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in Rn for n ≥ 3 with smooth periodic initial data and derive a priori estimtes of the maximum norm of

all derivatives of the solution in terms of the maximum norm of the initial data. This paper is a special

case of a paper by H-O Kreiss and J. Lorenz which also generalizes the main result of their paper to higher

dimension.

Key Words: Incompressible Navier-Stokes equation; Maximum norm estimates, Periodic initial data

AMS (MOS) Subject Classification. 35G25, 35Q30, 76D03, 76D05

1. Introduction

We consider the Cauchy problem of the Navier-Stokes equations in Rn, n ≥ 3:

ut + u ·∇u+∇p = #u, ∇ · u = 0,(1.1)

with initial condition

u(x, 0) = f(x), x ∈ Rn,(1.2)

where u = u(x, t) = (u1(x, t), · · ·un(x, t)) and p = p(x, t) stand for the unknown velocity

vector field of the fluid and its pressure, while f = f(x) = (f1(x), · · · fn(x)) is the given

initial velocity vector field. In what follows, we will use the same notations for the space of

vector valued and scalar functions for convenience in writing.

There is a large literature on the existence and uniqueness of solution of the Navier-

Stokes equations in Rn. For given initial data, solutions of (1.1) and (1.2) have been

constructed in various function spaces. For example, if f ∈ Lr for some r with 3 ≤ r < ∞,

then it is well known that there is a unique classical solution in some maximum interval of

time 0 ≤ t < Tf where 0 < Tf ≤ ∞. But for the uniqueness of the pressure one requires

|p(x, t)| → 0 as |x| → ∞. (See [6] and [11] for r = 3 and [1] for 3 < r < ∞.)
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If f ∈ L∞(Rn) then existence of a regular solution follows from [2]. The solution is only

unique if one puts some growth restrictions on the pressure as |x| → ∞. A simple example of

non-uniqueness is demonstrated in [7] where the velocity u is bounded but |p(x, t)| ≤ C|x|.
In addition, an estimate |p(x, t)| ≤ C(1 + |x|σ) with σ < 1 ( see [3] ) implies uniqueness.

Also the assumption p ∈ L1
loc(0, T ;BMO) (see [5]) implies uniqueness.

In this paper we consider the initial function f ∈ C∞
per(Rn) which is the space of

smooth 2π periodic functions. Since C∞
per(Rn) is a closed subspace of the Banach space

L∞(Rn), the existence of a regular solution of the Navier-Stokes equations (1.1) and (1.2)

can be guaranteed by [2]. In addition, in a paper by Giga and others [5] they consider

f ∈ BUC(Rn) where BUC(Rn) is the space of bounded uniformly continuous functions. In

the paper they construct a regular solution of the Navier-Stokes equations in some maximum

interval of time 0 ≤ t < Tf where Tf ≤ ∞. Clearly, our case is also a special case of

their paper where we put extra assumption of “smooth periodic” on their initial function

f ∈ BUC(Rn). Moreover, for smooth periodic initial data, the existence of smooth periodic

solution is proved by H-O Kreiss and J. Lorenz in their book [9] for n = 3 where they

use successive iteration using the the vorticity formulation. On the other hand, Giga and

others use iteration on the integral equation of the transformed abstract ordinary differential

equations to construct a mild solution of the Navier-Stokes equations and later prove such

mild solution is indeed a regular solution (local in time) of the Navier-Stokes equations (1.1)

and (1.2) for initial function in the space of bounded uniformly continous functions (BUC).

That is f ∈ BUC(Rn) . Readers are referred to the paper by Giga and others [5] for details

on existence of the smooth periodic solution of the Navier-Stokes equations of (1.1) and

(1.2) for f ∈ C∞
per(Rn) with necessary alternations in their proofs of case f ∈ BUC(Rn).

The work in this paper reproves Theorem 4.1 of the Kreiss and Lorenz paper [8] in

periodic case assuming smooth periodic solution exists for some maximum interval of time

0 ≤ t < Tf . Since we are in a special case of their paper, result of Theorem 4.1 must be true

for smooth periodic initial data as well, but what makes our work interesting and different

is the approach taken to handle the pressure term of the Navier-Stokes equations while

deriving the result of Theorem 4.1 of the Kreiss and Lorenz paper as I have adopted in

my first paper [10] Notice, pressure term of the Navier-Stokes equations can be determined

from the Poisson equation

%p = −∇ · (u ·∇)u(1.3)

which is given by

p =
∑

i,j

RiRj(uiuj),(1.4)

where Ri = (−%)−1/2Di is the i-th Riesz transform. Since the Riesz transforms are not

bounded in L∞(Rn), the pressure term p ∈ L1
loc(0, T ;BMO) where BMO is the space of

functions of bounded mean oscillation. Because of the non-local nature of the pressure, the

proof of Theorem 4.1 of the Kreiss and Lorenz paper is complicated, however.
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The main objective of this paper is to derive a priori estimates of the maximum norm

of the derivatives of u in terms of the maximum norm of the initial function, u(x, 0) = f(x),

assuming the solution to exist and to be C∞
per(Rn), n ≥ 3 for 0 ≤ t < Tf . Before we start

formulating the problem, we introduce the following notations

|f |∞ = sup
x

|f(x)| with |f(x)|2 =
∑

i

f2
i (x),

and Dα = Dα1
1 · · ·Dαn

n , Di = ∂/∂xi for a multiindex α = (α1, · · · ,αn). In what follows,

for any j = 0, 1, · · · , if |α| = j then we will denote Dα by Dj . We also set

|Dju(t)|∞ := |Dju(·, t)|∞ = max
|α|=j

|Dαu(·, t)|∞.

Clearly, |Dju(t)|∞ measures all space derivatives of order j in maximum norm.

Proving the following theorem is the main goal of this paper whereas Kreiss and Lorenz

in their paper [8] prove the same theorem for f ∈ L∞(Rn) for n = 3 from rather difficult

approach while dealing with the pressure term p(x, t).

Theorem 1.1. Consider the Cauchy problem for the Navier-Stokes equations (1.1), (1.2),

where f ∈ C∞
per(Rn) for n ≥ 3 with ∇ · f = 0. There is a constant c0 > 0 and for every

j = 0, 1, · · · there is a constant Kj so that

tj/2|Dju(t)|∞ ≤ Kj |f |∞ for 0 < t ≤ c0
|f |2∞

.(1.5)

The constants c0 and Kj are independent of t and f .

For the purpose of proving Theorem 1.1, we start by transforming the momentum

equation (1.1) of the Navier-Stokes equations into the abstract ordinary differential equation

for u

ut = %u− P(u ·∇)u(1.6)

by eliminating the pressure, where P is the Leray projector defined by

P = (Pij)1≤i,j≤n, Pij = δij +RiRj ;

where Ri is same as in (1.4) and δij is the Kronecker delta function. Note that the equation

(1.6) is obtained from (1.1 ) by applying the Leray projector with the properties P(∇p) =

0,P(%u) = %u, since ∇ · u = 0.

Since P(u·∇u) =
∑

iDiP(uiu), therefore it is very appropriate to consider an analogous

system of (1.6) as below:

ut = %u+DiPg(u) x ∈ Rn, t > 0(1.7)

with initial condition

u(x, 0) = f(x) where f ∈ C∞
per(Rn).(1.8)
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Here g : Rn → Rn is assumed to be quadratic in u. The maximal interval of existence

is again 0 ≤ t < Tf . We would like to prove the estimates of the maximum norm of the

derivatives of the solution of (1.7) and (1.8) in terms of the maximum norm of the initial

data.

Theorem 1.2. Under the above assumptions on f and g the solution of (1.7) and (1.8)

satisfies the following

(a) There is a constant c0 > 0 with

T (f) >
c0

|f |2∞
(1.9)

and

|u(t)|∞ ≤ 2|f |∞ for 0 ≤ t ≤ c0
|f |2∞

.(1.10)

(b) For every j = 1, 2, · · · , there is a constant Kj > 0 with

tj/2|Dju(., t)|∞ ≤ Kj |f |∞ for 0 < t ≤ c0
|f |2∞

.(1.11)

The constant c0 and Kj are independent of t and f .

In section 2, we will introduce some auxiliary results for the solution of the heat equation

and few other important estimates which are used later in section 3 and 4. Proof of Theorem

1.2 will be provided in section 3. Then we prove Theorem 1.1 in section 4. Finally, we outline

some remarks on the use of the result obtained in Theorem 1.1.

2. Some Auxiliary results

Let us consider f ∈ C∞
per(Rn). The solution of

ut = $u, u = f at t = 0,

is denoted by

u(t) := u(·, t) = e"tf =
1

(2π)n

∫

Tn
θ(x− y, t)f(y)dy

where

θ(x, t) =
∑

k∈Zn

e−|k|2teik·x, t > 0(2.1)

is the periodic heat kernel in Rn. Using the Poisson summation formula, (2.1) can be written

as

θ(x, t) =
∑

k∈Zn

(
π

t

)n

exp

[
−|x+ 2πk|2

4t

]
, t > 0.(2.2)

With the use of (2.2), it is well known that

|et"f |∞ ≤ |f |∞, t ≥ 0(2.3)
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and

|Djet!f |∞ ≤ Cjt
−j/2|f |∞(2.4)

for some Cj > 0 independent of t and f .

Lemma 2.1. Let f ∈ C∞
per(Rn) then for any j ≥ 1

|Dje!tPf |∞ ≤ Cjt
−j/2|f |∞ for t > 0(2.5)

for some constant Cj > 0 independent of t and f .

Proof. Let us first denote e!tf = θ ∗ f where θ(x, t) is given by (2.2). Let us denote the

Fourier coefficient of a function by F . For ξ ∈ Zn, notice F(θ(x, t))(ξ) = Ce−t|ξ|2 , t > 0,

where C depends on the normalizing constant in the definition of the Fourier coefficient.

In the proof of this lemma, we will allow the constant C to change line to line as per the

need. Now, for any t > 0, any choice of k, l ∈ {1, 2, · · · , n}; and for any multiindex α such

that |α| = j, the operator Dje!tPkl on the Fourier side is given by

F(Dje!tPklfl)(ξ) = (−iξ)αF(e!tPklfl)(ξ)

= (−iξ)αF(θ ∗ Pklfl)(ξ)

= C(−iξ)αF(θ(x, t))(ξ)F(Pklfl)(ξ)

= C(−iξ)αe−t|ξ|2
(
δkl −

ξkξl
|ξ|2

)
F(fl)(ξ)

= C(−iξ)αe−t|ξ|2δklF(fl)(ξ)

− C(−iξ)αξkξlF(fl)(ξ)

∫ ∞

t
e−τ |ξ|2dτ.

Using Fourier expansion we can write

Dj(e!tPklfl)(x) = C
∑

ξ∈Zn

(−iξ)αδkle
−t|ξ|2F(fl)(ξ)e

iξ·x

+ C
∑

ξ∈Zn

(−iξ)α(iξk)(iξl)F(fl)(ξ)e
iξ·x

∫ ∞

t
e−τ |ξ|2dτ

= (−1)jCδklD
α
∑

ξ∈Zn

e−t|ξ|2F(fl)(ξ)e
iξ·x

+ C(−1)j
∫ ∞

t

∑

ξ∈Zn

e−τ |ξ|2(iξ)α(iξk)(iξl)F(fl)(ξ)e
iξ·xdτ

= (−1)jCδklD
αe!tfl + (−1)jC

∫ ∞

t
DαDkDle

!τfldτ

= I1 + I2.

From (2.4) we have |I1|∞ ≤ Cjt−j/2|fl|∞. By the use of (2.4) one more time we obtain

|I2|∞ ≤ Cj |fl|∞
∫ ∞

t
τ−(j+2)/2dτ

≤ Cjt
−j/2|fl|∞.
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Therefore

|Dje!tPklfl|∞ ≤ |I1|∞ + |I2|∞

≤ Cjt
−j/2|fl|∞.

Hence Lemma 2.1 is proved. !

Corollary 2.2. Let g ∈ C∞
per(Rn × [0, T ]) for some T > 0, then the solution of

ut = $u+DiPg, u = 0 at t = 0(2.6)

satisfies

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|g(s)|∞.(2.7)

Proof. The solution of (2.6) is given by

u(t) =

∫ t

0
e!(t−s)DiPg(u))(s)ds

and

|u(t)|∞ ≤
∫ t

0
|e!(t−s)DiPg(u)(s)|∞ds.

After commuting Di with the heat semi-group, we can use Lemma 2.1 to obtain

|u(t)|∞ ≤ max
0≤s≤t

|g(s)|∞
∫ t

0
(t− s)−1/2ds.

Hence we obtain

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|g(s)|∞.

!

3. Estimates for ut = $u+DiPg(u) : proof of Theorem 1.2

In this section we consider the system ut = $u + DiPg(u) with the initial condition

u = f at t = 0 where f ∈ C∞
per(Rn). It is well-known that the solution is smooth 2π periodic

in a maximal interval 0 ≤ t < Tf where 0 < Tf ≤ ∞.

Let us consider u is the solution of the inhomogeneous equation ut = $u+DiP(g(u(x, t)))
and recall g(u) is quadratic in u. Thus, there is a constant Cg such that we have the fol-

lowing:

|g(u)| ≤ Cg|u|2, |gu(u)| ≤ Cg|u|, for all u ∈ Rn(3.1)

We first estimate the maximum norm of u.

Lemma 3.1. Let Cg denote the constant in (3.1) and let C denote the constant in (2.7);

set c0 =
1

16C2C2
g
. Then we have Tf > c0/|f |2∞ and

|u(t)|∞ < 2|f |∞ for 0 ≤ t <
c0

|f |2∞
.(3.2)
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Proof. Suppose (3.2) does not hold, then we can find the smallest time t0 such that |u(t0)|∞ =

2|f |∞. Since t0 is the smallest time so we have t0 < c0/|f |2∞. Now by (2.3) and (2.7) we

have

2|f |∞ = |u(t0)|∞

≤ |f |∞ + Ct1/20 max
0≤s≤t0

|g(s)|∞

≤ |f |∞ + CCgt
1/2
0 max

0≤s≤t0
|u(s)|2∞

≤ |f |∞ + CCgt
1/2
0 4|f |2∞.

This gives

1 ≤ 4CCgt
1/2
0 |f |∞,

therefore t0 ≥ 1/(16C2C2
g |f |2∞) = c0/|f |2∞ which is a contradiction. There (3.2) must hold.

The estimate Tf > c0/|f |2∞ is valid since lim supt→Tf
|u(t)|∞ = ∞ if Tf is finite. !

Now we prove estimate (1.11) of Theorem 1.2 by induction on j. Let j ≥ 1, and assume

tk/2|Dku(t)|∞ ≤ Kk|f |∞, for 0 ≤ t ≤ c0
|f |2∞

and 0 ≤ k ≤ j − 1.(3.3)

Let us apply Dj to the equation ut = %u+DiPg(u) to obtain

vt = %v +Dj+1Pg(u), v := Dju,

v(t) = Dje$tf +

∫ t

0
e$(t−s)Dj+1(Pg(u))(s)ds.

Using (2.4) we get

tj/2|v(t)|∞ ≤ C|f |∞ + tj/2
∣∣∣∣
∫ t

0
e$(t−s)Dj+1(Pg(u))(s)ds

∣∣∣∣
∞
.(3.4)

We split the integral into
∫ t/2

0
+

∫ t

t/2
=: I1 + I2

and obtain

|I1(t)| =
∣∣∣∣
∫ t/2

0
Dj+1e$(t−s)(Pg(u))(s)ds

∣∣∣∣
∞

≤
∫ t/2

0
|Dj+1e$(t−s)(Pg(u))(s)ds|∞ds.

Using the inequality (2.5) in Lemma 2.1, we get

|I1(t)|∞ ≤ C

∫ t/2

0
(t− s)−(j+1)/2|g(u(s))|∞ds

≤ C|f |2∞t(1−j)/2.
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Therefore

|Dje!tPklfl|∞ ≤ |I1|∞ + |I2|∞

≤ Cjt
−j/2|fl|∞.

Hence Lemma 2.1 is proved. !

Corollary 2.2. Let g ∈ C∞
per(Rn × [0, T ]) for some T > 0, then the solution of

ut = $u+DiPg, u = 0 at t = 0(2.6)

satisfies

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|g(s)|∞.(2.7)

Proof. The solution of (2.6) is given by

u(t) =

∫ t

0
e!(t−s)DiPg(u))(s)ds

and

|u(t)|∞ ≤
∫ t

0
|e!(t−s)DiPg(u)(s)|∞ds.

After commuting Di with the heat semi-group, we can use Lemma 2.1 to obtain

|u(t)|∞ ≤ max
0≤s≤t

|g(s)|∞
∫ t

0
(t− s)−1/2ds.

Hence we obtain

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|g(s)|∞.

!

3. Estimates for ut = $u+DiPg(u) : proof of Theorem 1.2

In this section we consider the system ut = $u + DiPg(u) with the initial condition

u = f at t = 0 where f ∈ C∞
per(Rn). It is well-known that the solution is smooth 2π periodic

in a maximal interval 0 ≤ t < Tf where 0 < Tf ≤ ∞.

Let us consider u is the solution of the inhomogeneous equation ut = $u+DiP(g(u(x, t)))
and recall g(u) is quadratic in u. Thus, there is a constant Cg such that we have the fol-

lowing:

|g(u)| ≤ Cg|u|2, |gu(u)| ≤ Cg|u|, for all u ∈ Rn(3.1)

We first estimate the maximum norm of u.

Lemma 3.1. Let Cg denote the constant in (3.1) and let C denote the constant in (2.7);

set c0 =
1

16C2C2
g
. Then we have Tf > c0/|f |2∞ and

|u(t)|∞ < 2|f |∞ for 0 ≤ t <
c0

|f |2∞
.(3.2)
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Proof. Suppose (3.2) does not hold, then we can find the smallest time t0 such that |u(t0)|∞ =

2|f |∞. Since t0 is the smallest time so we have t0 < c0/|f |2∞. Now by (2.3) and (2.7) we

have

2|f |∞ = |u(t0)|∞

≤ |f |∞ + Ct1/20 max
0≤s≤t0

|g(s)|∞

≤ |f |∞ + CCgt
1/2
0 max

0≤s≤t0
|u(s)|2∞

≤ |f |∞ + CCgt
1/2
0 4|f |2∞.

This gives

1 ≤ 4CCgt
1/2
0 |f |∞,

therefore t0 ≥ 1/(16C2C2
g |f |2∞) = c0/|f |2∞ which is a contradiction. There (3.2) must hold.

The estimate Tf > c0/|f |2∞ is valid since lim supt→Tf
|u(t)|∞ = ∞ if Tf is finite. !

Now we prove estimate (1.11) of Theorem 1.2 by induction on j. Let j ≥ 1, and assume

tk/2|Dku(t)|∞ ≤ Kk|f |∞, for 0 ≤ t ≤ c0
|f |2∞

and 0 ≤ k ≤ j − 1.(3.3)

Let us apply Dj to the equation ut = %u+DiPg(u) to obtain

vt = %v +Dj+1Pg(u), v := Dju,

v(t) = Dje$tf +

∫ t

0
e$(t−s)Dj+1(Pg(u))(s)ds.

Using (2.4) we get

tj/2|v(t)|∞ ≤ C|f |∞ + tj/2
∣∣∣∣
∫ t

0
e$(t−s)Dj+1(Pg(u))(s)ds

∣∣∣∣
∞
.(3.4)

We split the integral into
∫ t/2

0
+

∫ t

t/2
=: I1 + I2

and obtain

|I1(t)| =
∣∣∣∣
∫ t/2

0
Dj+1e$(t−s)(Pg(u))(s)ds

∣∣∣∣
∞

≤
∫ t/2

0
|Dj+1e$(t−s)(Pg(u))(s)ds|∞ds.

Using the inequality (2.5) in Lemma 2.1, we get

|I1(t)|∞ ≤ C

∫ t/2

0
(t− s)−(j+1)/2|g(u(s))|∞ds

≤ C|f |2∞t(1−j)/2.
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The integrand in I2 has singularity at s = t. Therefore, we can move only one derivative from

Dj+1Pg(u) to the heat semigroup.( If we move two or more derivatives then the singularity

becomes non-integrable.) Thus, we have

|I2(t)|∞ =

∣∣∣∣−
∫ t

t/2
De"(t−s)(DjPg(u))(s)ds

∣∣∣∣
∞
.

Since the Leray projector commutes with any order derivatives, therefore

|I2(t)|∞ =

∣∣∣∣−
∫ t

t/2
De"(t−s)(PDjg(u))(s)ds

∣∣∣∣
∞
.

If we use Lemma 2.1 for j = 1, we obtain

|I2(t)|∞ ≤ C

∫ t

t/2
(t− s)−1/2|Djg(u)(s)|∞ds.(3.5)

Since g(u) is quadratic in u, therefore

|Djg(u)|∞ ≤ C|u|∞|Dju|∞ +
j−1∑

k=1

|Dku|∞|Dj−ku|∞.

By induction hypothesis (3.3) we obtain

j−1∑

k=1

|Dku(s)|∞|Dj−ku(s)|∞ ≤ Cs−j/2|f |2∞.(3.6)

Expression in (3.5) can be estimated as below:

|I2(t)|∞ ≤ C

∫ t

t/2
(t− s)−1/2

(
C|u(s)|∞|Dju(s)|∞ +

j−1∑

k=1

|Dku(s)|∞|Dj−ku(s)|∞
)
ds

= J1 + J2.

Using (3.6), and since
∫ t
t/2(t − s)−1/2s−j/2ds = Ct(1−j)/2, where C is independent of t, we

obtain |J2(t)|∞ ≤ C|f |2∞t(1−j)/2.

For J1, we have

|J1(t)|∞ = C

∫ t

t/2
(t− s)−1/2|u(s)|∞|Dju(s)|∞ds

≤ C|f |∞
∫ t

t/2
(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2Dju(s)|∞}.

We use these bounds to bound the integral in (3.4). We have v = Dju. Then maximizing

the resulting estimate for tj/2|Dju(t)|∞ over all derivatives Dj of order j and setting

φ(t) := tj/2|Dju(t)|∞

and from (3.4), we obtain the following estimate

φ(t) ≤ C|f |∞ + Ct1/2|f |2∞ + C|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0
|f |2∞

.

Since t1/2|f |∞ ≤ √
c0 then Ct1/2|f |2∞ ≤ C

√
c0|f |∞. Therefore
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φ(t) ≤ Cj |f |∞ + Cj |f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞.(3.7)

Let us fix Cj so that the above estimate holds, and set

cj = min

{
c0,

1

4C2
j

}
.

First, let us prove the following

φ(t) < 2Cj |f |∞ for 0 ≤ t <
cj

|f |2∞
.

Suppose there is a smallest time t0 such that 0 < t0 < cj/|f |2∞ with φ(t0) = 2Cj |f |∞. Then

using (3.7) we obtain

2Cj |f |∞ = φ(t0) ≤ Cj |f |∞ + 2C2
j |f |2∞t1/20 ,

thus

1 ≤ 2Cj |f |∞t1/20 gives t0 ≥ cj/|f |2∞

which contradicts the assertion. Therefore, we proved the estimate

tj/2|Dju(t)|∞ ≤ 2Cj |f |∞ for 0 ≤ t ≤ cj/|f |2∞.(3.8)

If

Tj :=
cj

|f |2∞
< t ≤ c0

|f |2∞
=: T0(3.9)

then we start the corresponding estimate at t−Tj . Using Lemma 3.1, we have |u(t−Tj)|∞ ≤
2|f |∞ and obtain

T j/2
j |Dju(t)|∞ ≤ 4Cj |f |∞.(3.10)

Finally, for any t satisfying (3.9)

tj/2 ≤ T j/2
0 =

(
c0
cj

)j/2

T j/2
j

and (3.10) yield

tj/2|Dju(t)|∞ ≤ 4Cj

(
c0
cj

)j/2

|f |∞.

This completes the proof of Theorem 1.2.

4. Estimates For the Navier-Stokes Equations

Recall the transformed abstract ordinary differential equation (1.6)

ut = $u− P(u ·∇u), ∇ · u = 0(4.1)

with

u(x, 0) = f(x).(4.2)
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The integrand in I2 has singularity at s = t. Therefore, we can move only one derivative from

Dj+1Pg(u) to the heat semigroup.( If we move two or more derivatives then the singularity

becomes non-integrable.) Thus, we have

|I2(t)|∞ =

∣∣∣∣−
∫ t

t/2
De"(t−s)(DjPg(u))(s)ds

∣∣∣∣
∞
.

Since the Leray projector commutes with any order derivatives, therefore

|I2(t)|∞ =

∣∣∣∣−
∫ t

t/2
De"(t−s)(PDjg(u))(s)ds

∣∣∣∣
∞
.

If we use Lemma 2.1 for j = 1, we obtain

|I2(t)|∞ ≤ C

∫ t

t/2
(t− s)−1/2|Djg(u)(s)|∞ds.(3.5)

Since g(u) is quadratic in u, therefore

|Djg(u)|∞ ≤ C|u|∞|Dju|∞ +
j−1∑

k=1

|Dku|∞|Dj−ku|∞.

By induction hypothesis (3.3) we obtain

j−1∑

k=1

|Dku(s)|∞|Dj−ku(s)|∞ ≤ Cs−j/2|f |2∞.(3.6)

Expression in (3.5) can be estimated as below:

|I2(t)|∞ ≤ C

∫ t

t/2
(t− s)−1/2

(
C|u(s)|∞|Dju(s)|∞ +

j−1∑

k=1

|Dku(s)|∞|Dj−ku(s)|∞
)
ds

= J1 + J2.

Using (3.6), and since
∫ t
t/2(t − s)−1/2s−j/2ds = Ct(1−j)/2, where C is independent of t, we

obtain |J2(t)|∞ ≤ C|f |2∞t(1−j)/2.

For J1, we have

|J1(t)|∞ = C

∫ t

t/2
(t− s)−1/2|u(s)|∞|Dju(s)|∞ds

≤ C|f |∞
∫ t

t/2
(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2Dju(s)|∞}.

We use these bounds to bound the integral in (3.4). We have v = Dju. Then maximizing

the resulting estimate for tj/2|Dju(t)|∞ over all derivatives Dj of order j and setting

φ(t) := tj/2|Dju(t)|∞

and from (3.4), we obtain the following estimate

φ(t) ≤ C|f |∞ + Ct1/2|f |2∞ + C|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0
|f |2∞

.

Since t1/2|f |∞ ≤ √
c0 then Ct1/2|f |2∞ ≤ C

√
c0|f |∞. Therefore
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φ(t) ≤ Cj |f |∞ + Cj |f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞.(3.7)

Let us fix Cj so that the above estimate holds, and set

cj = min

{
c0,

1

4C2
j

}
.

First, let us prove the following

φ(t) < 2Cj |f |∞ for 0 ≤ t <
cj

|f |2∞
.

Suppose there is a smallest time t0 such that 0 < t0 < cj/|f |2∞ with φ(t0) = 2Cj |f |∞. Then

using (3.7) we obtain

2Cj |f |∞ = φ(t0) ≤ Cj |f |∞ + 2C2
j |f |2∞t1/20 ,

thus

1 ≤ 2Cj |f |∞t1/20 gives t0 ≥ cj/|f |2∞

which contradicts the assertion. Therefore, we proved the estimate

tj/2|Dju(t)|∞ ≤ 2Cj |f |∞ for 0 ≤ t ≤ cj/|f |2∞.(3.8)

If

Tj :=
cj

|f |2∞
< t ≤ c0

|f |2∞
=: T0(3.9)

then we start the corresponding estimate at t−Tj . Using Lemma 3.1, we have |u(t−Tj)|∞ ≤
2|f |∞ and obtain

T j/2
j |Dju(t)|∞ ≤ 4Cj |f |∞.(3.10)

Finally, for any t satisfying (3.9)

tj/2 ≤ T j/2
0 =

(
c0
cj

)j/2

T j/2
j

and (3.10) yield

tj/2|Dju(t)|∞ ≤ 4Cj

(
c0
cj

)j/2

|f |∞.

This completes the proof of Theorem 1.2.

4. Estimates For the Navier-Stokes Equations

Recall the transformed abstract ordinary differential equation (1.6)

ut = $u− P(u ·∇u), ∇ · u = 0(4.1)

with

u(x, 0) = f(x).(4.2)
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Solution of (4.1) and (4.2) is given by

u(t) = e!tf −
∫ t

0
e!(t−s)P(u ·∇u)(s)ds.(4.3)

Using (4.3) with previous estimates (2.3), (2.4) and (2.5), we prove the following lemma.

Lemma 4.1. Set

V (t) = |u(t)|∞ + t1/2|Du(t)|∞, 0 < t < T (f).(4.4)

There is a constant C > 0, independent of t and f , so that

V (t) ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(s), 0 < t < T (f).(4.5)

Proof. Using estimate (2.3) of the heat equation in (4.3), we obtain

|u(t)|∞ ≤ |f |∞ +

∣∣∣∣
∫ t

0
e!(t−s)P(u ·∇u)(s)ds

∣∣∣∣
∞
.

Apply identity P(u ·∇u) =
∑

iDiP(uiu) with the fact, heat semi-group commutes with Di,

then use of inequality (2.5) in Lemma 2.1 for j = 1 to proceed

|u(t)|∞ ≤ |f |∞ + C

∫ t

0
(t− s)−1/2|u(s)|2∞ds

= |f |∞ + C

∫ t

0
(t− s)−1/2s−1/2s1/2|u(s)|2∞ds

≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}
∫ t

0
(t− s)−1/2s−1/2ds.

Since
∫ t
0 (t − s)−1/2s−1/2ds = C > 0, which is independent of t, we have the following

estimate

|u(t)|∞ ≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}

|u(t)|∞ ≤ |f |∞ + Ct1/2 max
0≤s≤t

V 2(s).(4.6)

Apply Di to (4.1), and the Duhamel’s principle to obtain

v(t) = Die
!tf −

∫ t

0
e!(t−s)DiP(u ·∇)u(s)ds.(4.7)

We can estimate the integral in (4.7) using Lemma 2.1 for j = 1 in the following way:
∣∣∣∣
∫ t

0
Die

!(t−s)P(u ·∇u)(s)ds

∣∣∣∣ ≤
∫ t

0
|Die

!(t−s)P(u ·∇u)(s)|ds

≤ C

∫ t

0
(t− s)−1/2|u(s)|∞|Du(s)|∞ds

= C

∫ t

0
(t− s)−1/2s−1/2s1/2|u(s)|∞|Du(s)|∞ds

≤ C max
0≤s≤t

{s1/2|u(s)|∞|Du(s)|∞}
∫ t

0
(t− s)−1/2s−1/2ds

≤ C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}.
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Therefore, using (2.4) j = 1 in expression (4.7), we arrive at

|v(t)|∞ ≤ Ct−1/2|f |∞ + C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}

t1/2|Du(t)|∞ ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t).(4.8)

Using (4.6) and (4.8), we have proved Lemma 4.1. !

Lemma 4.2. Let C > 0 denote the constant in estimate (4.5) and set

c0 =
1

16C4
.

Then Tf > c0/|f |2∞ and

|u(t)|∞ + t1/2|Du(t)|∞ < 2C|f |∞ for 0 ≤ t <
c0

|f |2∞
.(4.9)

Proof. We prove this lemma by contradiction after recalling the definition of V (t) in (4.4).

Suppose that (4.9) does not hold, then denote by t0 the smallest time with V (t0) = 2C|f |∞.

Use (4.5) to obtain

2C|f |∞ = V (t0)

≤ C|f |∞ + Ct1/20 4C2|f |2∞,

thus

1 ≤ 4C2t1/20 |f |2∞,

therefore t0 ≥ c0/|f |2∞. This contradiction proves (4.9) and Tf > c0/|f |2∞. !

Lemma 4.2 proves Theorem 1.1 for j = 0 and j = 1. By an induction argument as in

the proof of Theorem 1.2 one proves Theorem 1.1 for any j = 0, 1, · · ·

Remarks. We can apply estimate (1.5) of Theorem 1.1 for

c0
2|f |2∞

≤ t ≤ c0
|f |2∞

(4.10)

and obtain

|Dju(t)|∞ ≤ Cj |f |j+1
∞(4.11)

in interval (4.10). Starting the estimate at t0 ∈ [0, Tf ) we have

|Dju(t0 + t)|∞ ≤ Cj |u(t0)|j+1
∞(4.12)

for

c0
2|u(t0)|2∞

≤ t ≤ c0
|u(t0)|2∞

.(4.13)

Then, if t1 is fixed with

c0
2|f |2∞

≤ t1 < Tf ,(4.14)
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Solution of (4.1) and (4.2) is given by

u(t) = e!tf −
∫ t

0
e!(t−s)P(u ·∇u)(s)ds.(4.3)

Using (4.3) with previous estimates (2.3), (2.4) and (2.5), we prove the following lemma.

Lemma 4.1. Set

V (t) = |u(t)|∞ + t1/2|Du(t)|∞, 0 < t < T (f).(4.4)

There is a constant C > 0, independent of t and f , so that

V (t) ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(s), 0 < t < T (f).(4.5)

Proof. Using estimate (2.3) of the heat equation in (4.3), we obtain

|u(t)|∞ ≤ |f |∞ +

∣∣∣∣
∫ t

0
e!(t−s)P(u ·∇u)(s)ds

∣∣∣∣
∞
.

Apply identity P(u ·∇u) =
∑

iDiP(uiu) with the fact, heat semi-group commutes with Di,

then use of inequality (2.5) in Lemma 2.1 for j = 1 to proceed

|u(t)|∞ ≤ |f |∞ + C

∫ t

0
(t− s)−1/2|u(s)|2∞ds

= |f |∞ + C

∫ t

0
(t− s)−1/2s−1/2s1/2|u(s)|2∞ds

≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}
∫ t

0
(t− s)−1/2s−1/2ds.

Since
∫ t
0 (t − s)−1/2s−1/2ds = C > 0, which is independent of t, we have the following

estimate

|u(t)|∞ ≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}

|u(t)|∞ ≤ |f |∞ + Ct1/2 max
0≤s≤t

V 2(s).(4.6)

Apply Di to (4.1), and the Duhamel’s principle to obtain

v(t) = Die
!tf −

∫ t

0
e!(t−s)DiP(u ·∇)u(s)ds.(4.7)

We can estimate the integral in (4.7) using Lemma 2.1 for j = 1 in the following way:
∣∣∣∣
∫ t

0
Die

!(t−s)P(u ·∇u)(s)ds

∣∣∣∣ ≤
∫ t

0
|Die

!(t−s)P(u ·∇u)(s)|ds

≤ C

∫ t

0
(t− s)−1/2|u(s)|∞|Du(s)|∞ds

= C

∫ t

0
(t− s)−1/2s−1/2s1/2|u(s)|∞|Du(s)|∞ds

≤ C max
0≤s≤t

{s1/2|u(s)|∞|Du(s)|∞}
∫ t

0
(t− s)−1/2s−1/2ds

≤ C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}.
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Therefore, using (2.4) j = 1 in expression (4.7), we arrive at

|v(t)|∞ ≤ Ct−1/2|f |∞ + C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}

t1/2|Du(t)|∞ ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t).(4.8)

Using (4.6) and (4.8), we have proved Lemma 4.1. !

Lemma 4.2. Let C > 0 denote the constant in estimate (4.5) and set

c0 =
1

16C4
.

Then Tf > c0/|f |2∞ and

|u(t)|∞ + t1/2|Du(t)|∞ < 2C|f |∞ for 0 ≤ t <
c0

|f |2∞
.(4.9)

Proof. We prove this lemma by contradiction after recalling the definition of V (t) in (4.4).

Suppose that (4.9) does not hold, then denote by t0 the smallest time with V (t0) = 2C|f |∞.

Use (4.5) to obtain

2C|f |∞ = V (t0)

≤ C|f |∞ + Ct1/20 4C2|f |2∞,

thus

1 ≤ 4C2t1/20 |f |2∞,

therefore t0 ≥ c0/|f |2∞. This contradiction proves (4.9) and Tf > c0/|f |2∞. !

Lemma 4.2 proves Theorem 1.1 for j = 0 and j = 1. By an induction argument as in

the proof of Theorem 1.2 one proves Theorem 1.1 for any j = 0, 1, · · ·

Remarks. We can apply estimate (1.5) of Theorem 1.1 for

c0
2|f |2∞

≤ t ≤ c0
|f |2∞

(4.10)

and obtain

|Dju(t)|∞ ≤ Cj |f |j+1
∞(4.11)

in interval (4.10). Starting the estimate at t0 ∈ [0, Tf ) we have

|Dju(t0 + t)|∞ ≤ Cj |u(t0)|j+1
∞(4.12)

for

c0
2|u(t0)|2∞

≤ t ≤ c0
|u(t0)|2∞

.(4.13)

Then, if t1 is fixed with

c0
2|f |2∞

≤ t1 < Tf ,(4.14)

49



48 SANTOSH PATHAK

we can maximize both sides of (4.12) over 0 ≤ t0 ≤ t1 and obtain

max

{
|Dju(t)|∞ :

c0
2|f |2∞

≤ t ≤ t1 + τ

}
≤ Cj max{|u(t)|j+1

∞ : 0 ≤ t ≤ t1}(4.15)

with

τ =
c0

|u(t1)|2∞

Estimate (4.15) says, essentially, that the maximum of the j-th derivatives of u measured

by |Dju|∞ , can be bounded in terms of |u|j+1
∞ . The positive value of τ on the left-hand

side of (4.15) shows that |u|j+1
∞ controls |Dju|∞ for some time into the future.

As is well known, if (u, p) solves the Navier-Stokes equations and λ > 0 is any scaling

parameter, then the functions uλ, pλ defined by

uλ(x, t) = λu(λx,λ2t), pλ(x, t) = λ2p(λx,λ2t)

also solve the Navier-Stokes equations. Clearly,

|uλ(t)|∞ = λ|u(λ2t)|∞, |Djuλ(t)|∞ = λj+1|Dju(λ2t)|∞.

Therefore, |Dju|∞ and |u|j+1
∞ both scale like λj+1, which is, of course, consistent with the

estimate (4.15). We do not know under what assumptions |u|j+1
∞ can conversely be estimated

in terms of |Dju|∞.
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Abstract: In this paper, we investigate the minimum cost flow problem in two terminal series parallel

network. We present modified minimum cost flow algorithm that computes the maximum dynamic and

the earliest arrival flows in strongly polynomial time and also preserves all unused arc capacities. We also

present strongly polynomial time minimum cost partial contraflow algorithm that solves both problems with

partial reversals of arc capacities on two terminal series parallel networks.
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1. Introduction

After any kind of disasters, the process of saving lives by sending them in safe areas

from the disastrous areas as quickly and efficiently as possible is considered as an evacuation

planning problem. There are many terrible and remarkable disasters in the world, for

example earthquakes in Nepal (1934 and April 2015), Japan (March 2011), Haiti (January

2010), Chichi (Taiwan, September 1999), Bam (Iran, December 2003), Kashmir (Pakistan,

October 2005) and Chile (May 1960), various tsunamis in Japan and the Indian Ocean, the

major hurricanes Katrina, Rita and Sandy in USA, and the September 11 attacks in USA.

In literature, there are number of mathematical models presented to solve the evacuation

planning problem [2].

We consider a dynamic network to represent the evacuation scenario. The disastrous

zone is considered as the source and safe area is the sink. All intersections of streets in

between these two nodes are considered as intermediate nodes. All connections among

these nodes are the arcs. Each node and arc are bounded by capacities. Each arc has a

transit time or a cost function. Group of evacuees that passes through the network over

time is modeled as the flow.

Following the pioneer foundation work of Ford and Fulkerson [4] with an objective of

maximizing the flow from a source to a sink at the end of given discrete time period, Gale [5]

shows an existence of the maximum flow from the very beginning in discrete time setting,
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