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Abstract: Since the works of [1] and [2], it is known that the solution of the Ermakov equation is an

important ingredient in the spectral problem of the Camassa-Holm equation. Here, we review this interesting

issue and consider in addition more features of the Ermakov equation which have an impact on the behavior

of the shallow water waves as described by the Camassa-Holm equation.
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1. Introduction

The Camassa-Holm equation ([3])

(1.1) ut − uxxt + 2kux + 3uux = 2uxuxx + uuxxx

can be factored ([4]) as

(1.2)

(

∂

∂t
+ u

∂

∂x
+ 2ux

)

q(x, t) = 0 , q(x, t) = (u− uxx + k) ,

where q(x, t) is known as momentum. There are two conservation laws

(1.3)
∂

∂t
q(x, t) +

∂

∂x

[

2ku+
3

2
u2 − uuxx −

1

2
(ux)

2

]

= 0,

and

(1.4) (
√
q)t + (u

√
q)x = 0

respectively. Using the momentum, Eq. (1.1) is equivalent to

(1.5) qt + uqx + 2uxq = 0.

The Lax pairs for CH are (Constantin 2001)

(1.6)

{

ψxx =
(

1
4 + λq

)

ψ

ψt =
(

1
2λ − u

)

ψx +
1
2uxψ

and the compatibility condition ψxxt = ψtxx leads back to Eq. (1.1).
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2. Liouville transformation on CH

The common procedure is to use q =
(

dy
dx

)2
followed by Liouville’s transformation

φ = q
1

4ψ in the first equation of the Lax pair system (1.6) to obtain

(2.1) φyy −
[

4q(1 + qyy)− 3(qy)2

16q2

]

φ = λφ.

In addition, since q(x, t) = u−uxx+k with dy
dx =

√
q, the momentum equation becomes

(2.2) quyy +
1

2
qyuy − u = k − q

Therefore, if we know q then one can try to solve CH by finding u in Eq. (2.2). As a

scattering Schrödinger problem, we can rewrite Eq. (2.1) as

(2.3) φyy −
[

Q+
1

4k

]

φ = λφ

with potential Q defined in terms of the momentum by

(2.4) qyy −
3

4q
(qy)

2 − 4

[

Q+
1

4k

]

q + 1 = 0

Let q = E4, then we obtain the Ermakov equation

(2.5) Eyy −
[

Q+
1

4k

]

E +
1

4
E−3 = 0

The solution of Eq. (2.5) is given by Pinney (1950)

(2.6) E =

√

F 2
1 −

1

4

(

F2

W

)2

where F1 and F2 are the two independent solutions of the linear ODE

(2.7) Fyy −
[

Q+
1

4k

]

F = 0

The Ermakov-Lewis invariant is

(2.8) I =
1

2

[

(EFy − FEy)
2 −

1

4

(

E

F

)

−2
]

.

By using E from Eq. (2.5) and F as a superposition of homogenous solutions F = aF1+bF2,

the invariant is

(2.9) I =
1

2

(

−
a2

4
+ b2W 2

)

= const.

It is easy to show that Eq. (2.7) and (2.5) are related to the linear third order ODE

(2.10) φyyy − 4

[

Q+
1

4k

]

φy − 2Qyφ = 0 ,

which is of maximal symmetry algebra sp(5) ([5]) and has φ itself as an integrating factor;

thus Eq. (2.10) becomes

(2.11) φφyy −
1

2
(φy)

2 − 2

[

Q+
1

4k

]

φ2 +
1

2
= 0 .
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3. Solutions

Let us use the solitonic potential

(3.1) Q = −2K2 sech2(θ) , θ = Ky + Ωt− α

where K = µ
√

k
, Ω = µ

2λ , µ = 1
2

√
1 + 4λk, and α, an arbitrary phase. Thus, Eq. (2.10)

becomes

(3.2) φθθθ + 4

[

2 sech2θ −
1

1− 2k
c

]

φθ − 8 sech2θ tanhθ φ = 0

and has solution

(3.3) φ(θ) =
c

2
√
k

(

sech2θ +
2k

c
tanh2θ

)

,

where c = − 1
2λ . Since q = φ2, we get

(3.4) q(θ) =
c2

4k

(

sech2θ +
2k

c
tanh2θ

)2

In the θ variable Eq. (2.2) becomes

(3.5)
1

4k

(

1−
2k

c

)(

quθθ +
1

2
qθuθ

)

− u = k − q

and after we substitute q, qθ in Eq. (3.5) it becomes

(3.6)
[

c− k + k cosh2(2θ)
]2

uθθ−2(c−2k)
[

c− k + k cosh2(2θ)
]

tanhθ uθ−16ck2u = f(θ)

with nonhomogenous function given by f(θ) = −(c− 2k) sech4θ [4ck (c+ 2k cosh(2θ)]. For

the particular case of k → 0 Eq. (3.6) simplifies to

(3.7) uθθ − 2 tanhθ uθ = 0

with solution

(3.8) u(θ) = C1 + C2
(

θ

2
+

1

4
sinh2θ

)

.

Solving Eq. (3.6) yields to general solution u(θ) = up(θ) + C1u1 + iC2u2. Denoting

kc =
2k
c the particular solution is

(3.9) up(θ) =
c(1− kc)

1− kc + kc cosh
2θ

=
c(1− kc)

1 + kc sinh
2θ

while the general solutions are

(3.10)







u1(θ) = cosh
{

2
√

1−kc
θ − 2arctanh

[√
1− kc tanh θ

]

}

, 0 < kc < 1

u2(θ) = sinh
{

2
√

1−kc
θ − 2arctanh

[√
1− kc tanh θ

]

}

, 0 < kc < 1

and

(3.11)







u1(θ) = cos
{

2
√

kc−1
θ + 2arctan

[√
kc − 1 tanh θ

]

}

, kc > 1

u2(θ) = −i sin
{

2
√

kc−1
θ + 2arctan

[√
kc − 1 tanh θ

]

}

, kc > 1.

See Fig. 1 (top) for the particular solution up if kc < 1 which shows that the soliton

profiles are tending to a compacton when kc is small, and on (bottom) when kc > 1 which

shows that soliton profiles are more and more peakon-like. In Figs. 2 and 3 we show the
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Figure 1. The particular solution up

c
for kc =

2k

c
< 1 (top) and kc =

2k

c
> 1 (bottom).
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Figure 2. The particular solution u1 for kc =
2k

c
< 1 (top) and kc =

2k

c
> 1 (bottom).
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Figure 3. Same as in the previous figure for particular solution u2.

particular solution u1 and u2 for both cases.

To find the solution in terms of x and t, we need to use the relation between θ and x.

Since
√

q(θ) = dy
dx , we have

(3.12)

∫

dθ

sech2θ + kc tanh
2θ

=

√
1− kc
2kc

(x− ct− x0).

To find this integral we notice that if we differentiate the argument of the homogenous

solutions u1 and u2, we have

(3.13)
d

dθ

{

2
√
1− kc

θ − 2arctanh
[

√

1− kc tanh θ
]

}

=
2kc√
1− kc

1

sech2θ + kc tanh
2θ

Using Eqs. (3.12) and (3.13) we conclude that

(3.14) x− ct− x0 =

{

2
√

1−kc
θ − 2arctanh

[√
1− kc tanh θ

]

, 0 < kc < 1
2

√

kc−1
θ + 2arctan

[√
kc − 1 tanh θ

]

, kc > 1
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