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Abstract: The main purpose of this paper is to extend some theory of Schrödinger operators from one

dimension to higher dimension. In particular, we will give systematic operator theoretic analysis for the

Schrödinger equations in multidimensional space. To this end, we will provide the detail proves of some

basic results that are necessary for further studies in these areas. In addition, we will introduce Titchmarsh-

Weyl m− function of these equations and express m− function in term of the resolvent operators.
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1. Introcuction

The Jacobi and Schrödinger equations are the basic equations in Mathematical physics.

These equations are used to describe quantum mechanical particles. In one dimensional

space, the theory of Schrödinger equations

−y′′ + V (x)y = zy(x), x ∈ R, z ∈ C

and the Jacobi equations

a(n)y(n+ 1) + a(n− 1)y(n− 1) + b(n)y(n) = zy(n), z ∈ C,

where a(n), b(n) are bounded sequences, are well developed. For a few references see [2, 8, 9,

11]. However, much less is known about the theory in multidimensional space. In this paper,

we attempt to extend some theory of Schrödinger equations from one dimensional space to

multidimensional space. So we consider discrete Schrödinger equations whose solutions are

vector valued functions and extend some basic results of Jacobi and Schrödinger equations

from one dimensional space. There has been some research work in higher dimension for

example, see [3, 4, 7]. However, we did not find a detail presentations of the basic theory,

required for further studies in this area, which we discussed in section 2.

In addition, we also discuss about the Titchmarsh-Weyl m function. These m− func-

tions play very important role in the spectral theory of Jacobi and Schrödinger operators.
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The spectrum of these operators can be described by these m− function. Some of the anal-

ogous theory in one dimensional space can be found also in above mentioned references. We

discuss about this in Section 3.

The extension of the theory to multidimensional space is not obvious in most of the

cases. The situation becomes completely different and a careful analysis is required to study

such phenomena.

We consider a multidimensional discrete Schrödinger equation of the form

y(n+ 1) + y(n− 1) +B(n)y(n) = zy(n), z ∈ C(1.1)

where y(n) = [y1(n) y2(n), . . . yd(n)]t ( t stands for a transpose), is a vector valued sequence

in l2(I,Cd). Here l2(I,Cd) is a Hilbert space of square summable vector valued sequences

with the inner product

〈u, v〉 =
∑

n∈I

u(n)∗v(n),

where “ ∗ ” stands for conjugate transpose and B(n) ∈ Cd×d is a symmetric d × d matrix.

Usually I = Z or I = N. The equation (1.1) can be generalized to a multidimensional

Jacobi equation of the form

A(n)y(n+ 1) +A(n− 1)y(n− 1) +B(n)y(n) = zy(n), z ∈ C(1.2)

with A(n), B(n) are sequences of d×d matrices. If I = N The equation (1.2) can be written

in the form:
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The matrix
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is called a block Jacobi matrix. Some studies about the block Jacobi matrix can be found

in the paper [7]. Equation (1.1) is a particular case of Jacobi equation with A(n) ≡ 1.

2. Some basic theory

In this section, we will give an operator theoretic analysis of the equation (1.1). The

Equation (1.1) induces an operator J on l2(I,Cd) as

Jy(n) = y(n+ 1) + y(n− 1) +B(n)y(n).
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If I = N, then we need to slightly modify the definition of J as

Jy(1) = y(2) +B(1)y(1).

The matrix B(n) is called the potential. We assume that

B(n)∗ = B(n), and ‖B(n)‖ ≤ C

.

Proposition 2.1. If B(n) ∈ Cd×d, B(n)∗ = B(n), then J is a self-adjoint operator on

l2(N,Cd).

Proof. It is clear by definition of J and Cauchy Schwartz inequality that J is a bounded

linear operator on l2(N,Cd). In order to see self adjointness, suppose u, v ∈ l2(N,Cd) then

〈u, Jv〉 =
∞
∑

n=1

u(n)∗Jv(n) = u(1)∗(J(v)(1)) +
∞
∑

n=2

u(n)∗(v(n+ 1) + v(n− 1) +B(n)v(n))

=u(1)∗(v(2) +B(1)v(1)) +
∞
∑

n=2

u(n)∗v(n+ 1) +
∞
∑

n=2

u(n)∗v(n− 1) +
∞
∑

n=2

u(n)∗B(n)v(n))

=(u(2) +B(1)u(1))∗v(1) +
∞
∑

n=2

(u(n+ 1) + u(n− 1) +B(n)u(n))∗v(n))

=
∞
∑

n=1

(Ju(n))∗v(n)

=〈Ju, v〉

!

Since J is a self adjoint operator, the spectrum of such operator is a set of real numbers:

σ(J) ⊂ R.

To get a solution of the equation (1.1), we may fix any two vectors c1, c2 ∈ Cd at two

consecutive sites, that is, we fix the values uk = c1, uk+1 = c2 and evolve according to (1.1).

Suppose τ is the difference expression in the left side of (1.1), then we have the following

remark.

Remark 2.2. Let c1, c2 be any two vectors in Cd and k ∈ N0(= N∪{0}). For any arbitrary

sequence f(n) there exists a unique solution u(n) of (τ − z)u(n) = f(n) with u(k) = c1 and

u(k + 1) = c2.

Consequently the following preposition holds.

Proposition 2.3. The set of solutions u to (τ − z)u(n) = 0 is a 2d-dimensional vector

space.

Proof. By above remark, for each c1, c2 ∈ Cd and k ∈ N0 there exists a unique solution u

such that u(k) = c1 and u(k+1) = c2. Since Cd is a d dimensional space, the solution space

is 2d dimensional vector space. !
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In the following theorem we show that the number of linearly independent l2(N,Cd)

solutions of d− dimensional Schrödinger equations (1.1) is d.

Theorem 2.4. Let z ∈ C − R. Then (τ − z)u(n) = 0 has exactly d linearly independent

solutions in l2(N,Cd).

Proof. Since J is self adjoint the spectrum σ(J) ⊂ R and therefore for each z ∈ C+, (J−z)

is invertible in B(l2). Let

δk = (e(k), 0, 0, , . . .)

where for each k, e(k)t = (0, 0, . . . , 1, . . . , 0, 0) is a vector in Cd with 1 in the kth component

and 0 otherwise. Let uk = (J − z)−1δk for each k = 1, 2, .....d. Clearly, uk are linearly inde-

pendent (being the images of linearly independent vector under bounded linear operator).

Moreover,

(J − z)uk = δk.

For each k, k = 1, 2, ...., d, (τ − z)uk(n) = 0 for n ≥ 2. By suitably defining at n = 0 we can

also achieve that (τ − z)uk(1) = 0. So this extended uk is an l2 solution. Thus there are d

linearly independent solutions.

Suppose there is another solution v linearly independent to u1, u2, ......ud. Then v(0), u1(0), ......., ud(0)

being d + 1 vectors in Cd, are linearly dependent. So there exists constants α1,α2, ......αd

not all zero such that

v(0) = α1u1(0) + .........+ αdud(0).

Define

f(n, z) = v(n, z)− (α1u1(n, z) + .........+ αdud(n, z)).

Clearly f(n, z) satisfies the difference equation and f(n, z) ∈ l2(N,Cd). Moreover, f(0, z) =

0. So f(n, z) is an eigenvector for J, which contradicts that σ(J) ⊂ R. So there are exactly

d linearly independent l2 solutions. !

As we know that the Wronskian of the solutions of a differential equations have close

connection with the linearly independent solutions. It is also important in the difference

equations as well. One of the applications of Wronskian can be found in [6]. We define the

Wronskian of any two vector valued sequences in l2(N,Cd).

Definition 2.5. The Wronskian of any two sequences f(n, z), g(n, z) ∈ l2(N,Cd) is defined

by

Wn(f, g) = [f∗(n+ 1, z̄)g(n, z)− f∗(n, z̄)g(n+ 1, z)].

This definition incorporate with the definition in one dimensional space and in the

continuous case. Analogous to a result in ordinary differential equations, we have the

following lemma.

Lemma 2.6. If f(n, z), g(n, z) ∈ l2(N,Cd) are any two solutions of (1.1) then Wn(f, g) is

independent of n.
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Proof. Since f(n, z), g(n, z) are solutions of (1.1) we have,

f(n+ 1, z) + f(n− 1, z) +B(n)f(n, z) = zf(n, z)

and

g(n+ 1, z) + g(n− 1, z) +B(n)g(n, z) = zg(n, z).

Multiply the complex conjugate of first equation by g∗(n, z) from left and take the conjugate

transpose we obtain,

f∗(n+ 1, z̄)g(n, z) + f∗(n− 1, z̄)g(n, z) + f∗(n, z̄)B(n)g(n, z) = f∗(n, z̄)zg(n, z)

Similarly, multiplying second equation from left by f∗(n, z̄) we get,

f∗(n, z̄)g(n+ 1, z) + f∗(n, z̄)g(n− 1, z) + f∗(n, z̄)B(n)g(n, z) = f∗(n, z̄)zg(n, z).

On subtraction we get

f∗(n+ 1, z̄)g(n, z)− f∗(n, z̄)g(n+ 1, z) = f∗(n, z̄)g(n− 1, z)− f∗(n− 1, z̄)g(n, z)

so that Wn(f, g) = Wn−1(f, g). !

Next we establish the Green’s identity corresponding to equation (1.1).

Lemma 2.7 (Green’s Identity). Let N0 = N ∪ {0}. For f(n, z), g(n, z) ∈ l2(N0,C
d)

n
∑

j=0

(

f∗(τg)− (τf)∗g
)

(j) = W0(f̄ , g)−Wn(f̄ , g).

Proof.
n
∑

j=0

(

f∗(τg)− (τf)∗g
)

(j)

=
n
∑

j=0

[

f∗(j)
(

g(j + 1) + g(j − 1) +B(n)g(j)
)

−
(

f(j + 1) + f(j − 1) +B(n)f(j)
)∗

g(j)
]

=
n
∑

j=0

[(

f∗(j)g(j − 1)− f∗(j − 1)g(j)
)

−
(

f∗(j + 1)g(j)− f∗(j)g(j + 1)
)]

=
n
∑

j=0

Wj(f̄ , g)−Wj−1(f̄ , g)

= W0(f̄ , g)−Wn(f̄ , g)

!

It is now convenient to fix a basis of the solution space. An easier way to choose a basis

of the solution space of (1.1) is to prescribe a pair of initial conditions. For z ∈ C, let

U(n, z) = [u1(n), u2(n), . . . , ud(n)],

ui(n) = [u1,i(n) u2,i(n) . . . ud,i(n)]
t

V (n, z) = [v1(n), v2(n), . . . , vd(n)](2.1)

vi(n) = [v1,i(n) v2,i(n) . . . vd,i(n)]
t
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be the set of solutions. Both of the sets U(n, z) and V (n, z) consists of d linearly independent

solutions of (τ − z)u(n) = 0. For a convenience, we may consider these sets as matrices in

Md×d(C). We further suppose that these solutions satisfy the following initial conditions

(2.2) U(0, z) = −I, V (0, z) = O, U(1, z) = O, V (1, z) = I.

By iterating the difference equation, we see that for fixed n ∈ N, U(n, z), V (n, z) are poly-

nomial of degree n− 2 over Md×d(C). So U(n, z) = U(n, z̄) and V (n, z) = V (n, z̄).

We extend the definition of Wronskian from above for the sets U(n, z), V (n, z), each

contains d linearly independent solutions of (1.1).

Wn(U, V ) = det[U∗(n+ 1, z̄)V (n, z)− U∗(n, z̄)V (n+ 1, z)].

We now extend the lemma 2.6 in the following proposition.

Proposition 2.8. Wn(U, V ) is independent of n ∈ N

Proof. Since U(n, z), V (n, z) are solutions of (1.1),

U(n+ 1, z) + U(n− 1, z) +B(n)U(n, z) = zU(n, z)

and

V (n+ 1, z) + V (n− 1, z) +B(n)V (n, z) = zV (n, z)

By multiplying the complex conjugate of first equation by V ∗(n, z) and taking the conjugate

transpose we obtain,

U∗(n+ 1, z̄)V (n, z) + U∗(n− 1, z̄)V (n, z) + U∗(n, z̄)B(n)V (n, z) = U∗(n, z̄)zV (n, z)

Similarly, multiplying second equation by U∗(n, z̄) we get,

U∗(n, z̄)V (n+ 1, z) + U∗(n, z̄)V (n− 1, z) + U∗(n, z̄)B(n)V (n, z) = U∗(n, z̄)zV (n, z).

On subtraction we get

U∗(n+ 1, z̄)V (n, z)− U∗(n, z̄)V (n+ 1, z) = U∗(n, z̄)V (n− 1, z)− U∗(n− 1, z̄)V (n, z)

so that

det[U∗(n+1, z̄)V (n, z)−U∗(n, z̄)V (n+1, z)] = det[U∗(n, z̄)V (n−1, z)−U∗(n−1, z̄)V (n, z)].

It follows that Wn(U, V ) = Wn−1(U, V ). Continuing we get,

Wn(U, V ) = Wn−1(U, V ) = . . . = W0(U, V ) = det I = 1.

!



A NOTE ON VECTOR-VALUED DISCRETE SCHRÖDINGER OPERATORS 7

3. Titchmarsh-Weyl m function

Titchmarsh-Weyl m functions associated with the Schrödinger equations are very im-

portant objects in the direct and inverse spectral theory of the corresponding operator.

These functions provides asymptotic behavior of the solutions of these equations. The his-

tory of these functions goes back to 1910 when H. Weyl introduce these functions in [13]

for Sturn-Liouville differential equations. It was further studied by E. C. Titchmarsh in

[12] and establish the connection between the analyticity of the solution and the spectrum

of the operator of Sturn-Liouville differential equations. There has been tremendous work

about the Weyl theory in one dimension which can be found in many literatures, please see

[1, 5, 8, 10, 11] as a few references.

We introduce the Titchmarsh-Weylm function for the vector-valued discrete Schrödinger

operators and express in terms of resolvent operator.

Definition 3.1. Let z ∈ C+ = {z ∈ C : Im(z) > 0}. The Titchmarsh-Weyl m function is

defined as the unique M(z) ∈ Cd×d for which

F (n, z) = U(n, z) +M(z)V (n, z)(3.1)

where U(n, z), V (n, z) are the sets of d linearly independent solutions with initial values

(2.2) and F (n, z) is a set of d linearly independent solutions of (1.1) in l2(N,Cd).

This definition, is in fact well defined. As we mentioned above that there are only d

linearly independent solutions in l2(N0,C
d), if there is another M(z) satisfying the above

conditions then the solutions from both sets U(n, z) and V (n, z) will be in l2(N0,C
d). The

solution set V (n, z) is such that V (0, z) = 0 which implies that V (n, z) is the set of eigen-

functions for the self adjoint operator J. This contradicts that the spectrum of J is a set of

real numbers.

The following is the main theorem in this section.

Theorem 3.2. z ∈ C+. If (τ − z)F = 0 and F consists of d solutions in l2(N,Cd). Then

M(z) = −F (1, z)F (0, z)−1.(3.2)

Moreover,

M(z) = (mij(z))d×d ∈ C
d×d, mij(z) = 〈δj , (J − z)−1δi〉.(3.3)

Proof. If F is specifically the set of l2 solutions from (3.1). Then F (0, z) = −I and F (1, z) =

M(z). So (3.2) holds. A set of arbitrary d solutions G(n, z) is a constant (matrix) multiple of

the solution set F (n, z) from (3.1) because (3.1) is a set of d linearly independent solutions.

That is,

G(n, z) = F (n, z)C

F (n, z) = G(n, z)C−1
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so that

−G(1, z)G(0, z)−1 =− F (1, z)CC−1F (0, z)−1

=− F (1, z)F (0, z)−1

=M(z).

Let F (n, z) as in (3.2) and let

gi = (J − z)−1δi.

Then (J − z)gi = δi. So (τ − z)gi(n) = 0 for n ≥ 2. Moreover gi ∈ l2 for all i = 1, 2, ......., d.

Let

G(n, z) = [g1, g2, ......., gd].

Then G(n, z) = F (n, z)C, C ∈ Cd×d. By comparing values at

n = 1, G(1, z) = [g1(1), g2(1), ........., gd(1)].

Here

g1(1) = (J − z)−1δ1(1)

and

g1 = [g11, g21, ..., ..., ..., gd1]
t, gi1 = 〈δi, g1〉, i = 1, 2, ...., d.

Then M(z) = G(1, z)C−1 and

M(z) = (mij(z))

= (〈δj , (J − z)−1δi〉)C
−1.

To find the value of C, we compare values at n = 2.

First (J − z)G(1, z) = (δ1, δ2, ......, δd) so

(J − z)G(1, z) =













1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1













= I

It follows that

G(2, z) +B(1)G(1, z)− zG(1, z) = I

G(2, z) = (z −B(1))G(1, z) + I.............(i)

Also,

F (2, z) = (z −B(1))F (1, z)− F (0, z)C

G(2, z) = (z −B(1))G(1, z)−G(0, z)............(ii)

Comparing (i) and (ii), we get −F (0, z)C = I and so I.C = I =⇒ C = I. Hence (3.3)

holds. That is

M(z) = (mij(z))

= (〈δj , (J − z)−1δi〉).(3.4)
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This result allows us to connect the m function with a matrix valued Borel measure

using functional calculus for these resolvent operators 〈δj , (J − z)−1δi〉 . We aim to extend

the Weyl theory and discuss the spectrum of vector-valued discrete Schrödinger operators

in our next studies.
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