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we can maximize both sides of (4.12) over 0 ≤ t0 ≤ t1 and obtain

max

{
|Dju(t)|∞ :

c0
2|f |2∞

≤ t ≤ t1 + τ

}
≤ Cj max{|u(t)|j+1

∞ : 0 ≤ t ≤ t1}(4.15)

with

τ =
c0

|u(t1)|2∞

Estimate (4.15) says, essentially, that the maximum of the j-th derivatives of u measured

by |Dju|∞ , can be bounded in terms of |u|j+1
∞ . The positive value of τ on the left-hand

side of (4.15) shows that |u|j+1
∞ controls |Dju|∞ for some time into the future.

As is well known, if (u, p) solves the Navier-Stokes equations and λ > 0 is any scaling

parameter, then the functions uλ, pλ defined by

uλ(x, t) = λu(λx,λ2t), pλ(x, t) = λ2p(λx,λ2t)

also solve the Navier-Stokes equations. Clearly,

|uλ(t)|∞ = λ|u(λ2t)|∞, |Djuλ(t)|∞ = λj+1|Dju(λ2t)|∞.

Therefore, |Dju|∞ and |u|j+1
∞ both scale like λj+1, which is, of course, consistent with the

estimate (4.15). We do not know under what assumptions |u|j+1
∞ can conversely be estimated

in terms of |Dju|∞.
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Abstract: In this paper, we investigate the minimum cost flow problem in two terminal series parallel

network. We present modified minimum cost flow algorithm that computes the maximum dynamic and
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1. Introduction

After any kind of disasters, the process of saving lives by sending them in safe areas

from the disastrous areas as quickly and efficiently as possible is considered as an evacuation

planning problem. There are many terrible and remarkable disasters in the world, for

example earthquakes in Nepal (1934 and April 2015), Japan (March 2011), Haiti (January

2010), Chichi (Taiwan, September 1999), Bam (Iran, December 2003), Kashmir (Pakistan,

October 2005) and Chile (May 1960), various tsunamis in Japan and the Indian Ocean, the

major hurricanes Katrina, Rita and Sandy in USA, and the September 11 attacks in USA.

In literature, there are number of mathematical models presented to solve the evacuation

planning problem [2].

We consider a dynamic network to represent the evacuation scenario. The disastrous

zone is considered as the source and safe area is the sink. All intersections of streets in

between these two nodes are considered as intermediate nodes. All connections among

these nodes are the arcs. Each node and arc are bounded by capacities. Each arc has a

transit time or a cost function. Group of evacuees that passes through the network over

time is modeled as the flow.

Following the pioneer foundation work of Ford and Fulkerson [4] with an objective of

maximizing the flow from a source to a sink at the end of given discrete time period, Gale [5]

shows an existence of the maximum flow from the very beginning in discrete time setting,
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i.e. earliest arrival flow. To solve the earliest arrival flow problem, two pseudo-polynomial

time algorithms are presented by Wilkinson [19] and Minieka [7]. The arc transit times are

taken to be constant. Later Ruzika et al. [18] have presented strongly polynomial time

algorithm to solve the earliest arrival flow problem on two terminal series parallel (TTSP)

network.

During the evacuation process, the emergency planners discourage people to move

towards the risk areas from the safer places because of which the corresponding road lanes

are unoccupied. However, the lanes directing outwards from sources become more congested

due to large number of evacuees and vehicles on the streets. The optimal lane reversal

strategy makes the traffic systematic and smooth by removing the traffic jams caused in

different large scale natural and man-made disasters, busy office hours, special events and

street demonstrations. The contraflow reconfiguration, by means of various operations

research models, different heuristics, optimization and simulation techniques reverses the

usual direction of empty lanes towards the sinks that satisfy the given constraints, increase

the flow value and decrease the average evacuation time. Authors in [6, 17, 1, 2, 8, 10,

11, 12, 13, 14, 15] study various contraflow evacuation planning problems and presented

different models with efficient algorithms for their solutions.

In this paper, we modify the minimum cost flow algorithm of Ruzika et al. [18] and

obtain the earliest arrival flow on TTSP-network by saving all unused arc capacities. More-

over, we present the minimum cost partial contraflow algorithm on two terminal series

parallel network for the first time. These both algorithms are solvable in polynomial time

complexity.

The organization of the paper is as follows. Section 2 states the basic concepts and flow

models. Section 3 investigates the minimum cost flow problem solves the earliest arrival

flow problem and presents a modified algorithm. In Section 4, the minimum cost flow for

contraflow problem is investigated and is presented a strongly polynomial time algorithm

to solve the maximum dynamic and the earliest arrival flow problems with partial lane

reversals. Section 5 concludes the paper.

2. Preliminaries

Consider an evacuation network N = (V,A, b, τ, s, d, T ) with set of nodes V , set of arcs

A, arc capacity function b : A → Z≥0, arc travel time function τ : A → Z≥0, single source

s ∈ V , single sink d ∈ V and given integer time horizon T . The capacity of an arc limits

the amount of flow traveling on the arc. Travel time represents the total time needed for

the flow to travel on the arc. We have finite number of nodes and arcs, i.e., |V | = n and

|A| = m. We assume that there is no any incoming arc to the source and outgoing arc

from the sink. Let Ai = {(i, j) ∈ A : j ∈ V } and Bi = {(j, i) ∈ A : j ∈ V } be the set of

outgoing arc and incoming arcs for node i, respectively. So that without contraflow, we

have Ad = Bs = ∅.

A static s− d flow x : A → R≥0 of value val(x) in objective function (2.1) satisfies the

flow conservation and capacity constraints (2.2) and (2.3), respectively, [4]
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val(x) =
∑

(i,j)∈Bd

x(i, j) =
∑

(i,j)∈As

x(i, j)(2.1)

∑

(i,j)∈Bv

x(i, j)−
∑

(i,j)∈Av

x(i, j) = 0, ∀ v ∈ V \{s, d}(2.2)

b(i, j) ≥ x(i, j) ≥ 0, ∀ (i, j) ∈ A(2.3)

The maximum static flow maximizes the objective function (2.1) subject to (2.2) and

(2.3). Constraint (2.2), called the flow conservation constraint, indicates that total inflow

into a node v must be equal to total outflow from it. These constraints imply that the total

inflow into sink d must be equal to the total outflow from source s. Feasibility of the flow

is bounded by the capacity constraint (2.3), i.e., flow x(i, j) can not be greater than the

capacity of an arc (i, j) for all (i, j) ∈ A. If the flow conservation constraint is also posed

at s and d, then a circulation is obtained.

If the unit costs along the arcs are also considered then we have to minimize the

total cost. If we are given a flow value val(x), the minimum cost flow problem seeks

to shift the flow with minimum cost
∑

(i,j)∈A c(i, j)x(i, j) subject to (2.2) and (2.3) and
∑

(i,j)∈Bd
x(i, j) = val(x). The minimum cost flow problem with zero circulation turns into

the minimum cost circulation flow problem.

Let y : A × T → R+ be a dynamic flow in discrete time T. The dynamic flow maxi-

mizes val(y, T ) in the objective function (2.4) subject to the constraints (2.5-2.7) without

intermediate storage in time T , although, according to constraint (2.6), some flow may wait

in intermediate notes at time θ < T [3, 4].

∑

(i,j)∈As

T∑

σ=0

y(i, j)(σ) =
∑

(i,j)∈Bd

T∑

σ=τ(i,j)

y(i, j)(σ − τ(i, j))(2.4)

∑

(i,j)∈Bv

T∑

σ=τ(i,j)

y(i, j)(σ − τ(i, j)) =
∑

(i,j)∈Av

T∑

σ=0

y(i, j)(σ), ∀ v '∈ {s, d}(2.5)

∑

(i,j)∈Bv

θ∑

σ=τ(i,j)

y(i, j)(σ − τ(i, j)) ≥
∑

(i,j)∈Av

θ∑

σ=0

y(i, j)(σ), ∀ v '∈ {s, d}, θ ∈ T(2.6)

b(i, j)(θ) ≥ y(i, j)(θ) ≥ 0, ∀ (i, j) ∈ A, θ ∈ T(2.7)

If the objective is to maximize the flow at every time from the beginning, we call it

the earliest arrival flow problem. The objective function of the earliest arrival flow is (2.8)

which is to be maximized at every time θ subject to the constraints (2.5-2.7).

val(y, θ) =
θ∑

σ=0

∑

(i,j)∈As

y(i, j)(σ) =
θ∑

σ=τ(i,j)

∑

(i,j)∈Bd

y(i, j)(σ − τ(i, j)).(2.8)
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3. Modified minimum cost flow algorithm

In this section, we present a modified minimum cost flow algorithm on TTSP net-

work that solves the maximum dynamic and the earliest arrival flow problems in strongly

polynomial time complexity and records all the unused arc capacities of the network simul-

taneously.

The earliest arrival flow problem finds the maximum dynamic flow at every point of

time from the beginning. In general network, the problem isNP -hard. Even in two terminal

network, the problem is not solved in polynomial time. Authors in [7, 19] presented pseudo-

polynomial algorithms to solve the problem in general two terminal network by computing

the successive shortest paths in time expanded network. If the network is reduced to TTSP

network, then, a strongly polynomial time algorithm has been presented to solve the problem

by sending the flow iteratively through the s-d paths with the minimum time and removing

the saturated arcs. Only the paths within time horizon T is taken in this greedy approach

(Ruzika et al. [18]).

Here, we modify the greedy algorithm of Ruzika et al. [18] in which we record the

residual capacity at each time point. If there is no any augmenting path in the residual

network, then the flow is maximum, [3]. We collect the residual capacity that is not used by

the augmenting path as unused or saved capacity bsca. With this modification on minimum

cost flow algorithm of Ruzika et al. [18], we present Algorithm 1. First we convert the

s − d network into circulation by adding an arc (d, s) with infinite capacity and −(T + 1)

cost where transit time on each arc is considered as cost. So that we have a new set of arcs

A = A∪ {(d, s)}. Then, we solve the minimum cost circulation problem. For the maximum

flow, the flow along arc (d, s) is ignored and the resulting s − d flow is decomposed into

s− d paths Pk, m ≥ k ≥ 1. At each time point, a static s-d flow value along each path Pk

is computed iteratively, and this process should be terminated within the estimated time

horizon T . Moreover, we record all the unused arc capacities bsca = b(i, j)− x(i, j) from all

unsaturated arcs.

Theorem 3.1. The temporally repeated flow computation of static path flow obtained in

Algorithm 1 within time T gives the maximum dynamic flow and the earliest arrival flows

by saving all unused arc capacities on TTSP network.

Proof. Algorithm 1 computes the cheapest path Pk, 1 ≤ k ≤ m with path cost τ(Pk) =
∑

(i,j)∈Pk
τ(i, j), assigns flow value x(Pk) to it, records the residual capacities rca(i, j) of

each arc (i, j) ∈ Pk and terminates with τ(Pk) ≥ T + 1. If there is no any s-d path

within T , the maximum static flow x =
∑

Pk∈Pk
x(Pk) is obtained and the unsaturated arc

capacities bsca is recorded.

The maximum dynamic flow y is computed with temporally repeated flow with cheapest

paths Pk and path flow x(Pk) as follows

val(y, T ) =
∑

Pk∈P
(T − τ(Pk) + 1)x(Pk)
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Algorithm 1: Modified minimum cost flow on TTSP network

Input : TTSP network N = (V,A, b, τ, s, d, T )

Output: Set of paths P, static flow x for corresponding dynamic flow, saved

capacity bsca

1 Add an arc (d, s) with infinite capacity and cost −(T + 1) to N and consider τ as

cost.

2 set k = 1

3 while there exist an s-d path in N do

4 find a minimum cost path Pk

5 find cost τ(Pk) =
∑

(i,j)∈Pk

τ(i, j)

6 if τ(Pk) < (T + 1) then

7 x(Pk) = min{b(i, j)|(i, j) ∈ Pk}
8 otherwise stop

9 end

10 Update flow on arc (i, j), ∀(i, j) ∈ A, x(i, j) = x(Pk)

11 for all (i, j) ∈ Pk do

12 b(i, j) = b(i, j)− x(Pk)

13 if b(i, j) = 0 then

14 A = A\ {(i, j)}
15 end

16 end

17 set k = k + 1

18 end

19 flow on N , x = x+ x(Pk)

20 arc flow x(i, j) =
∑

Pk|(i,j)∈Pk

x(Pk)

21 saved capacity bsca(i, j) = b(i, j)− x(i, j)

As the obtained flow satisfy the earliest arrival property, i.e., a cumulative amount of flows

reaching the sink, in every considered time period and all preceding time periods of the

considered one, has to be maximal. !

Corollary 3.2. The earliest arrival flow on TTSP network can be computed by recording

all unused arc capacities in strongly polynomial time complexity.

Proof. The minimum cost flow problem on TTSP network is solved by computing successive

shortest paths in which each path cost should not exceed the time horizon T in time O(mn+

m logm), (Ruzika et al. [18]). The unused arc capacities are recored in constant time. Thus,

the time complexity of Algorithm 1 is O(mn+m logm). !

Example 3.3. Figure 1(a) represents the TTSP network. Each arc contains capacity and

transit time. Before contraflow configuration of the network, the earliest arrival flow value
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all unused arc capacities in strongly polynomial time complexity.

Proof. The minimum cost flow problem on TTSP network is solved by computing successive

shortest paths in which each path cost should not exceed the time horizon T in time O(mn+

m logm), (Ruzika et al. [18]). The unused arc capacities are recored in constant time. Thus,

the time complexity of Algorithm 1 is O(mn+m logm). !

Example 3.3. Figure 1(a) represents the TTSP network. Each arc contains capacity and

transit time. Before contraflow configuration of the network, the earliest arrival flow value
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in time horizon T = 6 obtained by solving with Algorithm 1 is 16 via paths P1 = s−x−u−d,

P1 = s− y −w− d and P3 = s− x− v − d. The unused arc capacities are [s, y : 1], [y, w; 1]

and [v, d; 3].
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Figure 1. EAPCF on two terminal series parallel graph

4. Minimum cost flow partial contraflow algorithm

In this section, we present an efficient minimum cost flow algorithm to solve the partial

contraflow problem. Recently, author in [15, 16] introduced the partial contraflow approach

for evacuation planning and investigated different solution algorithms to solve the problem

for constant and inflow dependent transit times on each arcs.

In partial contraflow approach, we allow the reversal of arc capacities only the necessary

portion. This approach has great benefit as the remaining unused arc capacities can be used

for emergency vehicles and logistics. With the minimum cost flow algorithm, we solve the

maximum dynamic as well as the earliest arrival flow problems with partial lane reversals

in TTSP network by temporal repetition of path flows and saving all unused arc capacities.

Theorem 4.1. The minimum cost partial contraflow always gives the maximum dynamic

contraflow on TTSP network with partial reversals of lanes.

Proof. All the lines of our algorithm except while loop of lines (8-13) are feasible. As the

flow obtained in line 7 does not contains any cycle with positive flow, both arcs (i, j) and

(j, i) cannot be used simultaneously. Therefore, the flow in auxiliary network cannot greater

than the reversed capacity of the arcs. This shows that Algorithm 2 is feasible.

As in previous works [1, 9, 16], the minimum cost flow gives the maximum dynamic

flow with temporally repeated paths flows on auxiliary network as in Theorem 3.1 and the

solution is equivalent to the maximum dynamic flow with lane reversals on original network.

However, in our algorithm, we compute residual arc capacities on each time step so that

we can reverse only the necessary part of the arcs and use the remaining arc capacities

for other security purpose. Thus, our algorithm computes the optimal maximum dynamic

contraflow in the same complexity by saving all unused arc capacities. !

Theorem 4.2. Algorithm 2 gives the earliest arrival flow with partial lane reversals on

TTSP network.
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Algorithm 2: Minimum cost partial contraflow on TTSP network

Input : TTSP network N = (V,A, b, τ, s, d, T ) with integer capacities b(i, j), b(j, i)

and integer travel time τ(i, j) = τ(j, i) on each arc (i, j) ∈ A

Output: Set of paths P, static contraflow x for corresponding dynamic contraflow,

saved capacity bsca with partial arc reversals

1 current contraflow on network N , x = 0

2 current residual capacity rca(i, j) = b(i, j)− x(i, j), (i, j) ∈ A on N (x)

3 for all (i, j) ∈ A do

4 revised capacity b̄(i, j), ∀(i, j) ∈ E = b̄(j, i) = b(i, j) + b(j, i)

5 revised transit time τ̄(i, j), ∀(i, j) ∈ E, τ̄(j, i) = τ(i, j) if (i, j) ∈ A; otherwise

τ(j, i)

6 end

7 compute set of paths P, flow x, saved capacity bsca using Algorithm 1

8 for all (i, j) ∈ A do

9 if x(i, j) > b(i, j) then

10 reverse (j, i) as (i, j) upto capacity x(i, j)− b(i, j)

11 end

12 if (i, j) /∈ A and x(i, j) > 0 then

13 reverse (j, i) as (i, j) and replace b(i, j) by 0

14 end

15 end

16 for all (i, j) ∈ A do

17 if (i, j) ∈ A is reversed then

18 rca(i, j) = b̄(i, j)− x(j, i) and rca(i, j) = 0

19 end

20 if neither (i, j) nor (j, i) is reversed then

21 rca(i, j) = b(i, j)− x(i, j)

22 end

23 end

24 contraflow on N , x = x+
∑

k

x(Pk)

25 saved capacity bsca(i, j) = rca(i, j)

Proof. The maximum dynamic flow with partial lane reversals is maximum for each time

step from the beginning on TTSP network. Thus, Algorithm 2 gives the earliest arrival

flow with partial lane reversals on TTSP network in polynomial time complexity O(mn +

m logm). !

Example 4.3. We apply Algorithm 2 on Figure 1(a) to find the earliest arrival partial

contraflow. First we construct the auxiliary network with contraflow configuration as in

Steps (3-6) of Algorithm 2, see Figure 2(a). In the auxiliary network, we solve the modified

minimum cost flow algorithm (cf. Algorithm 1) iteratively. As in Example 3.3, path P1 =
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in time horizon T = 6 obtained by solving with Algorithm 1 is 16 via paths P1 = s−x−u−d,

P1 = s− y −w− d and P3 = s− x− v − d. The unused arc capacities are [s, y : 1], [y, w; 1]

and [v, d; 3].
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4. Minimum cost flow partial contraflow algorithm

In this section, we present an efficient minimum cost flow algorithm to solve the partial

contraflow problem. Recently, author in [15, 16] introduced the partial contraflow approach

for evacuation planning and investigated different solution algorithms to solve the problem

for constant and inflow dependent transit times on each arcs.

In partial contraflow approach, we allow the reversal of arc capacities only the necessary

portion. This approach has great benefit as the remaining unused arc capacities can be used

for emergency vehicles and logistics. With the minimum cost flow algorithm, we solve the

maximum dynamic as well as the earliest arrival flow problems with partial lane reversals

in TTSP network by temporal repetition of path flows and saving all unused arc capacities.

Theorem 4.1. The minimum cost partial contraflow always gives the maximum dynamic

contraflow on TTSP network with partial reversals of lanes.

Proof. All the lines of our algorithm except while loop of lines (8-13) are feasible. As the

flow obtained in line 7 does not contains any cycle with positive flow, both arcs (i, j) and

(j, i) cannot be used simultaneously. Therefore, the flow in auxiliary network cannot greater

than the reversed capacity of the arcs. This shows that Algorithm 2 is feasible.

As in previous works [1, 9, 16], the minimum cost flow gives the maximum dynamic

flow with temporally repeated paths flows on auxiliary network as in Theorem 3.1 and the

solution is equivalent to the maximum dynamic flow with lane reversals on original network.

However, in our algorithm, we compute residual arc capacities on each time step so that

we can reverse only the necessary part of the arcs and use the remaining arc capacities

for other security purpose. Thus, our algorithm computes the optimal maximum dynamic

contraflow in the same complexity by saving all unused arc capacities. !

Theorem 4.2. Algorithm 2 gives the earliest arrival flow with partial lane reversals on

TTSP network.
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Algorithm 2: Minimum cost partial contraflow on TTSP network

Input : TTSP network N = (V,A, b, τ, s, d, T ) with integer capacities b(i, j), b(j, i)

and integer travel time τ(i, j) = τ(j, i) on each arc (i, j) ∈ A

Output: Set of paths P, static contraflow x for corresponding dynamic contraflow,

saved capacity bsca with partial arc reversals

1 current contraflow on network N , x = 0

2 current residual capacity rca(i, j) = b(i, j)− x(i, j), (i, j) ∈ A on N (x)

3 for all (i, j) ∈ A do

4 revised capacity b̄(i, j), ∀(i, j) ∈ E = b̄(j, i) = b(i, j) + b(j, i)

5 revised transit time τ̄(i, j), ∀(i, j) ∈ E, τ̄(j, i) = τ(i, j) if (i, j) ∈ A; otherwise

τ(j, i)

6 end

7 compute set of paths P, flow x, saved capacity bsca using Algorithm 1

8 for all (i, j) ∈ A do

9 if x(i, j) > b(i, j) then

10 reverse (j, i) as (i, j) upto capacity x(i, j)− b(i, j)

11 end

12 if (i, j) /∈ A and x(i, j) > 0 then

13 reverse (j, i) as (i, j) and replace b(i, j) by 0

14 end

15 end

16 for all (i, j) ∈ A do

17 if (i, j) ∈ A is reversed then

18 rca(i, j) = b̄(i, j)− x(j, i) and rca(i, j) = 0

19 end

20 if neither (i, j) nor (j, i) is reversed then

21 rca(i, j) = b(i, j)− x(i, j)

22 end

23 end

24 contraflow on N , x = x+
∑

k

x(Pk)

25 saved capacity bsca(i, j) = rca(i, j)

Proof. The maximum dynamic flow with partial lane reversals is maximum for each time

step from the beginning on TTSP network. Thus, Algorithm 2 gives the earliest arrival

flow with partial lane reversals on TTSP network in polynomial time complexity O(mn +

m logm). !

Example 4.3. We apply Algorithm 2 on Figure 1(a) to find the earliest arrival partial

contraflow. First we construct the auxiliary network with contraflow configuration as in

Steps (3-6) of Algorithm 2, see Figure 2(a). In the auxiliary network, we solve the modified

minimum cost flow algorithm (cf. Algorithm 1) iteratively. As in Example 3.3, path P1 =
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s − x − u − d carries flow value 4 at times 4, 5 and 6. Path P2 = s − y − w − d carries 5

flow value at time 5 and 6. Path P3 = s − x − v − d carries 2 flow value at time 6. Thus

in time T = 6, the total flow 24 units is sent from s to d and unused arc capacities are

recorded as [s, x; 1], [s, y; 2], [y, w; 1], [u, d; 1], [v, d; 4] in Figure 2(b). As the flow is maximized

at each time point by reversing only necessary arc capacities, it is the earliest arrival partial

contraflow for given TTSP network of Figure 1(a).
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Figure 2. (a) Auxiliary network of Figure 1(a), (b) Earliest arrival partial contraflow

5. Conclusions

In this work, we studied the minimum cost flow problem and investigated its solution

technique required to solve the dynamic flow problems on TTSP networks. We presented

modified minimum cost flow algorithm that not only maximizes the flow along paths but

also records all unused arc capacities of each arc on the network. Using this algorithm, we

have solved the maximum dynamic and the earliest arrival flow problems on TTSP net-

works in strongly polynomial time complexities. Moreover, we presented the minimum cost

partial contraflow algorithm that solves both maximum dynamic and earliest arrival flow

problems with partial reversals of arc capacities. This algorithm has strongly polynomial

time complexity.
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in time T = 6, the total flow 24 units is sent from s to d and unused arc capacities are

recorded as [s, x; 1], [s, y; 2], [y, w; 1], [u, d; 1], [v, d; 4] in Figure 2(b). As the flow is maximized

at each time point by reversing only necessary arc capacities, it is the earliest arrival partial
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5. Conclusions

In this work, we studied the minimum cost flow problem and investigated its solution

technique required to solve the dynamic flow problems on TTSP networks. We presented

modified minimum cost flow algorithm that not only maximizes the flow along paths but

also records all unused arc capacities of each arc on the network. Using this algorithm, we

have solved the maximum dynamic and the earliest arrival flow problems on TTSP net-

works in strongly polynomial time complexities. Moreover, we presented the minimum cost

partial contraflow algorithm that solves both maximum dynamic and earliest arrival flow

problems with partial reversals of arc capacities. This algorithm has strongly polynomial

time complexity.
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Abstract: We define commutator of a holomorphic semigroup, and on the basis of this concept, we define

conjugate semigroups of a holomorphic semigroup. We prove that the conjugate semigroup is nearly abelian

if and only if the given holomorphic semigroup is nearly abelian. We also prove that image of each of Fatou,

Julia, and escaping sets of a holomorphic semigroup under commutator (affine complex conjugating map)

is equal respectively, to the Fatou, Julia, and escaping sets of the conjugate semigroup. Finally, we prove

that every element of a nearly abelian holomorphic semigroup S can be written as the composition of an

element from the set generated by the set of commutators Φ(S) and the composition of the certain powers of

its generators..
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1. Introduction

We confine our study on Fatou, Julia, and escaping sets of holomorphic semigroups

and their conjugate semigroups. It is very obvious fact that a set of holomorphic functions

naturally forms a semigroup. Here, we take a set A of holomorphic functions and construct

a semigroup S consists of all elements that can be expressed as a finite composition of

elements in A. We call such a semigroup S by holomorphic semigroup generated by the

set A. Our particular interest is to study of the dynamics of the families of holomorphic

functions. For a collection F = {fα}α∈∆ of such functions, let

S = 〈fα〉

be a holomorphic semigroup generated by them. The index set ∆ to which α belongs is

allowed to be infinite in general unless otherwise stated. Here, each f ∈ S is a holomorphic

function and S is closed under functional composition. Thus, f ∈ S is constructed through

the composition of finite number of functions fαk , (k = 1, 2, 3, . . . ,m). That is,

f = fα1 ◦ fα2 ◦ fα3 ◦ · · · ◦ fαm .
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