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Abstract 

A buildup of plaque that contracts arteries and decreases blood flow to the heart causes chest pain, 

difficulties in breathing, or another coronary artery disease, medically called stenosis puts our lives at 

risk. We have used Navier-Stokes equations in a cylindrical polar coordinate system to study this 

problem by considering the flow is steady, axially symmetrical, fully developed, and laminar. Flow 

parameters like velocity profile, pressure drop, shear stress, and volumetric flow rate in the stenosed 

regions are analyzed after getting analytical solutions. Results revealed that the pressure drop 

decreases with the increased thickness of stenosis. The volumetric flux decreases highly as the 

viscosity increases. The velocity of blood flow decreases exponentially for a small increment of 

viscosity. Shear stress increases with indices of the power law of shear rate.  
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1 | Introduction 

The human circulatory 

system is a closed 

cardiovascular network of arteries, veins, capillaries 

and the blood. The flow behavior of blood in arteries 

and veins is complicated since it comprises deformable 

solid particles including red blood cells, white blood 

cells, platelets, and plasma, a viscous fluid (Kafle et al. 

2022; Pokharel et al. 2020). Arteries are the vascular 

vessels that transport oxygen-rich blood to every cell of 

the body, hence cardiovascular network plays a vital 

role in sustaining life (Charon and Kurland 1965; Kafle 

et al. 2022; Pokharel et al. 2020). Deformability of 

erythrocytes, percentage of hematocrit, wall shear 

stress, and viscosity of the blood are key variables 

affecting the blood flow in arteries (Jain et al. 2010). 

Through experimental research, it has been established 

that blood is non-Newtonian fluid under low shear rates 

and arteries with small radii (Mandal & Chakravarty 

2007; Young 1968). 

Deposition of cholesterol, fatty particles, and other 

foreign particles form atherosclerotic plaque called 

stenosis, and abnormal tissue development is also a 

cause of stenosis (Nosovitsky et al. 1997). There are 

various types of stenosis such as symmetrical, 

triangular, trapezoidal, bell-shaped and composite 

(Ponalagusamy & Manchi 2020). The role of each of this 

stenosis is to obstruct the blood flow and reduce the 

blood supply bringing problems to the blood flow 

system (Young 1968). The activation of platelets by 

extremely high shear stress close to the stenosis neck 

might completely obstruct the passage of blood to the 

heart, such type of atherosclerosis breaks the 

cardiovascular system (Singh 2012). To know the blood 

flow system, we should investigate the blood flow 

through different forms of stenosis (Chakravarty 1987). 

Fluid dynamical quantities play a crucial role when the 

stenosis continues to worsen, and blood flow is 

dramatically altered, eventually leading to the 
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development of cardiovascular diseases (Charon & 

Kurland 1965). The major effects of stenosis are 

ischemia, atherosclerosis, angina pectoris, heart attacks, 

strokes, and cerebral strokes (Forrester & Young 1970).  

Erythrocytes deposits in the area of low shear stress in 

the form of rouleaux which narrows the lumen and it 

causes blood to have a non-zero yield stress (Chaturani 

& Ponalagusamy 1985). 

The effect of constriction on blood flow properties like 

velocity, viscosity, and resistance has been studied both 

theoretically and empirically by Chaturani and 

Ponalagusamy (1985). Singh (2012) assumed a mild 

stenosis is radially non-symmetrical. When they used 

single loop of stenosis with maximal depression at 

various places, they ran a graphical analysis and show 

that the flow resistance decreased as the shape 

parameter increased (Srivastava 2002). An approximate 

equation for projecting the pressure drop in region of 

stenosis is established and empirically verified by 

Young and Tasi (1973). Seeley and 

Young (1976) have studied pressure 

drop in the region of multiple stenosis 

by taking two blunt plugs.  

2 | Materials and methods 

Taking into consideration, steady flow of blood in an 

axially symmetrical stenosed artery, let Ro and r denotes 

the radius of artery without stenosis and with stenosis, 

respectively. The artery is considered an inelastic 

circular tube. The radial blood flow is neglected in light 

of stenosis. The blood is considered to flow along axial 

direction only. 

2.1 | Model equation 

Let u (x, y, z, t), v (x, y, z, t), w (x, y, z, t) and p (x, y, z, t) 

be the three components of velocity and pressure at (x, 

y, z) and at time t respectively. The continuity equation 

in a steady-state form is (Gaire 2021; Kapur 1985) 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                         (1) 

Here 𝜌 (x, y, z, t) is the density of a fluid. The density 𝜌 of 

an incompressible viscous fluid is constant. The N-S 

equations for Newtonian, viscous and incompressible 

fluid are (Gaire 20021; Kapur 1985). 

Here t is the time, f = 𝜌(gx, gy, gz) are the external body 

forces, mainly gravity. The terms 𝜕𝑝/𝜕𝑥, 𝜕𝑝/𝜕𝑦, 𝜕𝑝/𝜕𝑧 

are forces due to differences in pressure and the last 

term on the right are viscous forces with constant 

viscosity coefficient 𝜇 in x, y and z- direction 

respectively. The system (1)-(4) is closed for four 

unknown functions u, v, w and p. When there are no 

external body forces, i.e., gx = 0, gy = 0 and gz = 0 and the 

motion is steady, i.e., 𝜕𝑢 /𝜕𝑡 = 0, 𝜕𝑣 /𝜕𝑡 = 0, 𝜕𝑤 /𝜕𝑡 = 0, 

and 𝜕𝑝 /𝜕𝑡 = 0, and the motion is in two dimension. 

By using Navier-Stokes equations for fluid flow inside a 

cylinder, blood flow in arteries can be modeled. Let r 

and p denote the radius and pressure drop of the blood 

flow in the artery. Component of the velocities along 

radial, angular and axial directions are vr, v  and vz 

respectively. The system (1)-(4) can be expressed in 

cylindrical form as (Gaire 2021; Kapur 1985) 

In axisymmetric flow, we assume v  = 0, and vr, vz, and 

p are independent of θ, viscosity 𝜇 and density 𝜌 are 

assumed constant for the steady flow of blood. Velocity 

component parallel to z- axis is v. We have 

considered axially symmetric flow along z-axis 

only, so vr = 0, v  = 0, and vz = v, then equations 

(6) - (7) become 

𝜕𝑣

𝜕𝑧
= 0,  0 = −

𝜕𝑝

𝜕𝑟
  ,   0 = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣

𝜕𝑟2 +
𝜕2𝑣

𝜕𝑧2 +
1

𝑟

𝜕𝑣

𝜕𝑟
) 

(8)    

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2)     (2) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑧2)  (3) 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝜌𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2 ) (4) 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕

𝜕𝑧
(𝑣𝑧) = 0         (5)                                                  

𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟 𝜕𝑣𝑟

𝜕𝑟
+ 𝑣𝑧 𝜕𝑣𝑟

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+ 𝜇 (

𝜕2𝑣𝑟

𝜕𝑟2 +
𝜕2𝑣𝑟

𝜕𝑧2 +
1

𝑟

𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝑟

𝑟2)    (6)               

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟 𝜕𝑣𝑧

𝜕𝑟
+ 𝑣𝑧 𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑟2 +
𝜕2𝑣𝑧

𝜕𝑧2 +
1

𝑟

𝜕𝑣𝑧

𝜕𝑟
)             (7) 

 

 
Figure 1. Representative sketch for artery and stenosis. 
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Suppose pressure term as P = –
𝜕𝑝

𝜕𝑧
 , equation (8) reduces 

to 

−𝛲
𝑟

𝜇
=

𝜕

𝜕𝑟
(𝑟

𝜕𝑣

𝜕𝑟
)  (9) 

2.3 | Geometry of stenosis 

The geometry of the stenosis developed is considered as 

a plaque or abnormal tissue buildup in the inner wall of 

a cylindrical shaped artery is depicted in Fig. 1 where, 

the ratio of the radii with and without stenosis is 

modeled as  

𝑅

𝑅0
= 1 −

𝛿

2𝑅0
(1 + 𝑐𝑜𝑠

𝜋𝑧

𝑧0
)    (10)                                                                      

where R is artery radius with stenosis, RO is radius 

without stenosis and 𝛿 is height of the stenosis. 

The boundary condition according to Kapur (1985) is 

𝑣 = {
0  𝑎𝑡 𝑟 = 𝑅 ,  −𝑧0 ≤ 𝑧 ≤ 𝑧0  
0   𝑎𝑡 𝑟 =   𝑅0 ,   |𝑧|   > 𝑧0

} 

Integrating (9) with respect to r taking z constant 𝑟
𝜕𝑣

𝜕𝑟
=

−𝑃
𝑟2

2𝜇
+ 𝐶(𝑧).         (11) 

Using 𝜕𝑣 /𝜕𝑟 = 0 at r = 0, gives C(z) = 0. Integrating (11) 

and using the boundary condition we get

 𝑣(𝑟) = −
𝑃𝑟2

4𝜇
+ 𝐷(𝑧)                             

Using v = 0 at r = R, gives D(z) = PR2/4𝜇,  then the velocity 

is 𝑣 =
𝑃

4𝜇
(𝑅2 − 𝑟2)                             

The volumetric flow rate through the cylindrical tube 

can be obtained by (Kapur 1985) 

2.3 | Pressure drop 

The volumetric flow rate Q (Kapur 1985) 

𝑄 = ∫ 2𝜋𝑟. 𝑣𝑑𝑟 =
𝑛𝜋

3𝑛+1
(

𝑃

2𝜇
)

1/𝑛

𝑅
1

𝑛
+3𝑅

0
  (12) 

From (12), 𝑃 = 2𝜇𝑄𝑛 (
3𝑛+1

𝑛𝜋
)

𝑛 1

𝑅3𝑛+1  (13) 

The pressure drop in the stenosed part is obtained after 

integrating (13) as 

𝛥𝑃 =  ∫ 𝑃𝑑𝑧  =
𝑧0

−𝑧0
 ∫ 2𝜇𝑄𝑛 (

3𝑛+1

𝑛𝜋
)

𝑛 1

𝑅3𝑛+1 𝑑𝑧
𝑧0

−𝑧0

  

For mild stenosis, we have used the radial surface from 

(10), and the pressure drop across the length (Kapur 

1985), then 

𝛥𝑃 =  ∫ (
3𝑛+1

𝑛𝜋
)

𝑛 2𝜇𝑄𝑛𝑑𝑧

𝑅0
3𝑛+1(𝑎−𝑏 𝑐𝑜𝑠

𝜋𝑧

𝑧0
)

3𝑛+1

𝑧0

−𝑧0
  (14) 

where a = 1–
𝛿

2𝑅0
 , b = 

𝛿

2𝑅0
. Putting 

𝜋𝑧

𝑧0
= u, so that  dz = z0 

du. When z = –z0, u = –, when z = z0, u =.  The equation 

(18) reduces to 

𝛥𝑃 =  
4𝜇𝑧0𝑄𝑛

𝜋𝑅0
3𝑛+1  (

3𝑛+1

𝑛𝜋
)

𝑛

∫
𝑑𝑢

(𝑎−𝑏 𝑐𝑜𝑠  𝑢)3𝑛+1

𝜋

0
   

When there is no stenosis, 𝛿 = 0, but f (𝛿 /R0) = 1, then the 

pressure drop in the stenosed part becomes  

(𝛥𝑃)𝑃 =  
4𝜇𝑧0𝑄𝑛

𝑅0
3𝑛+1  (

3𝑛+1

𝑛𝜋
)

𝑛

. 

2.4 Pressure drop ratio 

The ratio of pressure with and without stenosis is 

(Kapur 1985) 

𝛥𝑃

(𝛥𝑃)𝑃
=

1

𝜋
∫

𝑑𝑢

(𝑎−𝑏  𝑐𝑜𝑠  𝑢)3𝑛+1

𝜋

0
   

   (15) 

For Newtonian fluid (n = 1), using Leibnitz's rule 

equation (15) reduced to 

   (16) 

2.5 | Shear stress 

The shear stress on the stenosis surface is obtained from 

(Kapur 1985) 

𝜏 =
1

2
𝑃𝑅  =  

1

2
  2𝜇𝑄𝑛 (

3𝑛 + 1

𝑛𝜋
)

𝑛

 
𝑅

𝑅3𝑛+1

= 𝜇𝑄𝑛 (
3𝑛 + 1

𝑛𝜋
)

𝑛 1

𝑅3𝑛
 

When 𝛿 = 0, there is no stenosis, so that f (
𝛿

𝑅0
) = 1. The 

shear stress in absence of stenosis is 

𝜏𝑃 = 𝜇𝑄𝑛 (
3𝑛 + 1

𝑛𝜋
)

𝑛 1

𝑅0
3𝑛 (1 −

𝛿
2𝑅0

−
𝛿

2𝑅0
𝑐𝑜𝑠  

𝜋𝑧
𝑧0

)
3𝑛  

=  𝜇𝑄𝑛 (
3𝑛 + 1

𝑛𝜋
)

𝑛

 
1

𝑅0
3𝑛 

2.6 | Shear stress ratio 

The ratio of shear stress with and without stenosis is 

(Kapur 1985) 

 
𝜏

𝜏𝑃

=   (
𝑅0

𝑅(𝑧)
)

3𝑛

  =
1

(1 −
𝛿

2𝑅0
−

𝛿
2𝑅0

 𝑐𝑜𝑠  
𝜋𝑧
𝑧0

)
3𝑛 

𝑄 = ∫ 2𝜋𝑟𝑣𝑑𝑟
𝑅

0

=
2𝑃𝜋

4𝜇
∫ (𝑟𝑅2 − 𝑟3)𝑑𝑟

𝑅

0

=
𝑃𝜋

2𝜇
[
𝑟2𝑅2

2
−

𝑟4

4
]

0

𝑅

=
𝜋𝑃

8𝜇
𝑅4 

𝛥𝑃

(𝛥𝑃)𝑃
=  

1

𝜋
∫

𝑑𝑢

(𝑎 − 𝑏  𝑐𝑜𝑠   𝑢)4

𝜋

0

= (1 −
𝛿

2𝑅0
) (1 −

𝛿

𝑅0
+

5

8

𝛿2

𝑅0
2) (1 −

𝛿

𝑅0
)

−7/2
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Ratio of maximum and minimum stress is 

n3

0

n3

00

min

max

R
1

0cos
R2R2

1

1
 

−








 
−=










 
−


−

=


    (17)  

For Newtonian fluid (n = 1) and  
𝛿

𝑅0
<< 1, by using 

Maclaurin expansion (17) 

    0

3

0min

max

R

3
1

R
1 


+=









 
−=




−

  (18) 

3 | Results and discussion 

The present model has been developed to analyze blood 

flow parameters in an artery with mild stenosis along 

axial velocity flow. Analytical solutions of the velocity 

profile, volumetric flow rate, pressure drop, shear stress 

and effective viscosity of the blood flowing in an artery 

with mild stenosis are obtained and analyzed. The 

following simulated result for different blood flow 

parameter are obtained by using computational 

software. 

3.1 | Velocity profile of blood flow through a 

stenotic artery 

Figure 2 shows that the viscosity affects the velocity of 

blood flow for the artery having radius 3 mm. Velocity 

decreases rapidly, when viscosity increases by a small 

quantity, which can be seen clearly from the figure. For 

the viscosities (𝜇) are 0.2 gm mm-1s-1, 0.4 gm mm-1s-1, 0.6 

gm mm-1s-1, and 0.8 gm mm-1s-1, the approximate values 

of velocities are 55 mms-1, 28 mms-1, 18 mms-1, and 12 

mms-1 respectively. This simulation result shows that 

the velocity decreases as the viscosity increases and 

conversely. Near the inner wall of the artery the velocity 

is approximately zero, which increases gradually when 

we move towards center. This increment is more rapid 

when the viscosity changes from 0.2 gram/ (mm s) to 0.4 

gram/ (mm s). 

3.2 | Volumetric flow rate on stenosis of blood 

flow through a stenotic artery 

Figure 3A shows the effect of viscosity on volumetric 

flow rate. This simulation result shows that the viscosity 

and volumetric flow rate hold inverse relation. When 

viscosity values are (𝜇) = 0.2 gm mm-1s-1, 0.4 gm mm-1s-1, 

0.6 gm mm-1s-1, 0.8 gm mm-1s-1, approximate values of 

the volumetric flow are 800 mm3/s, 400 mm3/s, 270 

mm3/s, 200 mm3/s, respectively. We can understand 

from the figure that volumetric flow becomes half when 

we double the viscosity. The conclusion is that more 

viscous fluid flows slowly and less volume passes at the 

same time comparing with the fluid with less viscosity. 

3.3 | Pressure gradient across the stenosis of 

blood flow through a stenotic artery  

Figure 3B shows, the ratio of pressure drop against 

thickness of the stenosis for different radii. For radii (R0) 

= 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm the pressure drop is 

5.5 mm of Hg, 3.3 mm of Hg, 2.5 mm of Hg and 2.1 mm 

of Hg respectively. As the radius R0 increases from 2.0 

mm to 3.5 mm, the pressure drop increases from 2.1 mm 

of Hg to 5.5 mm of Hg. From this figure we conclude 

 

Figure 2. Velocity profile of blood flow through a stenotic 
artery for different viscosity. 

 

 

  
Figure 3. A- Volumetric flow rate for different value of 
viscosity, B- Pressure drop with the variation of the height 
of the stenosis. 
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that the pressure drop ratio increase more quickly for 

the narrower artery. 

Figure 4A shows, for various values on n (flow behavior 

index), the ratio of the maximum shear stress to the 

minimum shear stress. The ratio is directly proportional 

with the thickness of stenosis. When the thickness of the 

stenosis increases from 0 to 1mm the ratio increases 

from 1 to 1.15. As the flow behavior index (n) increases 

gradually from 0.1 to 0.4, the ratio increases 1.035 to 1.15 

approximately.  

Figure 4B shows, the relation between the ratios of 

maximum to minimum shear stresses with the thickness 

of the stenosis for different values of radii. The ratio of 

shear stresses increases with the increase of stenosis. 

The increment of the ratio is linear against the thickness 

of the stenosis. For the increment of the radii (R0) = 2.0 

mm to 3.5 mm, the ratio of maximum to minimum shear 

stress increases 1.09 to 1.18. 

5 | Conclusions  

Stenosis in an artery generally occurs due to the 

aggregation of cholesterol-laden plaque in its walls 

resulting in a constricting of the passage of blood as well 

as a loss of elasticity that leads to stroke and heart attack. 

The present mathematical analysis brings out many 

interesting results in the blood flow parameters. We 

have used the cylindrical polar form of the Navier-

Stokes equations to simulate blood flow through the 

artery. We have analyzed the velocity profile, pressure 

drop, shear stress, and volumetric flow rate in an artery 

with mild stenosis. Various heights of stenosis are 

considered to show its effect on the above-mentioned 

parameters. The pressure drop decreases with the 

increased thickness of stenosis. The volumetric flux 

decreases highly as the viscosity increases. The velocity 

of blood flow decreases exponentially for a small 

increment of viscosity. Shear stress increases with 

indices of the power law of shear rate. Our study can be 

an applicable better understanding of hemodynamic 

abnormalities due to mild stenosis and further 

specialization and upgrading highly-sensitive tools. 
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