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Abstract: We consider a simplified model for the simulation of suspended ellipsoidal particles in fluid flow

presented in [1] and investigate the calibration of the model from lab size experiments. Data have been

recorded using a camera set-up and post-processing of the pictures. The model uses a simplified description

for the orientation and position of the particles based on Jeffery’s equation. Additionally, particle-particle

interaction and particle-wall interaction are taken into account.

Key Words: Ellipsoidal particles; Jeffery’s equation; CFD simulation; experimental validation; immersed

rigid body
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1. Introduction

In many industrial applications the simulation of the motion of particles suspended

in a fluid is required. In the present work we consider non-spherical, ellipsoidal particles

with particle-particle and particle-wall collisions. We describe the movement of ellipsoidal

particles in a fluid using a simplified Langevin approach, see [1]. This means we use a system

of stochastic differential equations based on Newtonian laws of mechanics and stochastic

terms and calibrate the model with experimental data. To model the forces acting on the

particles in the fluid, we use the model of Jeffery [5, 12, 7]. While spherical particles allow for

a simple calculation of the forces acting on them, calculating the forces acting on deformed

particles is more complicated, compare [17, 18]. Here, the particle-particle interaction of the

ellipses are described via pairwise interaction potentials and a random force. The potentials

we use are common in the literature of polymers [10, 6, 3, 9, 13, 8], where the shape of the

ellipses are modeled with the help of Gaussian type functions. This leads to a model similar

to the one described in [15, 2, 14, 7]. For macroscopic approximations of this particle model,

see [1]. We note that for the applicability to a wider range of industrial applications such
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as simulation of bubbles inside chemical reactors or treatment/classification of grains, see

[19, 20] an expanded version of the basic model discussed here would be required.

The paper is organized as follows. In section 2, we describe the lab experiment, where

a channel has been filled with water and ellipsoidal particles. A camera system has been

used to evaluate different parameters of the particle flow. With a suitable image analysis

software we determine movement speed, orientation and residence density of the considered

particles. In section 3, a CFD simulation of the fluid flow inside the channel is investigated

and coupled to the simulation of the interacting ellipsoidal particle model in section 4.

Further, in section 4, the model is calibrated with data from lab experiment. Finally, the

calibrated model is compared to the experimental data in section 5.

2. Experiment

We consider an acrylic glass channel with measures as shown in Figure 1. The channel is

completely filled with reverse osmosis water, air bubbles at the lid were carefully removed.

In- and outflow are connected to a pumping system which gives a constant flow of V̇ =
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Figure 1. Picture of the acrylic glass channel on the left and the corre-

sponding measures (in mm) on the right.

66.24 l
h . At the inflow cross section of A = 9.2 mm2 an average fluid velocity of u = 2 m

s

is reached. The water flows in at the top channel and forms a circular stream in counter-

clockwise direction with a mean fluid velocity of umean = 0.18 m
s . This results in a channel

Reynolds number of Re = 4350, which implies a flow in the transitional domain. The

particles added to the flow resemble prolate rotational spheroids with a major radius of

L = 4.9 mm and minor radius of D = 2.5 mm as shown in Figure 2. Due to their density

of ρ = 0.95 g
cm3 the particles float slightly inside the water with ρ = 1 g

cm3 . Particles have

been tested individually and in an ensemble of N = 25 particles to detect the orientation

and position inside the channel. Since the flow inside the pump and channel can not be

switched on instantaneously, we start the detection of particles when the steady-state flow

is reached. We detect the particle motion for T = 10 s with a frame rate of fps = 25 s−1.

The mean particle velocity in the channel is vmean = 0.09 m
s which gives a particle Reynolds

number of Rep = 436, implying a laminar-turbulent transitional flow around the particles.
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Figure 2. The particles which are used for the experiment.

2.1. Post-processing. In the post-processing step we use the resulting pictures to analyze

the particle information with the help of the program ImageJ [16]. Since the particles have

a dark color, it is possible to separate them with a threshold binarization technique. In

a second step a watershed algorithm separates particles which are in direct contact and

would be recognized as one larger particle otherwise. At last ImageJ measures the position,

orientation, size and boundary line of each particle. This embodies the major and minor axis

lengths and the angle of the major axis compared to the picture coordinate system. In total

we obtain the spatial and directional distribution and the velocity of the particles. Another

Figure 3. Stepwise post-processing of a picture in ImageJ

approach consists in utilizing the standard deviation of the pictures. An area of the channel,

where it is not possible to find a particle would always show the same color/brightness on

every picture. Particles increase the deviation of the brightness the more often they pass

a pixel. Hence the deviation of brightness values also gives the spatial distribution of the

particles. This can also be done with or without binarizing the pictures at first.

Figure 4 shows resulting deviation pictures, where darker areas stand for higher residence

probability of a particle. On the left picture, note the clearly visible single particle trajectory

and position of wall contact. Also the particle velocity can be deduced from the pattern of

the trajectory. Here the particle is much faster in the upper channel than it is in the lower

one.

The right picture was calculated from a multiple particle experiment. It is clearly

visible that particles are not scattered uniformly but have a higher probability to be found

near the walls of the channel. In the upper channel they are concentrated at the outer wall
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as simulation of bubbles inside chemical reactors or treatment/classification of grains, see

[19, 20] an expanded version of the basic model discussed here would be required.

The paper is organized as follows. In section 2, we describe the lab experiment, where

a channel has been filled with water and ellipsoidal particles. A camera system has been

used to evaluate different parameters of the particle flow. With a suitable image analysis

software we determine movement speed, orientation and residence density of the considered

particles. In section 3, a CFD simulation of the fluid flow inside the channel is investigated

and coupled to the simulation of the interacting ellipsoidal particle model in section 4.

Further, in section 4, the model is calibrated with data from lab experiment. Finally, the

calibrated model is compared to the experimental data in section 5.
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We consider an acrylic glass channel with measures as shown in Figure 1. The channel is
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sponding measures (in mm) on the right.

66.24 l
h . At the inflow cross section of A = 9.2 mm2 an average fluid velocity of u = 2 m

s

is reached. The water flows in at the top channel and forms a circular stream in counter-

clockwise direction with a mean fluid velocity of umean = 0.18 m
s . This results in a channel

Reynolds number of Re = 4350, which implies a flow in the transitional domain. The

particles added to the flow resemble prolate rotational spheroids with a major radius of

L = 4.9 mm and minor radius of D = 2.5 mm as shown in Figure 2. Due to their density

of ρ = 0.95 g
cm3 the particles float slightly inside the water with ρ = 1 g

cm3 . Particles have

been tested individually and in an ensemble of N = 25 particles to detect the orientation

and position inside the channel. Since the flow inside the pump and channel can not be

switched on instantaneously, we start the detection of particles when the steady-state flow

is reached. We detect the particle motion for T = 10 s with a frame rate of fps = 25 s−1.

The mean particle velocity in the channel is vmean = 0.09 m
s which gives a particle Reynolds

number of Rep = 436, implying a laminar-turbulent transitional flow around the particles.
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Figure 2. The particles which are used for the experiment.

2.1. Post-processing. In the post-processing step we use the resulting pictures to analyze

the particle information with the help of the program ImageJ [16]. Since the particles have

a dark color, it is possible to separate them with a threshold binarization technique. In

a second step a watershed algorithm separates particles which are in direct contact and

would be recognized as one larger particle otherwise. At last ImageJ measures the position,

orientation, size and boundary line of each particle. This embodies the major and minor axis

lengths and the angle of the major axis compared to the picture coordinate system. In total

we obtain the spatial and directional distribution and the velocity of the particles. Another

Figure 3. Stepwise post-processing of a picture in ImageJ

approach consists in utilizing the standard deviation of the pictures. An area of the channel,

where it is not possible to find a particle would always show the same color/brightness on

every picture. Particles increase the deviation of the brightness the more often they pass

a pixel. Hence the deviation of brightness values also gives the spatial distribution of the

particles. This can also be done with or without binarizing the pictures at first.

Figure 4 shows resulting deviation pictures, where darker areas stand for higher residence

probability of a particle. On the left picture, note the clearly visible single particle trajectory

and position of wall contact. Also the particle velocity can be deduced from the pattern of

the trajectory. Here the particle is much faster in the upper channel than it is in the lower

one.

The right picture was calculated from a multiple particle experiment. It is clearly

visible that particles are not scattered uniformly but have a higher probability to be found

near the walls of the channel. In the upper channel they are concentrated at the outer wall
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Figure 4. Brightness deviation of pictures from single and multiple particle

experiments

while in the lower channel they appear to be more present at the inner wall. The lighter

spots in the picture are a result of measurement errors, that originate from light reflections

on the lid of the channel.

3. CFD simulation

A CFD simulation for incompressible laminar flow was used to calculate the flow pattern

inside the channel. The fluid velocity field obtained from this simulation was then used for

the particle simulation, see the next section. We note that measurements have been solely

made on the middle part of the channel, the corners have not been part of any experimental

evaluation. Thus, for simplicity, the CFD domain was chosen rectangular. In cm the fluid

domain is given by

ΩF = [0 29]× [0 5]× [0 2.5] \ [2.5 26.5]× [2.25 2.75]× [0 2.5].

For the boundary conditions we choose

• Inflow velocity of 2m/s in ΩIN = {29}× [3.7 0.4]× [1.1 1.4].

• Free outflow at ΩOUT = {29}× [0 2.25]× [0 2.25].

• No-slip condition for the other boundaries.

Transport properties were set to standard values of pure water, namely incompressible fluid

with density ρ = 1000 kg
m3 and viscosity ν = 10−6m2

s .

A mesh with 325250 cells has been used to represent the domain, giving a resolution of

approximately 1mm3 per cell. The simulation has been carried out using a laminar scheme.

The typical flow pattern is shown in Figure 5. The high inflow velocity causes the flow

to fluctuate inside the upper channel. The flow data used in the particle simulation were

smoothed by averaging the velocity field over ∆t = 20 s. Since the inflow velocity is rather

high, a clearly developed eddy shows up in the upper channel. In this area the fluid can

move against the overall counter-clockwise direction eventually dragging particles with it.

This behavior could be confirmed in the experiment (and simulation). The lower channel

shows a smoother velocity profile. Only a small eddy is present directly behind the bend.

The outflow in the lower right corner of the channel shows no significant influence on the

flow pattern.
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Figure 5. CFD simulation results showing fluid velocity and streamlines.

The CFD simulation was solved for the 3D case whereas for the particle model a 2D

microscopic system is used, see the next section. Therefore, CFD-data had to be converted

to the 2D model. This was done by mapping a plane through the middle of the computa-

tional domain. Fluid velocities in z-direction were small enough to be neglected, thus the

resulting 2D velocity field is a good approximation of the real flow pattern.

4. The Model

To describe the movement of the ellipsoidal particles suspended in an incompress-

ible fluid, we consider a microscopic Langevin-type model as in [7]. We use a basic two-

dimensional model with minimal number of forces and few assumptions. The interaction

of the fluid with the ellipses is described by a Jeffery’s type term [5, 12] and the particle

interaction is given by a many-particle interaction potential similar to [6]. Each particle

is described by its position rt ∈ R2, velocity vt ∈ R2, orientation angle θt ∈ [0, 2π) and

angular velocity ωt ∈ R. The angle θt describes the relative angle between the horizontal

axis and the main axis of the particle, such that θt = 0 corresponds to the orientation

(1, 0)T . Then, the equation of motion for N particles i = 1, . . . , N are






drit = vitdt

dvit = γ(u− vit)dt−
1

m

1

N

∑

i !=j

∇riU(rit, r
j
t , θ

i
t, θ

j
t )dt

− (A2/2)vitdt+AdWA,i
t

dθit = ωi
tdt

dωi
t = γ̄(g(θit, u)− ωi

t)dt−
1

Ic

1

N

∑

i !=j

∇θiU(rit, r
j
t , θ

i
t, θ

j
t )dt

− (B2/2)ωi
tdt+BdWB,i

t ,

(4.1)

with appropriate initial conditions. Here u is the velocity of a surrounding fluid computed

by the CFD simulation described in the last section. For the surrounding fluid, we assume
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Figure 4. Brightness deviation of pictures from single and multiple particle

experiments

while in the lower channel they appear to be more present at the inner wall. The lighter

spots in the picture are a result of measurement errors, that originate from light reflections

on the lid of the channel.

3. CFD simulation

A CFD simulation for incompressible laminar flow was used to calculate the flow pattern

inside the channel. The fluid velocity field obtained from this simulation was then used for

the particle simulation, see the next section. We note that measurements have been solely

made on the middle part of the channel, the corners have not been part of any experimental

evaluation. Thus, for simplicity, the CFD domain was chosen rectangular. In cm the fluid

domain is given by

ΩF = [0 29]× [0 5]× [0 2.5] \ [2.5 26.5]× [2.25 2.75]× [0 2.5].

For the boundary conditions we choose

• Inflow velocity of 2m/s in ΩIN = {29}× [3.7 0.4]× [1.1 1.4].

• Free outflow at ΩOUT = {29}× [0 2.25]× [0 2.25].

• No-slip condition for the other boundaries.

Transport properties were set to standard values of pure water, namely incompressible fluid

with density ρ = 1000 kg
m3 and viscosity ν = 10−6m2

s .

A mesh with 325250 cells has been used to represent the domain, giving a resolution of

approximately 1mm3 per cell. The simulation has been carried out using a laminar scheme.

The typical flow pattern is shown in Figure 5. The high inflow velocity causes the flow

to fluctuate inside the upper channel. The flow data used in the particle simulation were

smoothed by averaging the velocity field over ∆t = 20 s. Since the inflow velocity is rather

high, a clearly developed eddy shows up in the upper channel. In this area the fluid can

move against the overall counter-clockwise direction eventually dragging particles with it.

This behavior could be confirmed in the experiment (and simulation). The lower channel

shows a smoother velocity profile. Only a small eddy is present directly behind the bend.

The outflow in the lower right corner of the channel shows no significant influence on the

flow pattern.
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Figure 5. CFD simulation results showing fluid velocity and streamlines.

The CFD simulation was solved for the 3D case whereas for the particle model a 2D

microscopic system is used, see the next section. Therefore, CFD-data had to be converted

to the 2D model. This was done by mapping a plane through the middle of the computa-

tional domain. Fluid velocities in z-direction were small enough to be neglected, thus the

resulting 2D velocity field is a good approximation of the real flow pattern.

4. The Model

To describe the movement of the ellipsoidal particles suspended in an incompress-

ible fluid, we consider a microscopic Langevin-type model as in [7]. We use a basic two-

dimensional model with minimal number of forces and few assumptions. The interaction

of the fluid with the ellipses is described by a Jeffery’s type term [5, 12] and the particle

interaction is given by a many-particle interaction potential similar to [6]. Each particle

is described by its position rt ∈ R2, velocity vt ∈ R2, orientation angle θt ∈ [0, 2π) and

angular velocity ωt ∈ R. The angle θt describes the relative angle between the horizontal

axis and the main axis of the particle, such that θt = 0 corresponds to the orientation

(1, 0)T . Then, the equation of motion for N particles i = 1, . . . , N are






drit = vitdt

dvit = γ(u− vit)dt−
1

m

1

N

∑

i !=j

∇riU(rit, r
j
t , θ

i
t, θ

j
t )dt

− (A2/2)vitdt+AdWA,i
t

dθit = ωi
tdt

dωi
t = γ̄(g(θit, u)− ωi

t)dt−
1

Ic

1

N

∑

i !=j

∇θiU(rit, r
j
t , θ

i
t, θ

j
t )dt

− (B2/2)ωi
tdt+BdWB,i

t ,

(4.1)

with appropriate initial conditions. Here u is the velocity of a surrounding fluid computed

by the CFD simulation described in the last section. For the surrounding fluid, we assume
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that the influence of the particle to the fluid is negligible. The function g(θ, u) is given by

g(θ, u) =
1

2
curl(u) + λ

(
− sin θ

cos θ

)!(
1

2
(∇u+∇u!)

)(
cos θ

sin θ

)
.

The first terms on the right hand side of the velocity and angular velocity equations describe

the relaxation of the particles to the velocity of the fluid and to the rotation resulting from

the velocity field, respectively. The speed of relaxation is determined by the friction param-

eters γ and γ̄. The second term models the repulsive interaction between the particles. To

model the interaction between two ellipsoidal particles, there exist many different potentials

[10, 6, 3, 9, 13, 8]. We use the soft potential as proposed by Berne [6]. It is obtained by

overlapping two ellipsoidal Gaussians representing the mutual repulsion of two particles.

This leads to

Ũ(r, r̄, θ, θ̄) = a(θ, θ̄) exp
(
− (r̄ − r)

(
γ(θ) + γ(θ̄)

)−1
(r̄ − r)

)
,

where a and γ are defined by

a(θ, θ̄) = ε0
(
1− λ2(η(θ) · η(θ̄))2

)− 1
2 , η(θ) = (cos θ, sin θ)!,

γ(θ) =
(
l2 − d2

)
η(θ)⊗ η(θ̄) + d2!, λ =

l2 − d2

l2 + d2
.

Here, l = 2L and d = 2D where L is the major and the D the minor radius of the particle.

The parameter ε0 models the strength of the potential. To have compact support we slightly

modify the potential and define

U(r, r̄, θ, θ̄) = a(θ, θ̄) exp

(
−

(r̄ − r)
(
γ(θ) + γ(θ̄)

)−1
(r̄ − r)

1− (r̄ − r)
(
γ(θ) + γ(θ̄)

)−1
(r̄ − r)

)
.(4.2)

The parameters m and Ic are the mass and the moment of inertia of the particles. Further-

more, A,B are non-negative diffusion constants and WA,i,WB,i are independent standard

Brownian motions.

4.1. Numerical Set Up. We consider the length of the channel in cm and the following

domain

Ω = [0 29]× [0 5] \ [2.5 26.5]× [2.25 2.75].

To include wall boundaries, we insert ghost particles with distance l/2 at the boundaries

with orientations parallel to the respective wall. The interaction potential is given by

equation (4.2). For the interaction of the boundary particles with the inner particles, we

increase the value of ε0 by a factor of 10. For the surrounding fluid we us the results of the

CFD simulation as described in Section 3. As mentionend before, to use the resulting 3D

velocity field in the two-dimensional set up, we choose the time-averaged velocity field of

the middle plane in z-direction (compare Figure 6).

Then we set the following parameters according to the experiment

l = 0.49 cm, d = 0.25 cm, T = 10 s.
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Figure 6. Experiment: velocity field of the surrounding fluid is given by

the blue arrows, and the wall boundaries are indicated by the red line.

The mass m and moment of inertia Ic for the ellipsoidal particles are given by

m = ρV = ρ
4

3
πLD2 = 0.97 g,

Ic =
m

5
(L2 +D2) = 0.25 gcm2.

The friction parameters for translational motion γt and rotational motion γr are only given

in the direction of the main axis of the particle [11, 4]. They have the following form

TL
t = 16πη̄

L2 −D2

(2L2 −D2)S − 2L
,

TD
t = 32πη̄

L2 −D2

(2L2 − 3D2)S − 2L
,

TL
r =

32

3
πη̄

(L2 −D2)D2

2L−D2S
,

TD
r =

32

3
πη̄

L4 −D4

(2L2 −D2)S − 2L
,

where

S =
2√

L2 −D2
log

(
L+

√
L2 −D2

D

)
,

and η̄ is the viscosity of the fluid.

To get the correct friction parameters for our model, we have to divide TL
t and TD

t by the

mass m and TL
r and TD

r by the moment of inertia Ic. Furthermore, we use the dynamic

viscosity of water which is given by η̄ = 0.001 g/cms. Then we get

γLt = 0.11 1/s, γDt = 0.12 1/s, γLr = 0.2 1/s, γDr = 1.36 1/s.

Since our model has only one global friction parameter for the translation of the particles

and one for the rotation of the particles, we have to do a best-fit approximation. In this

case, we are mostly interested in the angular distribution of the particles. Therefore we take

fixed values of γ and A, and fit the rotational parameters. For the translational friction

parameter γ, we take the mean between γLt and γDt and assume no stochastic force. Hence,

we set

γ = 0.115 1/s, A = 0.

For the interaction potential we choose a large strength ε0 = 1000, to prevent the particles

from overlapping. The remaining parameters for the rotation are γ̄ and B, which have to

be fitted to the experimental data.
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that the influence of the particle to the fluid is negligible. The function g(θ, u) is given by
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1
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curl(u) + λ
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cos θ
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1
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the relaxation of the particles to the velocity of the fluid and to the rotation resulting from

the velocity field, respectively. The speed of relaxation is determined by the friction param-

eters γ and γ̄. The second term models the repulsive interaction between the particles. To

model the interaction between two ellipsoidal particles, there exist many different potentials

[10, 6, 3, 9, 13, 8]. We use the soft potential as proposed by Berne [6]. It is obtained by

overlapping two ellipsoidal Gaussians representing the mutual repulsion of two particles.

This leads to

Ũ(r, r̄, θ, θ̄) = a(θ, θ̄) exp
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− (r̄ − r)
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γ(θ) + γ(θ̄)

)−1
(r̄ − r)

)
,

where a and γ are defined by
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1− λ2(η(θ) · η(θ̄))2

)− 1
2 , η(θ) = (cos θ, sin θ)!,

γ(θ) =
(
l2 − d2

)
η(θ)⊗ η(θ̄) + d2!, λ =

l2 − d2

l2 + d2
.

Here, l = 2L and d = 2D where L is the major and the D the minor radius of the particle.

The parameter ε0 models the strength of the potential. To have compact support we slightly

modify the potential and define

U(r, r̄, θ, θ̄) = a(θ, θ̄) exp

(
−

(r̄ − r)
(
γ(θ) + γ(θ̄)

)−1
(r̄ − r)

1− (r̄ − r)
(
γ(θ) + γ(θ̄)

)−1
(r̄ − r)

)
.(4.2)

The parameters m and Ic are the mass and the moment of inertia of the particles. Further-

more, A,B are non-negative diffusion constants and WA,i,WB,i are independent standard

Brownian motions.

4.1. Numerical Set Up. We consider the length of the channel in cm and the following

domain

Ω = [0 29]× [0 5] \ [2.5 26.5]× [2.25 2.75].

To include wall boundaries, we insert ghost particles with distance l/2 at the boundaries

with orientations parallel to the respective wall. The interaction potential is given by

equation (4.2). For the interaction of the boundary particles with the inner particles, we

increase the value of ε0 by a factor of 10. For the surrounding fluid we us the results of the

CFD simulation as described in Section 3. As mentionend before, to use the resulting 3D

velocity field in the two-dimensional set up, we choose the time-averaged velocity field of

the middle plane in z-direction (compare Figure 6).

Then we set the following parameters according to the experiment

l = 0.49 cm, d = 0.25 cm, T = 10 s.
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the blue arrows, and the wall boundaries are indicated by the red line.

The mass m and moment of inertia Ic for the ellipsoidal particles are given by

m = ρV = ρ
4

3
πLD2 = 0.97 g,

Ic =
m

5
(L2 +D2) = 0.25 gcm2.

The friction parameters for translational motion γt and rotational motion γr are only given

in the direction of the main axis of the particle [11, 4]. They have the following form

TL
t = 16πη̄

L2 −D2

(2L2 −D2)S − 2L
,

TD
t = 32πη̄

L2 −D2

(2L2 − 3D2)S − 2L
,

TL
r =

32

3
πη̄

(L2 −D2)D2

2L−D2S
,

TD
r =

32

3
πη̄

L4 −D4

(2L2 −D2)S − 2L
,

where

S =
2√

L2 −D2
log

(
L+

√
L2 −D2

D

)
,

and η̄ is the viscosity of the fluid.

To get the correct friction parameters for our model, we have to divide TL
t and TD

t by the

mass m and TL
r and TD

r by the moment of inertia Ic. Furthermore, we use the dynamic

viscosity of water which is given by η̄ = 0.001 g/cms. Then we get

γLt = 0.11 1/s, γDt = 0.12 1/s, γLr = 0.2 1/s, γDr = 1.36 1/s.

Since our model has only one global friction parameter for the translation of the particles

and one for the rotation of the particles, we have to do a best-fit approximation. In this

case, we are mostly interested in the angular distribution of the particles. Therefore we take

fixed values of γ and A, and fit the rotational parameters. For the translational friction

parameter γ, we take the mean between γLt and γDt and assume no stochastic force. Hence,

we set

γ = 0.115 1/s, A = 0.

For the interaction potential we choose a large strength ε0 = 1000, to prevent the particles

from overlapping. The remaining parameters for the rotation are γ̄ and B, which have to

be fitted to the experimental data.
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4.2. Fitting Parameters. To find the best parameter values for γ̄ and B, we simulate the

experiment for several values of γ̄ and B and compare the resulting angular distributions

with the angular distribution of the experimental data. Therefore we choose initiallyN = 25

particles equally-distributed inside Ω with equally-distributed initial angular orientation.

Since in the experiment the particles are already moving, when the camera detection starts,

we simulate first up to time T = 5 and use the configuration of the particles at T = 5 as

initial conditions for our simulation. In the experiment the particles are detected inside of

the domain

ΩH = [2.5 26.5]× [0 5] \ [2.5 26.5]× [2.25 2.75].

We simulate the particle movement for different parameters of γ̄ and B for 10 seconds,

i.e. up to T = 20. Then, we derive the angular distribution of the particles over the

whole domain and for the whole simulation to get the distribution inside ΩH from T = 5 to

T = 10. Finally, we derive the different angular distribution histograms with NH = 18 bars.

Since we cannot distinguish the head and tail of a particle, we count the number of particles

inside a range of 10 degrees modulus 180 degrees. Let hi, i = 1, . . . , NH denotes the i-th

bar value of the angular distribution histogram of the simulation and hexpi , i = 1, . . . , NH ,

the i-th bar value of the angular distribution histogram obtained from the experimental

data, respectively. Then, the relative error e between for the histograms is given by

e =

∑18
i=1 |hi − hexpi |
∑18

i=1 |h
exp
i |

.

Now we choose γ̄ = {0.2, 0.24, 0.28, 0.32, 0.36} and B = {0, 0.25, 0.5, 0.75, 1, 1.5, 2}
and compute the relative L1-error for all different combinations. The results are shown in

Figure 7. This yields the best fit parameters γ̄ = 0.36 and B = 0.5. However, we note

that the solution is not very sensitive for a larger range of parameters, see again Figure

7. We compute additionally the error of the standard deviation. With the experimental

standard deviation of σexp = 0.997 and the standard deviation σ = 0.987 obtained from the

simulation with the best fitting parameters, we get

eσ =
|σexp − σ|
|σexp| = 0.01.

5. Comparison

In this section we compare the experimental results with the numerical simulation.

First of all, we show the position of the particles at different times of the experiment. We

observe that most of the particles are orientated longitudinal to the stream of the flow, and

follow the surrounding fluid (see Figure 8). For the numerical simulation we have choosen

the parameters γ̄ = 0.36 and B = 0.5 obtained in the previous section. We observe that

the particles are mostly oriented longitudinal to the flow (see Figure 9). We note that the

particles do not have the same position as in the experiment, since their initial conditions

are not exactly the same.
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Figure 8. Pictures of the experiment with ellipsoidal particles (black par-

ticles) at times t=0, 2.5, 7.5,10.

In Figure 10) we compare the histograms of the orientation of all particles. We observe

that the orientation of the particles is similar for the experiment as for the simulation. The

particles have a tendency to be orientated longitudinal to the stream of the flow, i.e. with

angles concentrated around θt = 0 and θt = π.

6. Concluding Remarks

We presented a basic model for interacting ellipsoids in fluid flow. Although our model

has just two space dimensions, we observe a good agreement with the experimental data,
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experiment for several values of γ̄ and B and compare the resulting angular distributions

with the angular distribution of the experimental data. Therefore we choose initiallyN = 25

particles equally-distributed inside Ω with equally-distributed initial angular orientation.

Since in the experiment the particles are already moving, when the camera detection starts,

we simulate first up to time T = 5 and use the configuration of the particles at T = 5 as

initial conditions for our simulation. In the experiment the particles are detected inside of

the domain

ΩH = [2.5 26.5]× [0 5] \ [2.5 26.5]× [2.25 2.75].

We simulate the particle movement for different parameters of γ̄ and B for 10 seconds,

i.e. up to T = 20. Then, we derive the angular distribution of the particles over the

whole domain and for the whole simulation to get the distribution inside ΩH from T = 5 to

T = 10. Finally, we derive the different angular distribution histograms with NH = 18 bars.

Since we cannot distinguish the head and tail of a particle, we count the number of particles

inside a range of 10 degrees modulus 180 degrees. Let hi, i = 1, . . . , NH denotes the i-th

bar value of the angular distribution histogram of the simulation and hexpi , i = 1, . . . , NH ,

the i-th bar value of the angular distribution histogram obtained from the experimental

data, respectively. Then, the relative error e between for the histograms is given by

e =

∑18
i=1 |hi − hexpi |
∑18

i=1 |h
exp
i |

.

Now we choose γ̄ = {0.2, 0.24, 0.28, 0.32, 0.36} and B = {0, 0.25, 0.5, 0.75, 1, 1.5, 2}
and compute the relative L1-error for all different combinations. The results are shown in

Figure 7. This yields the best fit parameters γ̄ = 0.36 and B = 0.5. However, we note

that the solution is not very sensitive for a larger range of parameters, see again Figure

7. We compute additionally the error of the standard deviation. With the experimental

standard deviation of σexp = 0.997 and the standard deviation σ = 0.987 obtained from the

simulation with the best fitting parameters, we get

eσ =
|σexp − σ|
|σexp| = 0.01.

5. Comparison

In this section we compare the experimental results with the numerical simulation.

First of all, we show the position of the particles at different times of the experiment. We

observe that most of the particles are orientated longitudinal to the stream of the flow, and

follow the surrounding fluid (see Figure 8). For the numerical simulation we have choosen

the parameters γ̄ = 0.36 and B = 0.5 obtained in the previous section. We observe that

the particles are mostly oriented longitudinal to the flow (see Figure 9). We note that the

particles do not have the same position as in the experiment, since their initial conditions

are not exactly the same.
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Figure 8. Pictures of the experiment with ellipsoidal particles (black par-

ticles) at times t=0, 2.5, 7.5,10.

In Figure 10) we compare the histograms of the orientation of all particles. We observe

that the orientation of the particles is similar for the experiment as for the simulation. The

particles have a tendency to be orientated longitudinal to the stream of the flow, i.e. with

angles concentrated around θt = 0 and θt = π.

6. Concluding Remarks

We presented a basic model for interacting ellipsoids in fluid flow. Although our model

has just two space dimensions, we observe a good agreement with the experimental data,
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Figure 9. Numerical results of (4.1) of the experiment for different times.

The wall boundaries are indicated by the red lines. The velocity field of the

surrounding fluid is given by the green arrows, and the particles are marked

by blue ellipses.
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Figure 10. Angular distribution of the experiment for the experimental

data and the numerical results of (4.1).

with a relative error of the standard derivation of eσ = 0.01, for the best fitting parameters.

To fit the translational parameters, more experimental data are needed. Similarly, to add

and validate more complex forces, further investigations and data are needed. Furthermore,

if a large number of particles inside the channel are considered, a macroscopic description

derived from the microscopic model investiagted here, see [1], could be used and compared to

experimental data. This could enable large-scale simulations with moderate computational

effort.
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with a relative error of the standard derivation of eσ = 0.01, for the best fitting parameters.

To fit the translational parameters, more experimental data are needed. Similarly, to add

and validate more complex forces, further investigations and data are needed. Furthermore,

if a large number of particles inside the channel are considered, a macroscopic description

derived from the microscopic model investiagted here, see [1], could be used and compared to

experimental data. This could enable large-scale simulations with moderate computational

effort.
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Abstract: In this paper, we consider the Cauchy problem for the incompressible Navier-Stokes equations

in Rn for n ≥ 3 with smooth periodic initial data and derive a priori estimtes of the maximum norm of

all derivatives of the solution in terms of the maximum norm of the initial data. This paper is a special

case of a paper by H-O Kreiss and J. Lorenz which also generalizes the main result of their paper to higher

dimension.
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1. Introduction

We consider the Cauchy problem of the Navier-Stokes equations in Rn, n ≥ 3:

ut + u ·∇u+∇p = #u, ∇ · u = 0,(1.1)

with initial condition

u(x, 0) = f(x), x ∈ Rn,(1.2)

where u = u(x, t) = (u1(x, t), · · ·un(x, t)) and p = p(x, t) stand for the unknown velocity

vector field of the fluid and its pressure, while f = f(x) = (f1(x), · · · fn(x)) is the given

initial velocity vector field. In what follows, we will use the same notations for the space of

vector valued and scalar functions for convenience in writing.

There is a large literature on the existence and uniqueness of solution of the Navier-

Stokes equations in Rn. For given initial data, solutions of (1.1) and (1.2) have been

constructed in various function spaces. For example, if f ∈ Lr for some r with 3 ≤ r < ∞,

then it is well known that there is a unique classical solution in some maximum interval of

time 0 ≤ t < Tf where 0 < Tf ≤ ∞. But for the uniqueness of the pressure one requires

|p(x, t)| → 0 as |x| → ∞. (See [6] and [11] for r = 3 and [1] for 3 < r < ∞.)
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