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Abstract: In this paper, we relate Bounded Mean Oscillation (BMO) function and A2 weight function. We

show that logarithm of any A2 function is a BMO function and every BMO function is equal to a constant

multiple of the logarithm of an A2 weight function. Moreover, we show that logarithm of any Ap weight

function for 1 < p < ∞ is a BMO function.
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1. Introduction and main result

The space of bounded mean oscillation, abbreviated BMO, is the space of all functions

whose deviations from their means over cubes is bounded. The BMO space is frequently

used space in analysis. For example the BMO space comes into play in the characterization

of L2 boundedness of noncovolution singular integral operators having standard kernels.

Careleson measures have natural relation with BMO functions such that the measures of

functions are Carleson measures iff the functions are in BMO. Readers are suggested to

refer [1] for more about the BMO space.

On the other hand, the theory of weights play an important role in various fields such as

extrapolation theory, vector-valued inequalities and estimates for certain class of non linear

differential equation. Moreover, they are very useful in the study of boundary value prob-

lems for Laplace’s equation in Lipschitz domains. In 1970, Muckenhoupt characterized posi-

tive functions w for which the Hardy-Littlewood maximal operator M maps Lp(Rn, w(x)dx)

to itself. Muckenhoupt’s characterization actually gave the better understanding of theory

of weighted inequalities which then led to the introduction of Ap class and consequently the

development of weighted inequalities. For more about the weighted theory, please refer to

[1],[2] and [3]. In this article, we relate the BMO function and A2 weight function. Before

this, some definitions are in order:
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Definition: let f be a locally integrable function on Rn and Q be a measurable set in Rn.

Then the mean oscillation of f over Q is

1

|Q|

∫

Q
|f(x)−AvgQf |dx

where

AvgQf =
1

|Q|

∫

Q
f(x)dx

is the mean or average of f over Q.

The BMO norm of a complex valued function f on Rn is defined as

‖ f ‖BMO= sup
Q

1

|Q|

∫

Q
|f(x)−AvgQf |dx.

In the above definition the supremum is taken over all cubes Q in Rn. Then the function f

is said to be of bounded mean oscillation if ‖ f ‖BMO< ∞.

Definition: A locally integrable function on Rn that takes values in the interval (0,∞)

almost everywhere is called a weight. So by definition a weight function can be zero or infin-

ity only on a set whose Lebesgue measure is zero. We use the notation w(E) =
∫

E w(x)dx

to denote the w-measure of the set E and we reserve the notation Ln(Rn, w) or Lp(w) for

the weighted Lp spaces. We note that w(E) < ∞ for all sets E contained in some ball since

the weights are locally integrable functions.

Definition: Let 1 < p < ∞. A weight w is said to be of class Ap if [w]Ap if finite where [w]Ap

is defined as

[w]Ap = sup
Qcubes inRn

(

1

|q|
|w(x)|dx

)

(

|w(x)|
−1
p−1dx

)p−1
.

We remark that in the above definition of Ap one can also use set of all balls in Rn instead

of all cubes in Rn. Readers are suggested to read for motivation, properties of AP weights

and much more about the AP weights.

Theorem 1. For all functions f in space of BMO defined on Rn, for all cubes Q and α > 0,

we have
∣

∣

{

x : |f(x)− AvgQf | > α
}
∣

∣ ≤ e|Q|e−Aα/‖f‖BMO

with A = (2ne)−1.

This theorem is popularly known as John-Nirenberg theorem and for the proof, please

refer to [4].

We first establish the following result:

Let ν be a real-valued locally integrable function on Rn and let 1 < p < ∞. Then eν ∈ Ap

if and only if the following two conditions are satisfied for some constant c < ∞:

(a) sup
Qcubes

1

|Q|

∫

Q
eν(t)−νQdt ≤ C

(b) sup
Qcubes

1

|Q|

∫

Q
e−(ν(t)−νQ) 1

p−1dt ≤ C
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Suppose eν ∈ Ap, 1 < p < ∞..Then,

1

|Q|

∫

Q
eν(t)−νQdt = e−νQ 1

|Q|

∫

Q
eν(t)dt

=
(

e
−νQ
p−1

)p−1 1

|Q|

∫

Q
eν(t)dt.

≤
( 1

|Q|

∫

Q
e

−ν(t)
p−1 dt

)p−1( 1

|Q|

∫

Q
eν(t)dt

)

≤ [eν(t)]Ap < ∞.

This proves (a). Again,

1

|Q|

∫

Q
e−(ν(t)−νQ) 1

p−1dt =
1

|Q|

∫

Q
e

−ν(t)
p−1 .e

νQ
p−1dt.

≤
( 1

|Q|

∫

Q
e

ν(t)
p−1dt

)( 1

|Q|

∫

Q
eν(t)dt

)
1

p−1

≤ [eν ]Ap

This proves (b). Conversely, suppose that the conditions (a) and (b) hold. We need to show

that eν ∈ Ap. This follows because,
( 1

|Q|

∫

Q
eν(t)dt

)( 1

|Q|

∫

Q

(

eν(t)
)

−1
p−1dt

)p−1

=
( 1

|Q|

∫

Q
eν(t)−νQdt

)( 1

|Q|

∫

Q
e

−(ν(t)−νQ)

p−1 dt
)p−1

< C

by (a) and (b). In particular for p=2, we have: ev ∈ A2 ⇐⇒ for some constantC < ∞

sup
Q

1

|Q|

∫

Q
eV (t)−VQdt ≤ C

sup
Q

1

|Q|

∫

Q
e−(V (t)−VQ)dt ≤ C

⇐⇒ sup
Q

1

|Q|

∫

Q
e|V (t)−VQ|dt ≤ C

if ϕ ∈ A2, then
(

1

|Q|

∫

Q
ϕ

)(

1/|Q|

∫

Q
ϕ−1

)

≤ C

equivalently
(

1

|Q|

∫

Q
ϕ/ϕQ

)(

1/|Q|

∫

Q
ϕQ/ϕ

)

≤ C.

By Jensen’s inequality, each function is at least 1 and at most C, therefore

1

|Q|

∫

Q
e| logϕ−logϕQ| ≤ 2C
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and so
1

|Q|

∫

Q
| logϕ− logϕQ| ≤ 2C.

This proves that logϕ ∈ BMO.

Next we prove that if ϕ ∈ BMO, then eCϕϕ ∈ A2 for some constant Cϕ. From the part

(a), to show eCϕϕ ∈ A2 it suffices to prove supQ
1
|Q|

∫

Q e|f−fQ|dt ≤ C where f = eCϕϕ.

John-Nirenberg Theorem gives,

|x ∈ Q : |f(x)− avgf | > α| ≤ C|Q|e−Aα/‖f‖BMO .

Let Qi = x ∈ Q : |f | ≥ |f(x)−Avgf | > i. Then

1

|Q|

∫

Q
e|f−fQ|dt =

1

|Q|

∞
∑

i=1

∫

Qi

e|f−fQ|dt ≤
1

|Q|

∞
∑

i=1

ei+1C|Q|e−Ai/‖f‖BMO

We take Cϕ, s.t.‖f‖BMO = A/2 so that

1

|Q|

∫

Q
e|f−fQ|dt ≤ Ce

∞
∑

i=1

e−i < ∞.

This shows that eCϕϕ ∈ A2. This proves that every BMO function is equal to a constant

multiple of the logarithm of an A2 weight function.

Finally we show that logarithm of any Ap weight function for 1 < p < ∞ is a BMO function.

We already proved that ‖ logϕ‖BMO ≤ [ϕ]A2 and when 1 < p ≤ 2

ϕAQ
= sup

Q
(
1

|Q|

∫

Q
ϕ(x)dx)(

1

|Q|

∫

Q
ϕ(x)−1/p−1dx)p−1

≥ sup
Q

(
1

|Q|

∫

Q
ϕ(x)dx)(

1

|Q|

∫

Q
ϕ−1dx) = [ϕ]A2 .

Therefore ‖ logϕ‖BMO ≤ [ϕ]Ap when 1 < p ≤ 2

‖logϕ−1/p−1‖BMO ≤ [ϕ−1/p−1]Ap′

when p > ∞. That is:

sup
Q

(

1

|Q|

∫

Q
| logϕ−1/p−1 − logϕ−1/p−1

Q |dt

)

≤ sup
Q

(

1

|Q|

∫

Q
p−1/p−1

)(

1

|Q|

∫

Q
ϕ1/(p−1)(p′−1)

)p′−1

1

(p− 1)
sup
Q

(

1

|Q|

∫

| logϕ− logϕQ|dt

)

≤ sup

(

1

|Q|

∫

Q
ϕ−1/p−1

)(

1

|Q|

∫

Q
ϕ

)p−1

sup
Q

(

1

|Q|

∫

| logϕ− logϕQ|dt

)

≤ (p− 1) sup

(

1

|Q|
(1/|Q|

∫

Q
ϕ−1/p−1)p−1

)1/p−1

.

Consequently, when p > 2.

‖ logϕ‖BMO ≤ (p− 1)[ϕ]1/p−1
Ap

.

This shows that the logϕ is a BMO function.
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