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Abstract: Chemostat is a continuous stirred tank reactor used for continuous microbial biomass produc-

tion in commercial, medical and other research problems. While modeling real world phenomena through

differential equations as backbone of practical problems, we need to introduce various parameters. These

parameters may be vague, imprecise and uncertain. To incorporate these uncertainties, the notion of fuzzy

differential equations is used in chemostat model as one of the tool. In this paper, we discuss some new

results for the stability analysis of chemostat model and the results so obtained are justifiable analytically

and verified graphically in fuzzy environment.

Key Words: Chemostat, Fuzzy sets, stability theory, fuzzy differential equations, gH-differentiability.

AMS (MOS) Subject Classification. 34A07 Fuzzy Differential Equations.

1. Introduction

Applied analysis plays an important role to model real natural phenomena;like in the

field of economics, biomathematics, science and engineering. But in the modern era, it is

believed that the information about the physical phenomena may be uncertain. The con-

cept of fuzzy set theory is a powerful tool to overcome these impreciseness. The concept

of fuzzy set theory and differential equations separately lead to focus their work towards

the new concept of the Fuzzy Differential Equations(FDE). In recent years, the research on

FDE has been growing rapidly.

L. A. Zadeh[8] introduced the term fuzzy for the first time in 1965 and gave some examples

where the nature of uncertainty in behavior of given system possesses a fuzzy phenomena.

In 1972,the fuzzy derivative was first conceptualized by Chang and Zadeh[9], whereas the

fuzzy derivative was first introduced by A. Kandel and W. J. Byatt [10], in 1978.

Based on Zadeh’s extension principle[8], Dubois and Prade[13] in 1982, presented the el-

ementary fuzzy calculus. Also, O. Kaleva [16] [17] in 1987 & 1990 and S. Sekkala [18] in

1987, studied the FDE and fuzzy initial value problem. B. Bede[11] in 2007 presented two

characterization theorems for the solution of FDE which translate FDE into crisp ordinary

differential equations.

In 2012, the new concept of generalized derivative for fuzzy mappings and FDEs were dis-

cussed by A. V. Platnikov and N. V. Skripnik [12]. Also, S. P. Mondal et.al [3] solved the
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first order linear homogeneous ordinary differential equation in fuzzy environment in 2013.

In the year 2014, N. V. Hoa and N. D. Phu [2] studied two different types of solutions

of fuzzy functional integro-differential equations. In 2016, S. Paul et.al [14] described the

solution of fuzzy quota harvesting model in fuzzy environment.

The logistic growth model proposed by Pierre-Francois Verhulst in 1838 is as follows:

dP

dt
= rP

(
1− P

K

)
(1.1)

where P (t) represents the population size at time t, r is the intrinsic growth rate and K is

the carrying capacity.

If f(P ) = −cP , for c > 0, is the emigration function. Then, the modified logistic growth

equation will turn out to be chemostat model. The following is the real application of

the logistic growth equation with harvesting function f(P ) = −cP to microbial population

growth in chemostat chamber. If f(P ) = −cP , then the model equation (1.1) becomes

dP

dt
= rP

(
1− P

K

)
− cP(1.2)

which is microbial population growth model and this is about a schematics of a chemostat

with a stock of nutrient C0 pumped into the chamber of a bacterial culture. We assume

that the chemostat chamber is well stirred so that the nutrient concentration is constant at

each time t.

In this paper, we have extended this model equation for the stability analysis of the equilib-

rium points for fuzzy parameters when the immigration function f(P ) is proportional to P

and we have done similar observation in the case of logistic growth model with immigration

function f(P ) = cP , for c > 0 in fuzzy environment [6].

2. Preliminary Concepts

We start with the following definitions.

Definition 2.1. [5] A fuzzy number is a function such as u : R → [0, 1] satisfying the

following properties:

(1) u is normal, i.e ∃x0 ∈ R with u(x0) = 1.

(2) u is a convex fuzzy set i.e u(λx+ (1− λ)y) ≥ min{u(x), u(y)}∀x, y ∈ R,λ ∈ [0, 1]

(3) u is upper semi-continuous on R.
(4) {x ∈ R : u(x) > 0}is compact where A denotes the closure of A.

Definition 2.2. [5] A fuzzy number Ã is said to be triangular if its membership function

µÃ is given by

µÃ(x) =






0 if x ≤ a

x− a

b− a
if a ≤ x ≤ b

c− x

c− b
if b ≤ x ≤ c

0 if x ≥ c
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Definition 2.3. [1] A fuzzy number ũ in parametric form is a pair (u, u) of functions

u(α), u(α), 0 ≤ α ≤ 1 which satisfy the following conditions:

(1) u(α) is bounded non-decreasing left continuous function in (0, 1], and right contin-

uous at 0.

(2) u(α) is bounded non-increasing left continuous function in (0, 1], and right contin-

uous at 0.

(3) u(α) ≤ u(α), 0 ≤ α ≤ 1.

Definition 2.4. The generalized Hukuhara difference (gH-difference) [7] of two fuzzy num-

bers ũ, ṽ ∈ F(R) is defined as follows:

ũ#gH ṽ = w̃ is equivalent to

{
(i) ũ = ṽ ⊕ w̃

(ii) ṽ = ũ⊕ (−1)w̃
In terms of α−cut ũ#gH ṽ = w̃ is equivalent to [w̃]α = [w(α), w(α)] where

w(α) = min{u(α)− v(α), u(α)− v(α)}

and

w(α) = max{u(α)− v(α), u(α)− v(α)}.

Definition 2.5. [4] The generalized Hukuhara derivative of a fuzzy valued function f :

(a, b) → F(R) at point t0 is defined as

f ′(t0) = lim
h→0

f(t0 + h)#gH f(t0)

h

If f ′(t0) ∈ F(R), satisfying the definition of fuzzy set, then f is generalized Hukuhara

differentiable at t0. Also, f(t) is (i)− gH differentiable at t0 if

[
f ′(t0)

]
α
=

[
f ′(t0,α), f ′(t0,α)

]

and f(t) is (ii)− gH differentiable at t0 if

[
f ′(t0)

]
α
=

[
f ′(t0,α), f

′(t0,α)
]
.

Definition 2.6. [4] If the solution of the fuzzy differential equation of the form [x(t,α), x(t,α)],

is called strong solution if

x(t,α)

dα
> 0,

x(t,α)

dα
< 0, for all α ∈ [0,ω], x(t,ω) ≤ x(t,ω).

Otherwise, it is weak solution.

3. Main Results

Let us consider the chemostat model [19] for the microbial population growth in con-

tinuous stir tank vessel of the form

dP

dt
= rP

(
1− P

K

)
− cP(3.1)
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where,

P = Microbial population in the chamber at time t

r = Growth rate of the bacteria in the chamber

c = Rate of bacterial outflow from the chamber

K = Carrying capacity

dP

dt
= Rate of change of bacterial population in the chamber.

Now, if P ∗ is the equilibrium point, then we get P ∗ = 0 and P ∗ = K
(
1− c

r

)
.

If
dP

dt
= rP

(
1− P

K

)
− cP = G(P )

then,

G′(P ) = r − 2Pr

K
− c.

At P ∗ = 0,

G′(0) = r − c

and at P ∗ = K
(
1− c

r

)
.

G′(K
(
1− c

r

)
) = c− r

It can be interpreted as:

If the outflow rate is less than the growth rate of the bacteria,

i.e. c < r then, the equilibrium point P ∗ = 0 is unstable where as P ∗ = K
(
1− c

r

)
is stable.

If s > r, then P ∗ = 0 is stable where as the equilibrium point P ∗ = K
(
1− c

r

)
is unstable

because it is not biologically relevant since it is negative.

The exact solution of the chemostat equation (3.1) is

P =
K(1− c

r )P0

P0 + (K(1− c
r )− P0)e−(r−c)t

If c < r and P0 < K
(
1− c

r

)
but well near to K

(
1− c

r

)
, it will remain smaller than

K
(
1− c

r

)
and will converge to it as t → ∞.

We have discussed for the following three possible cases for analysis of the model equation

(3.1) in fuzzy environment:

I. Initial population is a fuzzy number.

II. Growth rate in the chamber and outflow rate from the chamber are fuzzy numbers.

III. Initial population as well as growth rate and outflow are fuzzy numbers.

We start with the following new theorems:

Theorem 3.1. All the equilibrium points of the system of equations





dx

dt
= ax

(
1− y

K

)
− by

dy

dt
= cy

(
1− x

K

)
− dx

(3.2)
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where a, b, c, d and K are all positive constants, are unstable.

Proof: If (x∗, y∗) is an equilibrium point of the system (3.2), then dx∗

dt = 0 and dy∗

dt = 0.

On simplification we get (0, 0) and E1 =
(
K (ac−bd)

a(c+d) ,K
(ac−bd)
a(c+d)

)
as the equilibrium points of

the system (3.2). So that the Jacobian matrix is

J1 =

[
a
(
1− y

K

)
−ax

K − b

− cy
K − d c

(
1− x

K

)
]
.

Now, the Jacobian matrix at point (0, 0) is

J1(0, 0) =

[
a −b

−d c

]
.

The characteristic equation of J1(0, 0) is

λ2 − pλ+ q = 0

where

p = Tr(J1(0, 0)) = a+ c

and

q = Det(J1(0, 0)) = ac− bd.

If p < 0 and q > 0, then by Routh-Hurwitz criteria, we find that the system is stable but

here p = a+ c > 0, so the equilibrium point (0, 0) is unstable.

Now, at equilibrium point E1, the Jacobian matrix is

J1(E1) =

[
ab(c+d)
c(a+b) − c(a+b)

c+d

−a(c+d)
c+d

cd(a+b)
a(c+d)

]
.

Again, the characteristic equation of J1(E1) is given by

λ2 − p1λ+ q1 = 0

where p1 = Tr(J1(E1)) and q1 = Det(J1(E1)).

Here, p1 = Tr(J1(E1)) =
ab(c+d)
c(a+b) + cd(a+b)

a(c+d) > 0 so, by Routh-Hurwitz criteria, we see that

the equilibrium point E1 is unstable.

If we interchange the variables x and y in the left hand side of the system of differential

equations in the Theorem 3.1, we have the following result:

Theorem 3.2. Among all the equilibrium points of the system of equations





dy

dt
= ax

(
1− y

K

)
− by

dx

dt
= cy

(
1− x

K

)
− dx

(3.3)

where a, b, c, d and K are all positive constants,

(1) The trivial equilibrium point (0, 0) is stable if ac < bd, and

(2) The co-existential equilibrium point is stable if ac > bd.
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The proof is as similar as in Theorem 3.1.

We consider the model equation when the initial population is a fuzzy number and the

solution is as follows:

Let P̃ (0) = P̃0 is a triangular fuzzy number and let us consider (P̃ (t))α = [P (t), P (t)] is the

α-cut of the solution. Then, the following two sub cases arises:

Case I: P̃ (t) is (i)− gH differentiable.

Then, the model equation (3.1) becomes





dP

dt
= rP

(
1− P

K

)
− cP

dP

dt
= rP

(
1− P

K

)
− cP

(3.4)

So that, by Theorem 3.1, we can claim that all the equilibrium points of the system (3.4)

are unstable.

Case II: P̃ (t) is (ii)-gH differentiable.

Then, model equation (3.1) becomes






dP

dt
= rP

(
1− P

K

)
− cP

dP

dt
= rP

(
1− P

K

)
− cP

(3.5)

The system of equations (3.5) have two equilibrium points (0, 0) and
(
K

(
1− c

r

)
,K

(
1− c

r

))

Using the Theorem 3.2, we can claim that the trivial equilibrium point (0, 0) of the system

is stable if c > r and non-trivial equilibrium point
(
K

(
1− c

r

)
,K

(
1− c

r

))
is stable if r > c.

The four graphs in Figure 1 represent the solutions of the chemostat equations (3.1) when P̃

is (ii)−gH differentiable for r = 0.1,K = 100, the fuzzy initial value P̃ (0) = [20, 25, 30] and

c = 0.05 for r > c and c = 0.15 for r < c. The crisp solution lies between the fuzzy solutions

and fuzzy solutions are closure to crisp solution when α is increased from towards one and

collide when α = 1 . Therefore, the fuzziness is well verified and solution so obtained is the

strong fuzzy solution.

Now, we consider the growth rate and outflow rates as fuzzy numbers which are given by

following cut sets r̃ = [r, r] andc̃ = [c, c]. Then, we have the following two cases:

Case I: P̃ (t) is (i)-gH differentiable.

Then, the model equation (3.1) implies the following





dP

dt
= r.P

(
1− P

K

)
− c.P

dP

dt
= r.P

(
1− P

K

)
− c.P

(3.6)

So, by Theorem 3.1 the system of differential equations is unstable for every equilibrium

points.

Case II: P̃ (t) is (ii)-gH differentiable.
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Figure 1. Graphs represented by chemostat equations (3.5) for different

cut sets when α to be 0, 0.5, 0.8 and 1 respectively.

Then, the model equation (3.1) is transformed into





dP

dt
= r.P

(
1− P

K

)
− c.P

dP

dt
= r.P

(
1− P

K

)
− c.P

(3.7)

So, the system (3.7) has the trivial equilibrium point (0, 0) which is stable if cc > rr and

non-trivial equilibrium point
(
K (rr−cc)

r(r+c) ,K
(rr−cc)
r(r+c)

)
which is stable if cc < rr.

The four graphs in Figure 2 represent fuzzy solutions of the chemostat equations

(3.1) when P̃ is (ii) − gH differentiable for P (0) = 35,K = 100 r̃ = [.096, .1, .104] and

c̃ = [0.046, 0.05, 0.054] for rr > cc and c̃ = [0.11, 0.15, 0.19] for rr < cc. The crisp solution

lies between the fuzzy solutions and fuzzy solutions are closure to crisp solution when α is

increased from towards one and collide when α = 1 . Therefore, the fuzziness is well verified

and solution so obtained is the strong fuzzy solution.
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The proof is as similar as in Theorem 3.1.

We consider the model equation when the initial population is a fuzzy number and the

solution is as follows:

Let P̃ (0) = P̃0 is a triangular fuzzy number and let us consider (P̃ (t))α = [P (t), P (t)] is the

α-cut of the solution. Then, the following two sub cases arises:

Case I: P̃ (t) is (i)− gH differentiable.

Then, the model equation (3.1) becomes





dP

dt
= rP

(
1− P

K

)
− cP

dP

dt
= rP

(
1− P

K

)
− cP

(3.4)

So that, by Theorem 3.1, we can claim that all the equilibrium points of the system (3.4)

are unstable.

Case II: P̃ (t) is (ii)-gH differentiable.

Then, model equation (3.1) becomes






dP

dt
= rP

(
1− P

K

)
− cP

dP

dt
= rP

(
1− P

K

)
− cP

(3.5)

The system of equations (3.5) have two equilibrium points (0, 0) and
(
K

(
1− c

r

)
,K

(
1− c

r

))

Using the Theorem 3.2, we can claim that the trivial equilibrium point (0, 0) of the system

is stable if c > r and non-trivial equilibrium point
(
K

(
1− c

r

)
,K

(
1− c

r

))
is stable if r > c.

The four graphs in Figure 1 represent the solutions of the chemostat equations (3.1) when P̃

is (ii)−gH differentiable for r = 0.1,K = 100, the fuzzy initial value P̃ (0) = [20, 25, 30] and

c = 0.05 for r > c and c = 0.15 for r < c. The crisp solution lies between the fuzzy solutions

and fuzzy solutions are closure to crisp solution when α is increased from towards one and

collide when α = 1 . Therefore, the fuzziness is well verified and solution so obtained is the

strong fuzzy solution.

Now, we consider the growth rate and outflow rates as fuzzy numbers which are given by

following cut sets r̃ = [r, r] andc̃ = [c, c]. Then, we have the following two cases:

Case I: P̃ (t) is (i)-gH differentiable.

Then, the model equation (3.1) implies the following





dP

dt
= r.P

(
1− P

K

)
− c.P

dP

dt
= r.P

(
1− P

K

)
− c.P

(3.6)

So, by Theorem 3.1 the system of differential equations is unstable for every equilibrium

points.

Case II: P̃ (t) is (ii)-gH differentiable.
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Figure 1. Graphs represented by chemostat equations (3.5) for different

cut sets when α to be 0, 0.5, 0.8 and 1 respectively.

Then, the model equation (3.1) is transformed into





dP

dt
= r.P

(
1− P

K

)
− c.P

dP

dt
= r.P

(
1− P

K

)
− c.P

(3.7)

So, the system (3.7) has the trivial equilibrium point (0, 0) which is stable if cc > rr and

non-trivial equilibrium point
(
K (rr−cc)

r(r+c) ,K
(rr−cc)
r(r+c)

)
which is stable if cc < rr.

The four graphs in Figure 2 represent fuzzy solutions of the chemostat equations

(3.1) when P̃ is (ii) − gH differentiable for P (0) = 35,K = 100 r̃ = [.096, .1, .104] and

c̃ = [0.046, 0.05, 0.054] for rr > cc and c̃ = [0.11, 0.15, 0.19] for rr < cc. The crisp solution

lies between the fuzzy solutions and fuzzy solutions are closure to crisp solution when α is

increased from towards one and collide when α = 1 . Therefore, the fuzziness is well verified

and solution so obtained is the strong fuzzy solution.
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Figure 2. Graphs represented by chemostat equations (3.7) for different

cut sets when α is 0, 0.5, 0.8 and 1 respectively.

Now, consider the case when the initial population as well as growth rate and immi-

gration rates are fuzzy numbers. The stability condition in this section is exactly same

as previous in which intrinsic growth rate and immigration constant are fuzzy numbers.

Therefore, only numerical verification is presented here. The four graphs in Figure 3 repre-

sent the fuzzy solutions of the chemostat equations (3.1) when P̃ is (ii)− gH differentiable

for P (0) = [20, 25, 30],K = 100 r̃ = [.096, .1, .104] and c̃ = [0.046, 0.05, 0.054] for rr > cc

and c̃ = [0.11, 0.15, 0.19] for rr < cc. The crisp solution lies between the fuzzy solutions

and fuzzy solutions are closure to crisp solution when α is increased from towards one and

collide when α = 1 . Therefore, the fuzziness is well verified and solution so obtained is the

strong fuzzy solution.
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Figure 3. Graphs represented by chemostat equations (3.5) with fuzzy ini-

tial value for different cut sets when α to be 0, 0.5, 0.8 and 1 respectively.

4. Conclusion

Our paper is the extension of the results of Paul et.al[14] in terms of harvesting function

and transformation of the immigration function by V. Kumar and S. Lal [15] in fuzzy

environment. Our results explain the fuzzy phenomena of the microbial population growth

model in chemostat vessel. Also, some new results show the stability of chemostat model

for gH-differentiability and have been successfully applied. The results so obtained are

justifiable analytically and verified graphically.

References

[1] L. Hooshangian, Analytic solution of fuzzy second order differential equations under {H}-derivation,
Turkish Journal of Fuzzy System, Vol. 7, pp 55-67, 2016

[2] N. V. Hoa and N. D. Phu, Fuzzy functional integro-differential equations undergeneralized {H}-
differentiability, Journal of Intelligent & Fuzzy System, Vol. 26, pp 2073-2085, 2014

[3] S. P. Mondal, S. Benergee and T. K. Roy, First order linear homogeneous ordinary differential equation

in fuzzy environment, International Journal of Pure and Applied Science and Technology, Vol. 14, pp

16-26, 2013

[4] S. P. Mondal and T. K. Roy, Solution of second order linear differential equation in fuzzy environment,

Annals of Fuzzy Mathematics and Informatics, Vol. 11, pp 197-221, 2016

[5] S. Tapaswini and S. Chakraverty, Numerical Solution of nth order fuzzy linear differential equations

by homotopy perturbation method, International Journal of Computer Applications, Vol. 64, pp 5-10,

2013

8



8 HARISH CHANDRA BHANDARI & KANHAIYA JHA

//

Figure 2. Graphs represented by chemostat equations (3.7) for different

cut sets when α is 0, 0.5, 0.8 and 1 respectively.

Now, consider the case when the initial population as well as growth rate and immi-

gration rates are fuzzy numbers. The stability condition in this section is exactly same

as previous in which intrinsic growth rate and immigration constant are fuzzy numbers.

Therefore, only numerical verification is presented here. The four graphs in Figure 3 repre-

sent the fuzzy solutions of the chemostat equations (3.1) when P̃ is (ii)− gH differentiable

for P (0) = [20, 25, 30],K = 100 r̃ = [.096, .1, .104] and c̃ = [0.046, 0.05, 0.054] for rr > cc

and c̃ = [0.11, 0.15, 0.19] for rr < cc. The crisp solution lies between the fuzzy solutions

and fuzzy solutions are closure to crisp solution when α is increased from towards one and

collide when α = 1 . Therefore, the fuzziness is well verified and solution so obtained is the

strong fuzzy solution.

AN ANALYSIS OF MICROBIAL POPULATION OF CHEMOSTAT MODEL IN FUZZY ENVIRONMENT 9

Figure 3. Graphs represented by chemostat equations (3.5) with fuzzy ini-

tial value for different cut sets when α to be 0, 0.5, 0.8 and 1 respectively.

4. Conclusion

Our paper is the extension of the results of Paul et.al[14] in terms of harvesting function

and transformation of the immigration function by V. Kumar and S. Lal [15] in fuzzy

environment. Our results explain the fuzzy phenomena of the microbial population growth

model in chemostat vessel. Also, some new results show the stability of chemostat model

for gH-differentiability and have been successfully applied. The results so obtained are

justifiable analytically and verified graphically.

References

[1] L. Hooshangian, Analytic solution of fuzzy second order differential equations under {H}-derivation,
Turkish Journal of Fuzzy System, Vol. 7, pp 55-67, 2016

[2] N. V. Hoa and N. D. Phu, Fuzzy functional integro-differential equations undergeneralized {H}-
differentiability, Journal of Intelligent & Fuzzy System, Vol. 26, pp 2073-2085, 2014

[3] S. P. Mondal, S. Benergee and T. K. Roy, First order linear homogeneous ordinary differential equation

in fuzzy environment, International Journal of Pure and Applied Science and Technology, Vol. 14, pp

16-26, 2013

[4] S. P. Mondal and T. K. Roy, Solution of second order linear differential equation in fuzzy environment,

Annals of Fuzzy Mathematics and Informatics, Vol. 11, pp 197-221, 2016

[5] S. Tapaswini and S. Chakraverty, Numerical Solution of nth order fuzzy linear differential equations

by homotopy perturbation method, International Journal of Computer Applications, Vol. 64, pp 5-10,

2013

9



10 HARISH CHANDRA BHANDARI & KANHAIYA JHA

[6] H.C. Bhandari and K. Jha, An analysis of logistic growth model with immigration function in fuzzy

environment,Indian Journal of Scientific Research Vol. 9, pp 43-48, 2019

[7] L. Takata, G. L. C. de Barros and B. Bede, Fuzzy Differential Equations in Various Approaches, Springer

International Publishing , AG Switzerland, 2015

[8] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp 338-353, 1965

[9] S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Transctions on Systems, Man and

Cybernetics, Vol. 2, pp 30-34, 1972

[10] A. Kandel and W. J. Byatt, Fuzzy sets, fuzzy algebra, and fuzzy statistics, Proceedings of the IEEE,

Vol. 66, pp 1619-1639, 1978

[11] , B. Bede, Note on Numerical solutions of fuzzy differential equations by predictorcorrector method,

Information Sciences, Vol. 178, pp 1917-1922, 2008

[12] A. V. Plotnikov and N. V. Skripnik, Fuzzy differential equations with generalized derivative, Journal

of Fuzzy Set Valued Analysis, Vol. 2012, pp 1-12, 2012

[13] D. Dubois and H. Prade, Towards fuzzy differential calculus part 3: differentiation, Fuzzy Sets and

Systems International Mathematics Forum, Vol. 8, pp 225-233, 1982

[14] S. Paul, S. P. Mondal and P. Bhattacharya, Discussion on fuzzy quota harvesting model in fuzzy

environment: fuzzy differential equation approach, Modeling Earth Systems and Environment, Vol. 2,

pp 1-15, 2016

[15] V. Kumar and S. Lal, Stability analysis of logistic growth model with immigration effect, Indian Journal

of Scientific Research, Vol. 16, pp 112-119, 2017

[16] O. Kaleva, Fuzzy differential equations Fuzzy Sets and Systems, Vol. 24, pp 301-317, 1987

[17] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, Vol. 35, pp

389-396, 1990

[18] , S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, Vol. 24, pp 319-330, 1987

[19] C. S. Chou and A. Friedman, Introduction to Mathematical Biology-Modeling, Analysis, and Simula-

tions, Springer International Publishing, Switzerland, 2016

The Nepali Math. Sc. Report

Vol.36, No.1 and 2, 2019

MODEL AND SOLUTION FOR NON-CONSERVATION FLOW
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Abstract: Efficient evacuation plan with which a maximum evacuees can be sent as soon as possible

from the disastrous place to the safe place is an important notion during the response phase of the disaster

management. Such a plan in terms of optimization models has been extensively studied in a various scenarios,

see [3]. The optimization models have been based on the flow conservation constraint which permits an

evacuee to be taken out of the disastrous place only if it can be sent into the safe place. However, the

evacuation plan model with no flow conservation can keep several evacuees in the relatively safe places

besides the evacuees which could be sent into the safe place.

In this paper, we describe an optimization model for the evacuation plan based on the non-conservation

flow constraint with an efficient solution procedure which keeps a maximum evacuees on the prioritized

intermediate places besides a maximum evacuees into the specified safe place.

Key Words: Network Flow, Flow Conservation, Preflow-Push Algorithm, Evacuation Planning Problem
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1. Introduction

Disaster management includes prevention which attempts permanent protection from

disasters, planning which focuses on preparing the equipment and procedures for the use

during the response after the disaster and recovery which attempts to bring the affected area

and people back to normalcy. Efficient evacuation planing over the existing road network is

an important notion of the planning phase of the disaster management. The main objective

of the evacuation planning is to find an efficient procedure so that maximum number of

evacuees can be evacuated from the disastrous place, the source, as soon as possible to the

safe place, the sink. The procedure can also be useful for the traffic mitigation during the

rush hour in a crowd urban area.

Evacuation plan modeled with flow conservation allows evacuees to leave the source only

if they can reach the sink. The literature has been flourished with wide range of studies on

the problems based on this characteristic since the investigation of two-terminal maximum

static flow problem in [4], see the survey articles [9] and [3]. The maximum dynamic flow

problem, that maximizes the flow from a source to a sink in given time horizon, has been

studied in [5] and [6]. Moreover, minimizing the total time to send the given flow from the

source to the sink, known as quickest flow problem and maximizing flow into the sink at
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