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Prevalence of Multidrug-resistant and Carbapenemase-producing 
Klebsiella  Pneumoniae  and Pseudomonas Aeruginosa  Isolates in 

Tertiary Care Hospital in Kathmandu, Nepal
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ABSTRACT
Carbapenemases are the enzymes that catalyze β–lactam groups of antibiotics. The carbapenemase 
producers are resistant to β–lactam antibiotics and are usually multidrug-resistant bacteria 
challenging widely used therapeutics and treatment options. Therefore, the detection of 
carbapenemase activity among clinical isolates is of great therapeutic importance. We aimed 
to study the MDR and carbapenemase-producing Klebsiella pneumoniae and Pseudomonas 
aeruginosa isolated from various clinical samples at a tertiary care hospital in Nepal. A total of 
3,579 clinical samples were collected from the patients visiting the Department of Microbiology, 
B&B Hospital, Gwarko, Lalitpur. The samples were processed to isolate K. pneumoniae and 
P. aeruginosa and then subjected to antibiotic susceptibility testing (AST) by the Kirby-Bauer 
disk diffusion method. Phenotypic detection of carbapenemase activity was performed in 
the imipenem-resistant isolates by the modified Hodge test (MHT). Of the total samples, 1,067 
(29.8%) samples showed significant growth positivity, out of which 190 (17.3%) isolates were 
K. pneumoniae and 121 (11.3%) were P. aeruginosa. Multidrug resistance was seen in 70.5% of 
the K. pneumoniae isolates and 65.3% of the P. aeruginosa isolates. Carbapenemase production 
was confirmed in 11.9%, and 12.2% of the imipenem-resistant K. pneumoniae and P. aeruginosa 
isolates, respectively, by the MHT. This study determined the higher prevalence of MDR among 
K. pneumoniae and P. aeruginosa; however, carbapenemase production was relatively low.
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INTRODUCTION
Carbapenems are antibiotics widely used to 
treat infections caused by bacterial pathogens 
suspected to be multidrug-resistant (MDR).1 
Among the β- lactams, carbapenems possess 
the broadest spectrum of antimicrobial activity 
and are more effective even against general 
antibiotic resistance mechanisms; therefore, 
they are used as “last-line antibacterial 
agents”.2,3 However, bacterial pathogens 
are ever-evolving and often evolve into 
carbapenemase-producing virulent strains. 
Carbapenemases are β-lactamases with 
versatile hydrolytic capacities, providing 
resistance against the existing carbapenem 
antibiotics and are the significant contributors 
of multidrug resistance.2,4 Infections caused 
by carbapenemase-producing bacteria have 
been associated with higher mortality rates 
and severe outbreaks.5 Concern has arisen 
in recent years over the increasing trend of 
carbapenem resistance, as the therapeutic 
options for treating infections caused by 
carbapenem-resistant bacteria are limited.6 The 
rapid transmission and the lack of alternative 
antimicrobial drugs against carbapenem-
resistant organisms have become a worrying 
public health issue worldwide.7,8 It is mainly 
because these enzymes hydrolyze virtually 
all types of antimicrobial β-lactamases and 
are often resistant to commercially available 
β-lactamases inhibitors.9

An early screening and recognition system 
is required to prevent the occurrence and 
further dissemination of these carbapenemase-
producing bacteria. Various phenotypic 
methods for detecting carbapenemase-
producing organisms (CPO) have been 
mentioned in different studies.11-13 However, 
each method currently recommended by 
the Clinical and Laboratory Standards 
Institute (CLSI) has certain limitations.14,15 
Due to their high sensitivity and specificity, 
molecular techniques remain the reference 
standard for identifying and differentiating 
carbapenemases.10 But their high cost, the 
requirement for trained technicians, and the 
inability to detect novel carbapenemase genes 
limit their use in developing countries like 
Nepal.10  MHT is one of the phenotypic tools for 
the detection of carbapenemase producers.16 
It is the first CLSI recommended growth-based 
carbapenemase detection test.15 It is based 
on the ability of carbapenemase producers 
to form a cloverleaf appearance around a 
streak link near the carbapenem disk placed 
on an agar plate inoculated with a lawn of 

carbapenem-susceptible Escherichia coli ATCC 
25922.12 MHT is simple, inexpensive, and uses 
reagents readily available in most clinical 
laboratories, which makes it a valuable tool for 
carbapenemase detection in resource-limited 
countries like Nepal.12

Different studies have been carried out 
worldwide, which show the increasing 
prevalence of carbapenem resistance. The 
prevalence has been reported from 0.5% to as 
high as 100% in different studies in different 
places and at different times.17-20 In Nepal, 
the prevalence of carbapenemase production 
in K. pneumoniae and P. aeruginosa has been 
documented from 4% to 55%.21-23  This study aims 
to study the antibiotic resistance pattern of the 
K. pneumoniae and P. aeruginosa isolated from 
clinical samples in the tertiary care hospital 
in Nepal and identify the carbapenemase-
producing isolates using a low-cost phenotypic 
method.

MATERIALS AND METHODS
Study design
A cross-sectional study was carried out in the 
Department of Microbiology, B&B Hospital, 
Gwarko, Lalitpur, for eight months from June 
2018 to Janaury 2019. The ethical approval 
was taken from the joint Institutional Review 
Committee of the Shi-Gan Health Foundation 
and National Institute of Tropical Medicine 
and Public Health Research,  Maharajgunj, 
Kathmandu, Nepal. The specimens were 
collected from participants who had a suspicion 
of infections during doctor checkups. An 
inappropriately collected clinical specimen and 
specimens suspected of contamination by the 
normal flora or any other external source were 
not included in the study. The sample size (n=3, 
607) was calculated using Fischer’s formula. 
The samples included in this study were urine, 
stool, pus, blood, CSF, vaginal swab, wound 
swab, and catheter tip. 

Sample collection and processing
The clinical samples were processed and 
cultured following the standard microbiological 
techniques.24 The specimens were cultured on 
nutrient agar, BHI broth (for blood samples), 
blood agar, and Mac-Conkey agar. The isolates 
were identified based on colony morphology, 
Gram stain, and conventional biochemical 
methods.24 Only the K. pneumoniae and P. 
aeruginosa isolates were further processed for 
antimicrobial susceptibility testing (AST) and 
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tested for carbapenemase production using 
MHT.

Antibiotic susceptibility testing 
AST was performed by the Kirby-Bauer disk 
diffusion method as recommended by the 
Clinical Laboratory Standard Institute.15 
The antibiotics used were amikacin (30µg), 
ampicillin (10µg), cefixime (5µg), ceftriaxone 
(30µg), imipenem (10µg), chloramphenicol 
(30µg), ciprofloxacin (5µg),  ofloxacin (5µg),  
nitrofurantoin (300µg), . The bacterial isolates 
which showed resistance towards three or 
more different antibiotic classes were reported 
as multidrug-resistant (MDR). Screening of 
suspected carbapenemase-producing isolates 
was performed according to screening 
guidelines issued by CLSI (Table 1).25

Confirmation of carbapenemase production
The isolates resistant to imipenem (zone size 
≤10mm) were subjected to phenotypic detection 
for carbapenemase. The isolates resistant 
to imipenem were subjected to phenotypic 
detection for carbapenemase. After complete 
identification, isolates were preserved on 
trypticase soy broth with 25% glycerol at -70°C. 
Confirmation of carbapenemase activity was 
done by MHT.25 After 16-24 hours of incubation, 
the plates were examined for a cloverleaf–
type indentation at the intersection of the test 
organism E. coli ATCC 25922, within the zone 
of inhibition of the carbapenem susceptibility 
disk. 

Quality control
For the quality control of culture and 
biochemical tests, purity plates and ATCC control 
strains were used. For the standardization 
of the antimicrobial testing and phenotypic 
confirmation of carbapenemase production, 
the control strain of E. coli ATCC 25922 was 
used.

Statistical analysis
Statistical analysis was done by using SPSS 
version 16.0. The Chi-square test was applied at 
95% CI to check the significance of association 
between the variables.

RESULTS
A total of 3,579, samples (1,896 from males 
and 1,683 from females) were received, of 
which 1,067 (29.8%) samples showed bacterial 
growth. Growth positivity was the highest in 
the catheter tip (74.5%) and the least in the 
stool (3.8%). Gram-positive and gram-negative 
isolates accounted for 23.8% and 76.2% of 
the total isolates, respectively. The growth 
positivity among the males and the females 
was 32.1% and 27.2%, respectively. Among 
the gram-negative isolates, 190 (23.4%) were 
identified as K. pneumoniae and 121 (14.9%) 
as P. aeruginosa. The highest number of K. 
pneumoniae and P. aeruginosa isolates were 
obtained from wound pus samples followed by 
urine (Table 1).

Table 1: Sample-wise growth pattern of bacteria

Sample Total growth  
n (%)

Gram-negative 
n (%)

K. pneumoniae 
n (%)

P. aeruginosa 
n (%)

Urine (n=2096) 492 (23.5) 403 (19.2) 62 (15.9) 26 (6.5)

Wound/pus (n=825) 401 (48.6) 268 (32.5) 75 (28.0) 68 (25.4)

Sputum (n=449) 120 (26.7) 105 (23.4) 42 (40.0) 19 (18.1)

Indwelling catheter 
tip (n-=51) 38 (74.5) 28 (54.9) 8 (28.6) 8 (28.6)

CVP tip (n=17) 7 (41.2) 4 (23.5) 2 (50.0) 0 (0.0)

Suction tip (n=5) 2 (40.0) 2 (40.0) 1 (50.0) 0 (0.0)

Throat swab (n=83) 5 (6.0) 1 (1.2) 0 (0.0) 0 (0.0)

Stool (n=53) 2 (3.8) 2 (3.8) 0 (0.0) 0 (0.0)

Total (n=3579) 1,067 (29.8) 813 (76.2) 190 (23.4) 121 (14.9)

Note: % of K. pneumoniae and P. aeruginosa are calculated out of total gram-negative isolates
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Antibiotic susceptibility pattern of K. 
pneumoniae and P. aeruginosa
Colistin sulphate was found to be the most 
effective whereas amoxicillin was found 
to be the least effective anibiotic againt K. 
pneumoniae and P. aeruginosa. A total of 
59 (31.1%) K. pneumonia and 41 (33.9%) P. 
aeruginosa isolates were resistant to imipenem 
and were subjected to MHT. Beside these, 
all other antibiotics showed sub-optimal 
effectivess against both the isolates (Table 2).

MDR distribution of K. pneumoniae and P. 
aeruginosa
Out of 190 K. pneumoniae isolates, 134 (70.5%) 
were MDR, whereas out of 121 P. aeruginosa 
isolates, 79 (65.3%) were MDR (Table 3). There 
was no significant association between the 
organisms and MDR.

Carbapenemase production pattern of K. 
pneumoniae and P. aeruginosa
Out of the imipenem-resistant K. pneumoniae 
(n=61) and P. aeruginosa (n=42) isolates, 13.1% 
(n=8) K. pneumoniae isolates and 11.9% (n=5) 
P. aeruginosa isolates were confirmed as 
carbapenemase producers by MHT. There was 
no significant association between organisms 
and carbapenemase activity (Table 4).

DISCUSSION
Out of 3,579 samples, 1,067 (29.8%) samples 
showed bacterial growth in which 76.2% 
(813) were Gram-negative isolates and 23.8% 

Table 2: Antibiotic susceptibility pattern of P. aeruginosa and K. pneumoniae  

Antibiotics used

P. aeruginosa (n = 121) K. pneumoniae (n = 190)

Sensitive Resistant Intermediate Sensitive Resistant Intermediate

n (%) n (%) n (%) n (%) n (%) n (%)

Amikacin 55 (45.5) 56 (45.5) 10 (8.3) 94 (49.5) 75 (39.5) 21 (11.1)

Amoxicillin 0 (0.0) 121 (100.0) 1 (0.0) 0 (0.0) 190 (100.0) 0 (0.0)  

Imipenem 77 (63.6) 41 (33.9) 3 (2.5) 107 (56.3) 59 (31.1) 24 (12.6)

Cefepime 48 (39.7) 69 (57.0) 4 (3.3) 60 (31.6) 125 (65.8) 5 (2.6)

Ceftrioxone 38 (31.4) 81 (66.9) 2 (1.7) 45 (23.7) 138 (72.6) 7 (3.7)

Ciprofloxacin 46 (38.0) 73 (60.3) 2 (1.7) 49 (25.8) 120 (63.2) 21 (11.1)

Ofloxacin 45 (37.2) 76 (62.8) 0 (0.0) 74 (38.9) 111 (58.4) 5 (2.6)

Chloramphenicol 42 (34.7) 79 (65.3) 0 (0.0) 106 (55.8) 76 (40.0) 8 (4.2)

Colistin sulphate 120 (99.2) 1 (0.8) 0 (0.0) 187 (98.4) 3 (1.6) 0 (0.0)

Nitrofurantion 42 (34.7) 76 (62.8) 3 (2.5) 47 (24.7) 138 (72.6) 5 (2.6)

Table 3: MDR distribution of K. pneumoniae 
and P. aeruginosa

 Organism
MDR p- 

value
MDR (%) non-MDR (%)

K. pneumoniae 134 (70.5) 56 (29.5)
0.3

P. aeruginosa 79 (65.3) 42 (34.7)

Total 213 (68.3) 98 (31.5)  

Table 4: Carbapenemase production in K. pneumonia and P. aeruginosa

Organism Screening positive  
isolates (n)

MHT Test p-value
Positive n (%) Negative n (%)

K. pneumoniae 59 7 (11.9) 52 (88.1)
0.6

P. aeruginosa 41 5 (12.2) 37 (87.8)

Total 100 12 (12.0) 88 (88.0)  
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(254) were Gram-positive isolates. Karn et al22 
reported similar growth positivity, whereas GC 
et al26 and Aryal et al27 reported slightly lower 
growth positivity in similar settings. The growth 
positivity reported by Pokhrel et al28 was much 
higher than ours (48.2%). The highest growth 
positivity was seen in indwelling catheter tip 
samples (74.5%) which is discordant with the 
findings of Gurung et al23 and GC et al26. Among 
the growth positive isolates, 190 (17.8%) were 
identified as K. pneumoniae and 121 (11.3%) 
as P. aeruginosa. Similar culture positivity of 
K. pneumoniae and P. aeruginosa was reported 
by Mishra et al29 and Aryal et al27. In contrast, 
GC et al26 reported slightly lower, and Karn et 
al22 reported a much lower culture positivity 
for both K. pneumoniae and P. aeruginosa.  The 
differences in the prevalences might be due to 
the difference in location of the study and the 
type of samples processed.

In our study, nearly one-third of the K. 
pneumoniae, and one-third of the P. aeruginosa 
isolates were resistant to imipenem. GC et al26 
reported a much lower resistance to imipenem 
in K. pneumoniae isolates, while Shanmugam 
et al30 reported a much higher prevalence 
of imipenem-resistant K. pneumoniae. In 
this study, sensitivity was observed more 
to amikacin than to fluoroquinolone. Low 
sensitivity was observed against third and 
fourth-generation cephalosporins, which is 
similar to the reports given by Ganguly et 
al.31 The increased resistance to the currently 
used antibiotics has led to an interest in old 
antibiotics, such as colistin.32 Unfortunately, 
the current increase in the use of colistin as the 
last–resort treatment has led to the increase of 
resistance to colistin in these bacteria, which is 
believed to be the next major challenge in the 
context of antibiotic resistance in the coming 
year.32 

There has been a rise in infections caused by K. 
pneumoniae and P. aeruginosa. The increasing 
scarcity of effective treatments makes it even 
worse.33 In our study, nearly three-fourth of the 
K. pneumoniae isolates and two-third of the P. 
aeruginosa isolates were MDR. Khanal et al,21 
Karn et al,22 and Aryal et al27 reported slightly 
lower MDR strains of K. pneumoniae and P. 
aeruginosa, whereas GC et al26 reported much 
lower prevalence. In contrast, Gautam et al34 
and Gurung et al23 reported a slightly higher 
percentage (81.6%) of MDR in K. pneumoniae. 
The highest level of drug resistance seen in 
K. pneumoniae and P. aeruginosa is due to the 
production of various types of β-lactamases, 
primarily AmpC, ESBL, and metallo-β-

lactamases, along with drug efflux.35,36 High 
MDR in countries like Nepal can be attributed to 
the irrational use of antibiotics, self-medication, 
expired or counterfeit drugs.37,38 Similarly, the 
lack of proper infection control measures in 
the hospital and the community can further 
promote MDR strains among bacteria.39 

The global prevalence of carbapenemase has 
been documented from 2.3% - 67.7%.8 In this 
study, 31.1% of K. pneumoniae and 33.9% of 
P. aeruginosa isolates were screened positive 
(imipenem resistant) for carbapenemase 
production, of which 7 (11.9%) K. pneumoniae 
and 5 (12.2%) P. aeruginosa isolates were found 
to be MHT positive. Gurung et al23 reported a 
similar (33.3%), and Gautam et al34 reported a 
much lower (8.4%) imipenem resistance in K. 
pneumoniae than ours. However, MHT positivity 
in K. pneumoniae was much higher in both of 
the studies; 62.5% and 86.8%, respectively.23,34  
Bora et al40 reported a much lower carbapenem 
resistance in K. pneumoniae; however, all of them 
were confirmed as carbapenemase producers 
by MHT. Ramana et al11 and Shanmugam30 from 
India also reported higher carbapenemase 
production in Klebsiella spp. However, GC 
et al26 reported almost similar carbapenem 
resistance (51.4%) and MHT positivity (16.7%) 
in K. pneumoniae. Noyal et al41 reported 31.1% 
resistance to carbapenem (meropenem) in P. 
aeruginosa, of which 28.1% were MHT positive. 
Similarly, Karn et al22 reported a slightly higher 
carbapenemase production in Klebsiella spp. 
and P. aeruginosa by the combined-disk method. 
Amudhan et al42 reported MHT positivity in 
29.5% of the P. aeruginosa isolates. We found 
no significant association between organisms 
and carbapenemase activity.

Detection methods for carbapenemase 
production include MHT, double-disc test, blood 
agar combined disc assay, PCR amplification, 
and DNA sequencing.11 We used MHT as it is a 
cost-effective phenotypic method and has also 
been recommended by CLSI.16 Although the low 
sensitivity in detecting NDM and possibilities of 
false-negative results, mainly when the isolate 
tested is mucoid or when the carbapenemase 
production is low, should be kept in mind.43 
However, incorporation of other phenotypic 
tests along with MHT increases the sensitivity 
and specificity. Our findings will be helpful to 
access the drug resistance pattern and MDR 
prevalence in hospital isolates of K. pneumoniae 
and P. aeruginosa, which will be beneficial in 
optimizing treatment therapies for infections 
caused by such isolates.
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High culture positivity and high MDR among K. 
pneumoniae and P. aeruginosa were seen in this 
study. However, carbapenemase production 
was lower than other studies performed in 
similar settings. Colistin could be a choice of 
drug for the treatment of infections caused by 
MDR strains of K. pneumoniae and P. aeruginosa. 
MHT is a cheap and easy method for screening 
carbapenemase production, particularly for 
clinical laboratories from low-income regions 
like Nepal. 
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