Enveloped viruses like the Coronavirus acquire their envelope from the host cell membrane which is a bilayer of phospholipid interspersed with cholesterol molecules and proteins. Viruses enter their host cell by coming in contact with their specific receptors. Experiments have shown that when cell membranes are depleted of cholesterol in vitro by Methyl beta-cyclodextrin these Corona viruses are not able to enter the host cell membrane by the process of receptor mediated endocytosis. Statin inhibits HMG Co-A reductase, a key enzyme in the Mevalonate pathway resulting into either very low or no production of endogenous cholesterol by the human cells. This results into upregulation of LDL-R in the cell membrane which may lead to more cholesterol getting incorporated into the cell membrane through LDL-C from the plasma creating greater number of lipid rafts suitable for entry of enveloped viruses by receptor-mediated endocytosis.

Receptor-mediated endocytosis of enveloped viruses requires a fusion of the envelope (which is also a bilayer of phospholipid) with the host cell membrane, and studies have shown that this process occurs in areas of lipid rafts. It is a well-known fact that cholesterol are vital for the stability and integrity of bilayer phospholipid membrane structure of eukaryotic cells and it may be equally vital for the stabilization of the Corona envelope.

Enveloped viruses like the Coronavirus acquire their envelope from the host cell membrane which is a bilayer of phospholipid interspersed with cholesterol molecules and proteins. Viruses enter their host cell by coming in contact with their specific receptors. These specific receptors then undergo conformational changes and induce fusion of the viral envelope with the host cell membrane leading to receptor-mediated endocytosis of the virus. For Coronavirus, their specific receptors are Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM-1). Recent studies have shown that the receptors for the COVID-19 may be Angiotensin- Converting Enzyme (ACE) on the respiratory cells. Experiments have shown that when cell membranes are depleted of cholesterol in vitro by Methyl beta-cyclodextrin (MβCD) these Coronavirus are not able to enter the host cell membrane by the process of receptor-mediated endocytosis. It is a well-known fact that cholesterol are vital for the stability and integrity of bilayer phospholipid membrane structure of eukaryotic cells and it may be equally vital for the stabilization of the Corona envelope.

Correspondence: Dr. Sanjaya Kumar Shrestha, MD Department of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal ORCID ID: 0000-0003-2860-6293 Email: sanjayakumar70@gmail.com Submitted: 28th March 2020 Accepted: 1st April 2020 Source of Support: None Conflict of Interest: None Citation: Shrestha SK. Statin drug therapy may increase COVID-19 infection. NMJ 2020;3(1),326-27 DOI 10.3126/nmj.v3i1.28256
proteins (SREBP), function as critical regulators of the genes involved in cholesterol uptake and biosynthesis, such as LDL receptors (LDL-R). Cholesterol level in ER acts as a sensor of intracellular cholesterol. Statins, often prescribed lifelong, creates a chronic deficiency of endogenous cholesterol. The decrease in ER cholesterol induces the translocation of SRE-BP from the ER to the Golgi and then to the nucleus for the transcriptional activation of the target genes, including those involved in cholesterol uptake and biosynthesis, resulting into upregulation of LDL-R in the cell membrane. This constant upregulation of LDL-R in the cell membrane may lead to more cholesterol getting incorporated into the cell membrane through LDL-C from the plasma creating a greater number of lipid raft suitable for entry of enveloped viruses by receptor-mediated endocytosis. Experiments have shown that increasing cholesterol concentration in the cell membrane enhances Coronavirus fusion with the cell membrane leading to enhanced infection and depletion of cholesterol from the cell membrane decreases the entry of these viruses into their host cells. It is a paradox that statins increase cholesterol in the cell membranes which may enhance Coronavirus infection.

Lipid rafts also appear to be involved in the uptake of the malaria parasite Plasmodium falciparum by erythrocytes, a cell type that is normally incapable of endocytosis or phagocytosis. There may be a common mechanism by which the anti-malarial drug, chloroquine, which has been proposed for COVID-19 infection works. Recent epidemiological data show that hypertensives, diabetics, coronary artery disease, and cerebrovascular disease patients are the ones that are developing fulminant COVID-19 disease and these are the patients who are most frequently prescribed statins for either primary or secondary prevention of cardiovascular diseases. According to an article published in the British Medical Journal in 2004 France, Germany, Italy, Spain and the UK of the European continent are the countries with the highest rate of statin intake. The USA is another country where statins are extensively prescribed. These are the parts of the globe with the highest number of Corona infections. Whereas a study published in 2016 in BMJ Open Diabetes Research and Care analyzed prescription data in India and found only 50% of patients with diabetes were prescribed with statins much lower compared to western countries. This could partly explain the relatively lower frequency of Corona infection in the Indian subcontinent. I would thus like to conclude by putting forward my hypothesis that statins create a constant deficiency of endogenous cholesterol content of cells leading to constant upregulation of LDL-R, in turn leading to excessive incorporation of exogenous cholesterol into the cells and their cell membrane. This process leads to multiple lipid rafts on the cell membrane and enhances accessibility for Coronaviruses. This will need to be tested in Virology labs by looking for whether there is a significant difference in Coronavirus infectivity of cells of patients taking statin and cells of individuals not taking a statin.

REFERENCES