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Abstract: In the paper a means of making a simplified study of dynamical systems with a control parameter

is presented. The intractable, third-order classical Lorenz system, the Lorenz-like Chen system and two

topologically dissimilar fifth-order Lorenz systems are considered for illustration. Using the multi-scale

method, these systems are reduced to an analytically tractable first-order Ginzburg-Landau equation(GLE)

in one of the amplitudes. The analytical solution of the GLE is used to find the remaining amplitudes.
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1. Introduction

Chaos appears in the solution of nonlinear dynamical systems that are sensitive to ini-

tial conditions. Poincare’s [1] fundamental work on chaos theory paved the way for Lorenz

[2] to study the chaotic attractor in a system of three ordinary, non-linear, autonomous dif-

ferential equations with a control paramter. The intractable system which Lorenz studied

numerically is now well known as the Lorenz model [2]. Later Rössler [3] came up with

another such third-order system (simpler than Lorenz model) while modeling the equilib-

rium in chemical reactions. More than two decades later Chen [4] proposed a Lorenz-like

system which is now used for the problem of masking modulation of sinusoidal data and

also for security improvement[5]. Siddheshwar et al. [6] derived a fifth-order Lorenz model

in their study of Rayleigh-Bénard convection(RBC) in nanoliquids using the two-phase

model. Siddheshwar and Titus [7] used additional modes in the study of RBC and arrived

at a fifth-order Lorenz model which is a generalization of the classical Lorenz model but is

topologically different from the one derived by Siddheshwar et al.[6].

A result on autonomous ODEs indicates that higher-order non-linear systems can be

transformed to equations of lower order. As a consequence of this, successful attempts

were made to reduce the classical Lorenz system of third-order into GLE by the following

methods:
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i) Reduction of Lorenz equation in three amplitudes into a single equation in one

amplitude by eliminating the other two amplitudes [7].

ii) Method of multiscales [8].

iii) Differential geometry method based on central manifold theorem [9] and

iv) Renormalization method [10].

This paper presents the multiscale method to reduce the following four analytically in-

tractable dynamical systems with a control parameter

(1) Third-order Lorenz system,

(2) Chen system and

(3) Two topologically different penta-modal Lorenz systems.

to a GLE in one of the amplitudes.

2. Reduction of dynamical systems

2.1. Third-order(classical) Lorenz system (ρ : control paramter). Consider the

Lorenz system [2] in the well-known form:

dX

dτ
= σ(Y −X)

dY

dτ
= ρX − Y −XZ

dZ

dτ
= −βZ +XY






,(2.1)

where X,Y and Z are amplitudes, τ is time, σ,β are real numbers and ρ is the control

parameter.

To obtain an analytical solution we reduce the order of the Lorenz system by using the

multiscale method and the same is discussed below.

We use the following regular perturbation expansion in the Lorenz system (2.1):

X = εX1 + ε2X2 + ε3X3 + · · ·

Y = εY1 + ε2Y2 + ε3Y3 + · · ·

Z = εW1 + ε2W2 + ε3W3 + · · ·

ρ = ρ0 + ερ1 + ε2ρ2 + · · ·






,(2.2)

where ε is a small amplitude.

For our convenience we define the operators :

L =




−σ −σ 0

ρ0 −1 0

0 0 −β



 and Mi = [Xi, Yi, Zi]
Tr, i = 1, 2, 3,(2.3)

where Tr denotes transpose of a matrix.

Substituting Eq. (2.2) in the Lorenz system (2.1) and using the time variation only at

the slow time scale which is taken to be τ1 = ε2τ and on comparing the like powers of ε on

either side of the resulting equations, we get the following system of equations at various
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orders :

First-order system:

(2.4) LM1 = 0,

Second-order system:

(2.5) LM2 = [R21, R22, R23]
Tr,

Third-order system:

(2.6) LM3 = [R31, R32, R33]
Tr,

where

R21 = 0, R22 = −ρ1X1 +X1Z1, R23 = −X1Y1,
}
,(2.7)

R31 =
dX1

dτ1
, R32 =

dY1
dτ1

− ρ2X1 +X1Z2 +X2Z1,

R33 =
dZ1

dτ1
−X1Y2 −X2Y1,





.(2.8)

The solution of the first- and second-order systems is given by :

M1 = [X1, ρ0X1, 0]Tr,(2.9)

M2 = [0, 0,
ρ0
β
X2

1 ]
Tr.(2.10)

At the third-order, we consider the Fredholm solvability condition to get the condition for

existence of its solution as :

3∑

j=1

RijM̂1 = 0, (i = 2, 3),(2.11)

where M̂1 represents the solution of the adjoint system of Eq. (2.4).

To find the value of ρ0 we take determinant(L)=0 and this yields ρ0 = 1 and on

substituting i = 2 in Eq. (2.11) and using Eqs. (2.7) and (2.9) in the resulting equation,

we get ρ1 = 0.

Substituting i = 3 in Eq. (2.11) and on using Eqs. (2.8) and (2.9) in the resulting equation,

we get the Ginzburg-Landau equation in the form:

(2.12)
dX1

dτ1
= Q1X1 −Q2X

3
1 ,

where

Q1 =
ρ2σ

1 + σ
, Q2 =

σ

β(1 + σ)
, ρ2 =

ρ− 1

ε2
.(2.13)

Solving Eq. (2.12) subject to initial condition X1(0) = 1, we get

X1(τ1) =
1√

Q2

Q1

+

(
1−

Q2

Q1

)
e−2Q1τ1

.(2.14)
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Using Eqs. (2.9), (2.10) and (2.14) in Eq. (2.2) we get the solution for X, Y and Z as

X = εX1, Y = εX1, Z = ε2
1

β
X2

1 .(2.15)

Having found the analytical solution of the classical Lorenz system, in the next section we

show that the solution of a Lorenz-like system (Chen [4] system) can be obtained from the

Lorenz system by redefining parameters.

2.2. Chen system (c : control parameter). Consider the Chen system [4] in the stan-

dard form:

dx

dt
= a(y − x)

dy

dt
= (c− a)x− xz + cy

dz

dt
= xy − bz






,(2.16)

where x, y and z are amplitudes, t is time, a, b are real numbers and c is the control

parameter.

Applying the following scaling to the Chen system (2.16) :

(2.17) x = −cX, y = −cY, z = −cZ, τ = −ct,

we get :

dX

dτ
=

−a

c
(Y −X)

dY

dτ
=

−(c− a)

c
X − Y −XZ

dZ

dτ
=

b

c
Z +XY






.(2.18)

On comparing the system (2.18) with the Lorenz system (2.1), we get :

(2.19) σ =
−a

c
, β =

−b

c
, ρ = −

(
1−

a

c

)
.

Thus, the solution of the Chen system (2.16) can be obtained from those of the Lorenz

system (2.1) by using the relation (2.19). The GLE corresponding to the Chen [4] system

is :

(2.20)
dx1
dt

= Q′

1x1 −Q′

2x
3
1,

where

Q′

1 =
c2a

c0 − a
, Q′

2 =
a

b(a− c0)
.(2.21)

Using multiscale expansion (2.2), we get solution the for x, y and z as

x = εx1, y = εx1, z = ε2
1

b
x21.(2.22)

where x1 is given by

x1(τ) =
1√

Q′

2

Q′

1

+

(
1−

Q′

2

Q′

1

)
e−2Q′

1
τ

.(2.23)
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We next consider a fifth-order Lorenz model for illustration.

2.3. Penta-modal Lorenz systems (ρ : control parameter). Type I : Consider five-

mode Lorenz model derived by Siddheshwar et al. [6] :

dX

dτ
= σ(Y −X − rS),(2.24)

dY

dτ
= ρX − Y −XZ,(2.25)

dZ

dτ
= −βZ +XY,(2.26)

dS

dτ
= X −

ε2

β

NA

Le
Y −

1

Le
S +XP,(2.27)

dP

dτ
=

ε2

β

NA

ρLe
Z −

β

Le
P −XS,(2.28)

where NA, Le and r are real numbers, ρ is the control parameter.

The individual equations in the system (2.24)-(2.28) are topologically dissimilar to each

other and a procedure similar to what was adopted in third-order systems earlier may be

used. We apply the multiscale method in the Lorenz system (2.24)-(2.28) as follows:




X

Y

Z

S

P

ρ





=





0

0

0

0

0

ρ0





+ ε





X1

Y1

Z1

S1

P1

ρ1





+ ε2





X2

Y2

Z2

S2

P2

ρ2





+ ε3





X3

Y3

Z3

S3

P3

0





+ · · ·(2.29)

Let us define operators

L =





−1 1 0 −r 0

ρ0 1 0 0 0

0 0 −β1 0 0

ρ0 0 0 −
ρ0
Le

0

0 0 0 0 −
βρ0
Le





and Mi =





Xi

Yi

Zi

Si

Pi




, i = 1(1)5.(2.30)

Substituting Eq. (2.29) in the fifth-order Lorenz system (2.24)-(2.28), using the time vari-

ation only at the slow time scale which is taken to be τ1 = ε2τ and on comparing the

like powers of ε on either side of the resulting equations, we get the following equations at

various orders :

First-order system:

(2.31) LM1 = 0,

Second-order system:

(2.32) LM2 = [R21, R22, R23, R24, R25]
Tr,
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Third-order system:

(2.33) LM3 = [R31, R32, R33, R34, R35]
Tr,

where

(2.34) R21 = 0, R22 = X1Z1, R23 = −X1Y1, R24 = −X1P1, R25 = −X1S1,

R31 =
1

σ

dX1

dτ1
,

R32 =
dY1
dτ1

− ρ2X1 +X1Z2,

R33 = −(X1Y2 +X2Y1) +
dZ1

dτ1
,

R34 = −(X1P2 +X2P1) +
dS1

dτ − 1
− ρ2X1 +

NA

Le
Y1 +

1

Le
S1,

R35 = (X1S2 +X2S1) +
dP1

dτ1
+

βρ2
Le

P1.






.(2.35)

The solution of the first- and second-order systems is given by

M1 = [X1, X1, 0, LeX1, 0]
Tr,(2.36)

M2 = [0, 0,
1

β
X1, 0,

−Le2

β
X1

2]Tr.(2.37)

Consider the Fredholm solvability condition

5∑

j=1

RijM̂1 = 0, (i = 2, 3),(2.38)

where M̂1 represents the solution of the adjoint system of Eq. (2.36).

To find the value of ρ0 we take determinant(L)=0 and this yields ρ0 = 1 and substituting

i = 2 in Eq. (2.38) and using Eqs. (2.34) and (2.36) in the resulting equation, we get ρ1 = 0.

Substituting i = 3 in Eq. (2.38) and using Eqs. (2.35) and (2.36) in the resulting equation,

we get the Ginzburg-Landau equation in the form:

(2.39)
dX1

dτ1
= Q1X1 −Q2X

3
1 ,

where

Q1 =
σ(ρ2 +NAr)

1 + σ(1− Le2r)
, Q2 =

σ(1− Le3r)

β [1 + σ(1− Le2r)]
,

}
.(2.40)

The solution of Eq. (2.39) subject to X1(0) = 1 is given by Eq. (2.14).

We next consider a system which cannot be reduced to a single, real GLE. It gets

reduced to a coupled system of GLEs.
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Type II: Consider the five-mode Lorenz model derived by Siddheshwar and Titus [7] :

dX

dτ
= σ(Y −X),(2.41)

dX ′

dτ
= σ(Y ′ −X ′),(2.42)

dY

dτ
= ρX − Y −XZ,(2.43)

dY ′

dτ
= ρX ′ − Y ′ −X ′Z,(2.44)

dZ

dτ
= −βZ +XY +X ′Y ′,(2.45)

where ρ is the control parameter.

On observing the Eqs. (2.41)-(2.45), we note that Eqs. (2.41) and (2.42) are topolog-

ically similar and so are Eqs. (2.43) and (2.44). Equation (2.45) is a stand-alone type. In

view of the above observation, we consider bunching of the equations into two sets :

i) Equations (2.41), (2.43) and (2.45), and

ii) Equations (2.42), (2.44) and (2.45).

We apply the multiscale method on the two bunches separately. The failure of the multiscale

procedure when the entire lot of equations (2.41)-(2.45) was considered together lead us to

this arrangement of bunching of equations.

Now considering Eqs. (2.41), (2.43) and (2.45) and applying multiscale method (2.2)

and using the slow time scale, τ1 = ε2τ , we get a system of equations at various orders. On

comparing the like powers of ε on either side of the resulting equations, we get the following

equations at various orders :

First-order system:

(2.46) LM1 = 0,

Second-order system:

(2.47) LM2 = [R21, R22, R23]
Tr,

Third-order system:

(2.48) LM3 = [R31, R32, R33]
Tr,

where

R21 = 0, R22 = −ρ1X1 +X1Y1, R23 = −X1Y1 −X ′

1Y
′

1 ,
}
,(2.49)

R31 =
dX1

dτ
, R32 =

dY1
dτ

− ρ2X1 +X1Z2 +X2Z1,

R33 =
dZ1

dτ
−X1Y2 −X2Y1 −X ′

1Y
′

2 −X ′

2Y
′

1 ,





.(2.50)
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The solution of the first- and second-order systems subject to appropriate initial condition

is given by :

M1 = [X1, ρ0X1, 0]Tr,(2.51)

M2 =

[
0, 0,

ρ0
β
X2

1 +
1

β
X ′

1Y
′

1

]Tr

,(2.52)

At the third-order, using the Fredholm solvability condition defined by Eq. (2.11), we get

the Ginzburg-Landau equation in the form:

(2.53)
dX1

dτ1
= Q1X1 −Q2(X1

3 +X1X
′

1

2).

where Q1 and Q2 are given in Eq. (2.13).

Next considering Eqs. (2.42), (2.44) and (2.45) and following a similar procedure to

that considered earlier we get yet another Ginzburg-Landau equation in the form :

(2.54)
dX ′

1

dτ1
= Q1X

′

1 −Q2(X
′

1

3 +X ′

1X1
2),

Equations (2.53) and (2.54) are a coupled system of real, Ginzburg-Landau equations which

can be combined into the following:

(2.55)
dX̃1

dτ1
= Q1X̃1 −Q2X̃1

∣∣∣X̃1

∣∣∣
2

,

by defining X̃1 = X1 + iX ′

1, where i =
√
−1.

The phase-amplitude form of X̃1 is

(2.56) X̃1 =
∣∣∣X̃1

∣∣∣ eiΦ.

Substituting Eq. (2.56) in Eq. (2.55), we get the following GLE in |X̃1| :

(2.57)
d
∣∣∣X̃1

∣∣∣

dτ1
= Q1

∣∣∣X̃1

∣∣∣−Q2

∣∣∣X̃1

∣∣∣
3

.

Equation (2.57) is essentially the GLE (2.12) for
∣∣∣X̃1

∣∣∣.

In the succeeding section we discuss the results obtained in the paper.

3. Results and Discussion

The four dynamical systems considered are nonlinear and analytically intractable. They

possess a control parameter which regulates the dynamics in the system. Instability appears

in such dynamical systems when the control parameter exceeds a critical value. Phase-

space plots and phase-plane projections of them are normally obtained by using a numerical

solution of the dynamical system based on the Runge-Kutta family of methods or predictor-

corrector combinations. In the paper, we exploit the presence of a control parameter in

the dynamical system and use it to define a slow time-scale and this in turn helps in

obtaining the analytical solution for the dynamical system. The solution is valid for states

of the system corresponding to values of the control parameter in the neighbourhood of

its critical value. The multiscale method is used in the paper to reduce a higher-order

dynamical system to a lower-order one and the latter is invariably a GLE for all the five
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illustrative dynamical systems considered. The procedure using the multiscale method in

transforming an intractable dynamical system to a tractable one can be adopted with ease

by similar means to many other dynamical systems [11],[12]. [13],[14], [15], [16],[17], [18],

[19]). The most important aspect to be noted in the study is the variation in the method

for topologically similar and dissimilar equations(see the illustrative penta-modal Lorenz

models).

References
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