does the need for 

food to feed the growing population (Xu et al. 2019).  

The connectivity analysis of the protected area network 

shows that only a little part of the total suitable area is 

represented in the network. Also, the network will not 

be able to connect across the region thus creating a dire 

future for the species if only protected areas are 

considered. Thus, the conservation planning well before 

the driving forces of habitat fragmentation takes a toll 

on the species might be much more successful. For the 

coexistence of humans and wildlife in these frontiers, a 

nature-friendly adaptation to the settlement and 

agriculture might need to be planned. These nature-

friendly ways of living have proven to be successful for 

the conservation of wildlife as evidenced from across 

the world (Batáry et al. 2015; Jokimaki et al. 2018). The 

population of the HM along with other species with 

similar habitat requirements can be connected using 

these nature-friendly means of agriculture or urban 

planning.  

Although the core area might be important as a source 

to the peripheral population, the peripheral areas 

within China, Myanmar, Pakistan, and Afghanistan still 

will have the challenge to conserve the HM in the face 

of ongoing global warming. The peripheral populations 

are adapted to living at the physiological extremes of 

the species and can cope with climate change 

(MacDonald et al. 2017). These countries will have an 

important role to ensure that these populations are well 

connected to the core population as well as preparing 

for the potential habitat that the species can move to. 

Despite the potential a rapid assessment has on the 

conservation of a low threat risk species, the model 

expressed here is not without flaws and the responsible 

stakeholders must be prepared for adaptive 

conservation practices as the information builds up. The 

current study showed the habitat hugely impacts the 

distribution of the species. However, the mountainous 

regions are considered to be very sensitive to global 

warming (Xu et al. 2019). Along with the global climate 

change, the vegetation assemblages of the habitat are 

also expected to change (Salick et al. 2019). However, no 

particular study on the impact of climate change on the 

vegetation and its effect on the species is known. This 

might hinder the course of action for its conservation 

and warrants further study on the impact of climate 

change on the species and its habitat. The presence of 

locations with higher positional accuracy for the species 

was found to be limited across the region which 

required the use of coarse-resolution environmental 

predictors despite the availability of much finer data 

(Hijmans et al. 2005). Therefore, the studies aiming to 

determine the presence or absence of the species across 
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the range might also contribute to building more 

accurate, fine-scale habitat suitability models. With the 

availability of demographics and population 

parameters, mechanistic models of habitat suitability or 

population viability analyses will further help to 

strengthen the information required for robust 

conservation planning. Furthermore, modelling the 

season distribution of the species and possible 

pathways, which is yet lacking, might also help to adopt 

suitable conservation measures. 

5 | Conclusions  

Although the present study may be a rapid assessment 

of a relatively less-studied species and does not possess 

a significant human-induced threat currently, it is 

concluded that the species across its range is exposed to 

various threats like fragmentation and climate change. 

The study presented the potential distribution of the 

species, status across the Himalayas, the current status 

of human-induced threats, and possible areas and ways 

of intervention. However, the study can be considered 

as a rapid assessment based on the best available data 

and additional data on the presence or absence, 

demographic and population parameters might help 

provide robust data to ensure the species is conserved 

before it’s too late and hopefully the species is never 

listed in the species with high threat risk. 
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