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Abstract: Contraflow technique is the widely accepted model on network optimization. It allows arc

reversal that increases the arc capacities. The earliest arrival transshipment contraflow is an important

model that transship the given flow value by sending the maximum amount at each time point from the

beginning within given time period by reversing the direction arcs from the sources to the sinks at time

zero. This problem has not been solved polynomially on complex networks, i.e., multi-terminal networks

yet. However, its 2-value-approximation solution has been found by Pyakurel and Dhamala [13] in pseudo-

polynomial time complexity. Moreover, they have claimed that for the special case of zero transit time on

each arc, the 2-value-approximation solution can be computed in polynomial time complexity. In this paper,

we solve their claim presenting an efficient algorithm.
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1. Introduction

Contraflow increases the outbound capacities of arcs with the capabillity of arc rever-

sals in the required direction. The obtained network with increased arcs capacities is the

auxiliary network. On auxiliary network, contraflow problem not only maximizes the flow

value but also minimizes the time to transship the given flow value. From the practice

in evacuation planning, the evacuation time is reduced at least 40 percent with at most

30 percent of the total arc reversals, [8]. For the various mathematical models, heuristics,

optimization and simulation techniques with contraflow configuration, we refer to Dhamala

[1].

From the analytical point of view, we can find that the flow values obtained by con-

traflow models increase significantly that may be doubled for given time horizon. Moreover,

the contraflow model is two times faster than the models without contraflow to transship the

given flow value. Some contraflow problems with efficient solution algorithms in particular

networks have been solved in [2, 9, 10, 11, 12, 13].

Moreover, using the natural transformation of [4], we have computed some contraflow

solutions in different particular network by reversing the direction of arcs at time zero in

continuous time model with the same complexity as in discrete time model [15, 3].
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The earliest arrival contraflow problem maximizes flow at every point of time from the

beginning with arc reversal capability. If the supplies/demands are given and we have to

transship given supplies to satisfied the demands within fixed time horizon, then the problem

turns into the earliest arrival transshipment contraflow problem. So far, to the best of the

author’s knowledge, the earliest arrival transshipment contraflow problem on multi-terminal

networks has been studied by Pyakurel and Dhamala [13]. They have presented an pseudo-

polynomial time approximation algorithm to solve the problem for arbitrary transit time

on each arc of the network. Moreover, they have claimed that an approximate earliest

arrival transshipment contraflow problem can be solved on multi-terminal networks with

zero transit time on each arc in polynomial time complexity. In zero transit time, arc

capacities of networks restrict the quantity of flow that can be sent at any one time with

arc reversal capability. In this paper, we solve their claim in detail. We present a polynomial

time approximation algorithm to solve the problem accordingly.

The organization of the paper is as follows. In Section 2, we model the earliest ar-

rival transshipment contraflow problem with a short description of required concepts and

denotations. In section 3, we present our main results on the earliest arrival transshipment

contraflow problem on multi-terminal networks. Section 4 concludes the paper.

2. Preliminaries

Let G = (V,A) be a directed graph with a finite set of nodes V and a finite set of

arcs A. We assume that |V | = n and |A| = m. As the case is of contraflow, two way

network configuration is allowed. Let S ⊂ V and D ⊂ V be a set of source nodes which

are the starting points of flow and a set of sink nodes with enough capacity, i.e., the final

destination of flow. Nodes s and d represent a single source and a single sink.

The network consists of nonnegative functions of arc capacities bA : A → Z+, node

capacities bV : V → Z+ and arc transit times τ : A→ Z+. The arc capacities bA(e), e ∈ A

represent the maximum units of evacuees that may enter the initial node of arc e per time

period. The node capacities bV (v), v ∈ V bound the amount of evacuees allowed to hold

at node v. The time needed to travel one unit of evacuees on the arc e = (v, w) from node

v to node w is the transit time τ(e). The vectors µ(s) and ν(d) represent the given supply

and demand at each source and sink, respectively. We assume that Aout
d = Ain

s = ∅, where

Aout
v = {(v, w) ∈ A} and Ain

v = {(w, v) ∈ A} for the node v ∈ V .

The transportation network N = (V,A, bA, τ, S,D, µ(s), ν(d), T ) is represented by the

collection of all data in the evacuation scenario with predetermine time T . We assume a

finite time horizon T that means everything must happen before time T . Time can increase

in discrete increments or continuously. We consider the discrete time with a suitable time

unit like at times t = 0, 1, . . . , T and all time related parameters are integers. The choice

of time unit effects the problem directly i.e., if the time unit is shorter then the problem is

more complex. Let T be the domain of time i.e., T = {0, 1, . . . , T}.

Let the reversal of an arc e = (v, w) be e−1 = (w, v). For a contraflow configuration of a

network N with symmetric travel times, the auxiliary network N = (V,E, bE , bV , τ, S,D, T )
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consists of the modified arc capacities and travel times as

bE(e) = bA(e) + bA(e
−1) , and τ(e) =

{

τ(e) if e ∈ A

τ(e−1) otherwise

where, an edge e ∈ E in N if e ∨ e−1 ∈ A in N . The remaining graph structure and data

are unaltered.

Let a non-negative function xs : A → R+ represents the static flow and let the value

of a static s-d flow xs be val(xs). Similarly, let the non-negative function xd : A×T→ R+

represents the dynamic flow and its value is val(xd).

LetNR
xs

= (V,
−→
A∪
←−
A ) be the residual network ofN where

−→
A = {−→e = e | xs(e) < bA(e)}

with capacity bA(e)−xs(e) and transit time τ(e), and
←−
A = {←−e = (head(e), tail(e)) | xs(e) >

0} with capacity xs(e) and a transit time −τ(e).

A dynamic s-d flow xd for given time T with arc reversal capability satisfies the flow

conservation and capacity constraints (2.1-2.3). The inequality flow conservation constraints

allow to wait flow at intermediate nodes, however, the equality flow conservation constraints

force that flow entering an intermediate node must leave it again immediately.
T
∑

σ=τ(e)

∑

e∈Ain
v

xd(e,σ − τ(e))−
T
∑

σ=0

∑

e∈Aout
v

xd(e,σ) = 0, ∀ v +∈ {s, d}(2.1)

t
∑

σ=τ(e)

∑

e∈Ain
v

xd(e,σ − τ(e))−
t

∑

σ=0

∑

e∈Aout
v

xd(e,σ) ≥ 0, ∀v +∈ {s, d}, t ∈ T(2.2)

0 ≤ xd(e, t) ≤ bA(e, t), ∀ e ∈ A, t ∈ T(2.3)

The earliest arrival flow (EAF) problem with arc reversal capability maximizes the val(xd, t)

in (2.4) for all t ∈ T satisfying the constraints (2.1-2.3). We denote the maximum flow value

by valmax(xd, t).

val(xd, t) =
t

∑

σ=0

∑

e∈Aout
s

xd(e,σ) =
t

∑

σ=τ(e)

∑

e∈Ain

d

xd(e,σ − τ(e))(2.4)

If the supplies µ(s) and demands ν(d) are given and we have to transship given supplies

within time T , then the EAF is turns into the earliest arrival transshipment (EAT) prob-

lem. For contraflow network, the problem is the earliest arrival transshipment contraflow

(EATCF).

For a network N , the time expanded network N (T ) = (VT , AM ∪ AH) is defined is

defined by copying the network for each time step as presented for static network in [5] as

follows:

VT = {v(t)|v ∈ V, t ∈ {0, 1, ..., T}} .

AM = {e(t) = (v(t), w(t+ τe)|e = (v, w) ∈ A, θ ∈ {0, 1, ..., T − τe}} , for movement arcs.

AH = {(v(t), v(t+ 1))|v ∈ V, t ∈ {0, 1, ..., T − 1}} , for holdover arcs.

Let N ! be the two-terminal extended network of multi-terminal network N obtained by

adding a super-terminal node (%) and introducing arcs (%, si) to each si ∈ S with infinite
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capacity and zero transit time, and arcs (di, %) to each di ∈ D with infinite capacity and

transit time -(T + 1) for given time period T .

Authors in [6, 7] introduced a β−value-approximate EAT that is a dynamic flow

xd that achieves at every point in time t ∈ {1, ..., T} and at least a β− fraction of the

maximum flow value can be sent at time t. They proved that proved that β = 2 is the

best possible approximation factor. They presented a 2-value-approximate algorithm that

gives 2-value approximate EAT in pseudo-polynomial time complexity. It works on time

expanded network N (t). For each source s ∈ S, there is a source s0 with t arcs (s0, si) for

the t copies of s. Similarly, for each sink d ∈ D, there is a sink d0 with t arcs (di, d0). Let

s∗ be a super-source with |S| arcs (s∗, s0) having capacity bA(s0), and d∗ a super-sink with

|D| edges (d0, d∗) having capacity −bA(d0). Then, maximum flow with time horizon t is

equivalent to a maximum static flow from s∗ to d∗ in N (t).

For the special networks with zero transit time, authors in [6, 7] has presented Algo-

rithm 2.1 that computes a maximum flow. All the arcs are of the form e = (v(t), w(t))

for some time t. The maximum flow is independently computed from previously computed

flow in earlier time layers. The same static flow can be sent repeatedly in each time using

original network until the supplies at sources shift into sinks. This algorithm has polynomial

time complexity.

Algorithm 2.1. Zero time 2-value-approximate EAT algorithm

Input: Given a dynamic network N = (V,A, bA, τ, S,D, ν) with zero transit times

τ(e) = 0.

(1) Define the supplies ν ′ = ν and set t = 1.

(2) Respecting the supplies ν ′, a maximum static transshipment xstatt is obtained.

(3) Let the maximum time needed to transship xstatt flow be a(t) until a source or a sink

becomes empty:

a(t) = min

{⌊

ν′(s)

val(xstatt)

⌋

| s ∈ S, ν′(s) > 0

}

∪

{⌊

−ν′(d)

val(xstatt)

⌋

| d ∈ D, ν′(d) < 0

}

(4) Depending of the sending flow xstatt , update the supplies:

ν ′(s) = ν ′(s)− a(t).ex(xstatt) for s ∈ S with ν ′(s) > 0,

ν ′(d) = ν ′(d) + a(t).ex(xstatt) for d ∈ D with ν ′(d) < 0.

(5) If ν ′ += 0, set t = t+ 1 and continue with Step 2.

Output: The dynamic flow that sends xstatt units starting at
∑t−1

j=1 a(t) for a(t) time units.

Theorem 2.2. [6, 7] Algorithm 2.1 computes a 2-value-approximate EAT in a dynamic

network N with zero transit time in polynomial time complexity.

3. Approximate EATCF on multi-terminal networks

Pyakurel and Dhamala [13] have solved the earliest arrival transshipment contraflow

(EATCF) problem on multi-terminal networks. Their algorithm is based on the MDCF

algorithm of [16] for MDCF problem and value-approximate algorithm of [6, 7] for an

approximate EAT problem for the arbitrary transit time on each arc of the network. As
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the solution depends directly upon the size of time expanded network, there exists no

polynomial approximation algorithm to solve the 2-value-approximate EATCF problem on

multi-terminal networks with arbitrary transit times. Thus, they have claimed that an

approximate solution for the EATCF problem can be computed with the modification of

their algorithm assuming the transit times zero in each arc of the multi-terminal network

N = (V,A, bA, τ, S,D, ν(v)). We extend their claim, in this section, with detail algorithm

and proofs.

For the special case of zero transit times, a 2-value-approximate EAT solution is com-

puted in the auxiliary network N = (V,E, bE , S,D, ν(v)) using the algorithm, Algorithm

3.1. Our algorithm is based on the MDCF algorithm of [16] for the MDCF problem and

Algorithm 2.1 of [6, 7] for zero time 2-value approximate EAT problem. In the procedure,

the maximum static flow is computed in the auxiliary network N using Algorithm 2.1 and

repeated them until a terminal runs out of demand/supply in polynomial time complexity.

For more details, we refer to [14].

Algorithm 3.1. Zero time 2-value-approximate EATCF algorithm

(1) Given a network N = (V,A, bA, τ, S,D, ν(v)).

(2) Construct the auxiliary network N = (V,E, bE , τ, S,D, ν(v)) of N

(3) Construct the extended network N
!
of N

(4) Solve the EAT problem on network N
!
using Algorithm 2.1 of [6, 7].

(5) Arc (w, v) ∈ A is reversed, if and only if the flow along arc (v, w) is greater than

bA(v, w) or if there is a nonnegative flow along arc (v, w) +∈ A.

(6) Obtain 2-value approximate EATCF solution for the network N with zero transit

time.

To solve the 2-value-approximate EATCF problem with zero transit time with time

horizon T , we construct the auxiliary network N first. Then the extended auxiliary network

N
!
of auxiliary network N is constructed. In Step 4 of Algorithm 3.1, we use Algorithm

2.1 of [6, 7] in extended auxiliary network N
!
that contains T copies of each arc and whose

supplies/demands are shifted to newly introduced super terminals. This network has a one

to one correspondence between an arc copy e(t) and the copy of the arc (v(t), w(t)) on

time layer t in the time expanded network. In order to prove that the computed flow is

a 2-value-approximate EAT on N
!
, the flow is considered in the residual network of N

!

with respect to static flow xstat in which the reverse arcs of the super terminal arcs are

deleted. The algorithm performs one MSF calculation per step. The choice of maximal

time a(t) guarantees that at least one source or sink runs empty in every iteration and

obtains ν ′ = 0 after δ iterations. Thus a 2-value-approximate EAT on N
!
can be computed

with at most δlogνmax MSF computations where δ is the number of terminals and νmax =

max {|ν| | ν ∈ S ∪D} is the largest supply/demand.

First, we prove that the best possible factor computed by the 2-value approximate

EATCF Algorithm 3.1 is 2. For this we give the proof of Lemma 3.2 on the auxiliary

network N = (V,E, bE , τ, S,D, ν(v)) for the sake of completeness similar to the results in

[6, 7] on N .
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Lemma 3.2. Let xstatt be a maximum flow for time horizon t and let the computed flow by

2-value approximate EATCF algorithm of [13] in N be x
′

statt. Then it holds that

val(xstatt) ≤ 2.val(x
′

statt).

Proof: First we convert the given network N into auxiliary network N according to

the contraflow configuration. On auxiliary network N , we use the 2-value approximate

algorithm of [6, 7]. In a step of the algorithm, we compute a difference flow that obtained

from subtracting the flow val(x
′

statt) from the maximum flow val(xstatt). Let us define the

difference flow x∗stat = (xstatt−x
′

statt) that is obtained by sending (xstatt−x
′

statt) on forward

arc e, if the value is positive, and sending −(xstatt − x
′

statt) on the backward arc e if the

value is negative.

From the difference flow values, we obtain val(xstatt) = val(x
′

statt) + val(x∗stat). The

flow x∗stat is valid in NR
t but not necessarily in NR

′

t . Let P be any path in the path

decomposition of x∗stat which sends an additional unit of flow that is not sent by x
′

statt . As

x
′

statt is a maximum flow and the path augmenting algorithm has not found another path,

P must be an s∗ − d∗-path using one of the deleted edges.

However, the total flow value sent through these paths is bounded by the sum of the

capacities of the deleted backward edges. This sum is at most val(x
′

statt). Thus, we have

val(x∗stat) ≤ val(x
′

statt) and val(xstatt) ≤ val(x
′

statt) + val(x
′

statt) and thus, val(xstatt) ≤

2.val(x
′

statt).!

Theorem 3.3. Algorithm 3.1 computes a 2-value-approximate EATCF solution on N with

zero transit time.

Proof: Algorithm 3.1 is feasible because of the feasibility of Step 4. Recall that the

any approximation solution to an EAT problem with arc reversal on network N is also a

feasible solution to the approximation EAT problem on the auxiliary network N . Algorithm

2.1 of [6, 7] and Theorem 2.2 induced a 2-value-approximative EAT solution on N . As the

amount of flow sent from sources S to sinks D induced from Step 4 is not changed in Step

5, an efficient solution to the 2-value-approximative EATCF problem on N is obtained. !

Corollary 3.4. Algorithm 3.1 computes a 2-value-approximate EATCF solution with zero

transit time in polynomial time complexity.

Proof: As a MSF solution is computed in each time period in Step 4 of Algorithm 3.1,

the complexity is dominated by the complexity of MSF computation. It simply concludes

that the complexity of the algorithm is bounded by polynomial time. !

4. Conclusions

We solved the approximate earliest arrival transshipment contraflow problem on multi-

terminal networks in polynomial time complexity that had been claimed in [13]. Although

the problem was solved in the same complexity as without contraflow, the flow value com-

puted by contraflow model increases significantly. From the analytical point of view, it
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has been realized that flow value may be doubled for given time horizon. Moreover, the

time needed to transship given amount of flow value will be at most half with contraflow

configuration.

To the best of our knowledge, the problem we solved is for the first time on com-

plex contraflow networks using discrete time setting. However, it is still unsolved problem

whether the earliest arrival transshipment contraflow problem on multi-terminal networks

is polynomially solvable.
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