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Abstract: For a transcendental entire function f , we study the structure and properties of the escaping

set I(f) which consists of points whose iterates under f escape to infinity. We concentrate on Eremenko’s

conjecture and we review some attempts of its proofs. A significant amount of progress in Eremenko’s

conjecture has been made possible via fast escaping set A(f) which consists points that escape to infinity

as fast as possible. This set can be written as union of closed sets, called levels of A(f). We review classes

of functions for which A(f) and each of its levels has the structure of infinite spider’s web. In general, we

study classes of entire functions for which the escaping set I(f) is a spider’s web. Spider’s web is a recently

investigated structure of I(f) that gives new results in the direction of Eremenko’s conjecture.
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1. Introduction

The subject complex dynamics formally originated by the independent work of Fa-

tou [20, 21] and Julia [25] during 1917-1926. All these early papers of Fatou and Julia

considered the iteration of rational functions. In this article, we consider only the iter-

ation of transcendental entire function (TEF) which was initiated by Fatou [20] in 1926

and developed much more in the work of Baker [2, 3, 4, 5, 6]. Later, solid body of

knowledge in transcendental iteration theory has developed in the work of Eremenko [15],

Eremenko and Lyubich [16, 17, 18, 19], Bergweiler [7, 8, 9, 10, 11, 12, 13], Rippon and

Stallard [37, 38, 39, 40, 41, 42, 44], Schleicher [48, 49, 50], Rempe [34, 35, 36], Sixsmith

[51, 52, 53, 54, 55] and Osborne [28, 29, 30, 31, 32, 33].

We denote the complex plane by C and set of integers greater than zero by N. We

assume the function f : C → C is transcendental entire function (TEF) unless otherwise

stated. For any n ∈ N, fn always denotes the nth iterates of f . The order ρ(f) and lower

order λ(f) of TEF f are defined respectively by

ρ(f) = lim sup
r→∞

log logM(r, f)

log r
and λ(f) = lim inf

r→∞

log logm(r, f)

log r
.
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where M(r, f) = max|z|=r |f(z)|, r > 0 and m(r, f) = min|z|=r |f(z)|, r > 0 denote respec-

tively the maximum and minimum modulus of the function f . We will see in section 3 that

these terms are important in the study of functions for which AR(f) is a spider’s web.

A family F = {fn : n ∈ N} of the iterates of TEF f forms a normal family if every

sequence (fn)n∈N of functions contains a subsequence which converges uniformly to a limit

f #= ∞ or converges to ∞ on every compact subset D of C. The Fatou set of f denoted by

F (f) is the set of point’s z ∈ C such that sequence (fn)n∈N forms a normal family in some

neighborhood of z in the sense of Montel. A connected component of the Fatou set F (f) is

called Fatou component. The complement of Fatou set is called Julia set and it is denoted

by J(f). The basic properties and structures of these sets can be found in [7, 14, 24, 26, 27].

For a TEF f , if f ′(z) = 0, we say z is a critical point and w = f(z) is a critical value.

For a TEF f , a curve Γ : [0,∞) → C is an asymptotic curve with asymptotic value α if

Γ(t) → ∞ and f(Γ(t)) → α as t → ∞ ∀ t ∈ [0,∞). The set SV (f) = (CV (f) ∪AV (f))

is called set of singular values, where CV (f) and AV (f) respectively denote the set of

critical values and asymptotic values. Note that the set SV (f) coincides with the set of

singularities of the inverse function f−1 of f , and so this set is also denoted by Sing(f−1).

If SV (f) has only finitely many elements, then f is said to be of finite type. If SV (f) is a

bounded set, then f is said to be of bounded type. The sets S = {f : f is of finite type}

and B = {f : f is of bounded type} are respectively called Speiser class and Eremenko-

Lyubich class. Note that ρ(f) ≥ 1
2 for any bounded type transcendental map and ρ(f) ≥ 1

for any finite type map. The class B introduced in complex dynamics by Eremenko and

Lyubich [16]. The most important result of this paper[16] is F (f)∩ I(f) = ∅ if f ∈ B. The

most familiar functions in this class are the functions in the exponential family {f : f(z) =

λ exp(z),λ #= 0} and the functions in the cosine family {f : f(z) = cos(αz + β),α #= 0}

2. Escaping Set and Eremenko’s Conjecture

In recent years, much interest and more effort have been devoted to understanding the

structure and properties of the escaping set I(f) of f which is defined as follows:

Definition 2.1 (Escaping Set). : For a TEF f , the set of the form

I(f) = {z : fn(z) → ∞ as n → ∞}

is called escaping set.

For a TEF f , the escaping set I(f) was first studied by A. Eremenko [15]. The funda-

mental properties of the escaping set I(f) are as follows.

Theorem 2.1. For a TEF f , the following statements are hold.

(1) I(f) = I(fn) for n ≥ 2.

(2) I(f) is completely invariant.

(3) I(f) #= ∅.

(4) J(f) ∩ I(f) #= ∅.

(5) J(f) = ∂I(f).
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(6) I(f) has no bounded components.

The first two statements (1) and (2) of this theorem 2.1 follows from the definition of

I(f) and the rest (3), (4), (5) and (6) are proved in [15]. If U is a Fatou component such

that U ∩ I(f) #= ∅, then by normality U ⊂ I(f). We say that such a Fatou component U is

escaping Fatou component. However, the boundary of such escaping Fatou component may

not be in I(f). For example, the function f(z) = e−z+z+1 has escaping Fatou component

but its boundary contains periodic points which are not in I(f). On the basis of statement

(6) of above theorem 2.1 and Ninty years old Fatou’s original question [20] initiating from

the functions such as f(z) = e−z + z + 1 and fλ = λ sin z concerning whether there are

infinitely many curves γk, k ∈ N such that z ∈ γk, fn(z) → ∞ as n → ∞, Eremenko made

the following conjectures in more precise form in [15].

Conjecture 2.1 (Normal (weak) version). Each component of I(f) is unbounded.

Conjecture 2.2 (Strong version). Each escaping point can be connected to infinity along

a unique curve within I(f).

2.1. Attempt of Proving Normal Version of Eremenko’s Conjecture. This conjec-

ture in normal form in general case has been proved by using the fast escaping set A(f),

which consists of points whose iterates tends to infinity as fast as possible. This set is

introduced first time by Bergweiler and Hinkkanen [13] and now plays a key role in tran-

scendental dynamics. We have used here the definition given by Rippon and Stallard in

[40] as follows.

Definition 2.1.1 (Fast escaping set). For a TEF f , the fast escaping set is a set of the

form:

A(f) = {z : ∃L ∈ N such that |fn+L(z)| ≥ Mn(R, f) ∀ n ∈ N}

where M(r, f) = max|z|=r |f(z)|, r > 0 and Mn(r, f) denotes iteration of M(r, f) with

respect to r, and R > 0 can be taken any value such that M(r, f) > r for r ≥ R.

The set A(f) has many strong properties that can be used in the study of I(f) and

J(f). Different properties of A(f) and even different definitions of A(f) were found in

[11, 13, 37, 40]. Significant progress in Eremenko’s conjecture has been made possible by

studying properties and structure of fast escaping set A(f). The fundamental properties of

this set are as follows.

Theorem 2.1.1. For a TEF f , the following statements are hold.

(1) A(f) = A(fn) for n ≥ 2.

(2) A(f) #= ∅.

(3) A(f) is completely invariant.

(4) A(f) is independent of R.

(5) J(f) ∩A(f) #= ∅.

(6) J(f) = ∂A(f).

(7) A(f) has no bounded components.
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The proof of the statement (1) is given in [37], the statements (2), (3) and (4) are stated

in [13] and proved in [37], statements (5) and (6) are proved in [13, 37] and statement (7)

is proved in [40]. This result (7) is an important one that provides a partial answer to

Eremenko conjecture which is obtained on the basis of certain subsets of A(f) based on

above definition 2.1.1.

Definition 2.1.2 (Level of Fast Escaping Set). Let f be a TEF. Let L ∈ Z and R > 0

be such that M(r, f) > r for r ≥ R. The Lth level of A(f) with respect to R is the set

AL
R(f) = {z : |fn(z)| ≥ Mn+L(R, f) for n ∈ N, n+ L ≥ 0}

In particular

AR(f) = A0
R(f) = {z : |fn(z)| ≥ Mn(R, f) for n ∈ N} and

A(f) =
⋃

n≥0

f−n(AR(f))

Note that each of the level of A(f) is a closed set. Since

Mn+1(R, f) > Mn(R, f) ∀ n ≥ 0

So we have

AL
R(f) ⊂ AL−1

R (f) ∀ L ∈ N

Also

A(f) =
⋃

L∈N

A−L
R (f) and A−L

R (f) ⊂ A
−(L+1)
R (f), L ∈ N

The concept of level as defined in the definition 2.1.2 provides a new understanding of

the structure of A(f) as a countable union of closed sets. On the basis of this definition,

Rippon and Stallard [40] have obtained the strongest result for general TEF in the direction

of Eremenko’s conjecture which is nothing other than the statement (7) of above theorem

2.1.1.

Theorem 2.1.2. Let f be a TEF and R > 0 be such that M(r, f) > r for r ≥ R. Then

for each L ∈ Z, each component of AL
R(f) is closed and unbounded. In particular, each

component of A(f) is unbounded.

The proof of this theorem 2.1.2 is given in [40]. Since A(f) ⊂ I(f), so this theorem

provides partial answer to the Eremenko’s conjecture 2.1 that I(f) has at least one un-

bounded component. If U is a Fatou component such that U ∩A(f) #= ∅, then by normality

U ⊂ A(f). We say that such a Fatou component U is fast escaping Fatou component. The

following theorem due to Rippon and Stallard [37] gives important properties of the fast

escaping Fatou component that provides us a contrasting feature of A(f)

Theorem 2.1.3. Let f be a TEF and R > 0 be such that M(r, f) > r for r ≥ R and let

L ∈ Z. If U is a Fatou component that meet AL
R(f), then

(1) U ⊂ AL−1
R (f)

(2) If, in addition U is simply connected then U ⊂ AL
R(f).
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This Theorem 2.1.3 implies that Fatou component U of A(f) has boundary in A(f)

but we have already mentioned that this does not happen in I(f). In this context, Sixsmith

[54] raised the question: Is there a TEF that can have simply connected fast escaping Fatou

components without having multiply connected Fatou components? His affirmative answer

is as follows:

Theorem 2.1.4. [54] There is a TEF with simply connected fast escaping Fatou component

and no multiply connected Fatou components.

The levels AL
R(f) of A(f) are also useful for the establishment of relationship between

A(f) and J(f). In [40], this relation is shown in the following theorem.

Theorem 2.1.5. Let f be transcendental entire function. Let R > 0 be such thatM(r, f) >

r for r ≥ R and L ∈ Z. Then all components of AL
R(f)∩ J(f) are unbounded if and only if

f has no multiply connected Fatou components.

This theorem 2.1.5 is the main result that provides an alternative condition for the

partial solution of the normal version of Eremenko’s conjecture. It says if f has no multiply

connected Fatou component, then all components of A(f) ∩ J(f) are unbounded. On the

basis of theorem 2.1.4, there is a TEF that have simply connected fast escaping Fatou

components. So we conclude that there is TEF in which AL
R(f) ∩ J(f) are unbounded and

hence all components of A(f) ∩ J(f) are unbounded. Which is a strong partial answer to

the Eremenko’s conjecture 2.1.

In recent years, active research in the field of escaping set has been devoted mostly to

see the structure that has number of strong dynamical properties as well as able to establish

the connection between the conjecture of Baker and the conjecture of Eremenko. The new

research in this direction has become possible by the introduction of infinite spider’s web.

The first example of functions for which A(f) has this structure have been given in [37].

Many TEF f for which AR(f) and hence A(f) has this structure has been given in [40].

This new set structure is defined as follows:

Definition 2.1.3 (Spider’s Web). A set E is an (infinite) spider’s web if E is connected

and there exists a sequence of bounded simply connected domains Gn with Gn ⊂ Gn+1 for

n ∈ N, ∂Gn ⊂ E for n ∈ N and
⋃

n∈NGn = C.

We begin with basic properties of spider’s web structure which are useful in proving

the theorems 2.1.7, 2.2.1, 2.2.2.

Theorem 2.1.6. Let f be a transcendental entire function and let R > 0 be such that

M(r, f) > r for r ≥ R and L ∈ Z.

(1) If G is a bounded components of AL
R(f)

C , then ∂G ⊂ AL
R(f) and fn is a proper

map of G onto the bounded component of An+L
R (f)C , for each n ∈ N.

(2) If AL
R(f)

C has bounded component, then AL
R(f) is a spider’s web and hence every

component of AL
R(f)

C is bounded.

(3) AR(f) is a spiders web if and only if AL
R(f) is a spider’s web.
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(4) For R′ > R, then AR(f) is a spider’s web if and only if AR′(f) is a spiders web.

(5) If I(f), J(f), I(f) ∩ J(f) contain spider’s web, then each of set is a spider’s web.

Note that if I(f) is a spider’s web then I(f) is connected and unbounded and so

Eremenko’s conjecture holds. In [37], Rippon and Stallard have proved that AR(f), A(f)

and I(f) are spider’s web for a TEF f whenever f has multiply connected Faou component.

In [38, 39], there are many TEF f of sufficiently small growth such that f has no multiply

connected Fatou components and AR(f) is a spider’s web. Rippon and Stallard proved the

following strong results in [40, 42]

Theorem 2.1.7. Let f be a transcendental entire function and let R > 0 be such that

M(r, f) > r for r ≥ R.

(1) If AR(f)C has a bounded component, then each of AR(f), A(f) and I(f) is a spider’s

web.

(2) If AR(f) is a spider’s web, then A(f)C has uncountably many components each of

which is compact.

(3) If AR(f) is a spider’s web, then A(f)C has singleton periodic components which are

dense in J(f).

(4) If AR(f) is a spider’s web and f has no multiply connected Fatou component, then

each of AR(f) ∩ J(f), A(f) ∩ J(f), I(f) ∩ J(f) and J(f) is a spider’s web.

(5) The function f has no unbounded Fatou component.

This theorem 2.1.7 is a good example which shows a number of strong dynamical

properties of AR(f) in the sense that when AR(f) is a spider’s web, then so are A(f)

and I(f). When I(f) is a spider’s web, then I(f) is connected and unbounded, it follows

that Eremenko’s conjecture holds whenever AR(f) is a spider’s web. The part (2) of this

theorem 2.1.7 demonstrates the fact that spider’s web structure of A(f) is connected with

uncountably many complimentary components, each of which is closed and bounded. This

contrasts with the fact that all components of AL
R(f)

C are open. This is a good example

that A(f) has very intricate structure, if AR(f) is a spider’s web. Further results about

the intricate structure of A(f) are obtained by Osborne [30]. Part (5) of this theorem

2.1.7 provides a connection between the existence of an AR(f) spider’s web and conjecture

of Baker (Baker’s conjecture is that if the order of TEF f is less than 1
2 , then f has

unbounded Fatou components and it is dealt nicely in [4] and[5] and survey of the advances

of this conjecture is found in [22]). Note that in [43], it is shown that if f is a TEF of order

less than 1
2 and with all zeros in the negative real axis, then all components of F (f) are

bounded. From the above theorem 2.1.7 and all examples given in [40], we conclude that

either A(f) or I(f) is a spider’s web if AR(f) is a spider’s web. However, the following

statements are remained open.

Open Problem: Can A(f) be a spider’s web when AR(f) is not spider’s wed?

Open Problem: Can I(f) be a spider’s web when AR(f) is not a spider’s web?

2.2. Attempt of Proving Strong Version of Eremenko’s Conjecture. The dynami-

cal study of transcendental entire function was initiated by Fatou in 1926. In his memoire
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[21], Fatou observed from the function f(z) = e−z + z + 1 that there are infinitely many

curves γk, k ∈ N such that z ∈ γk, fn(z) → ∞ as n → ∞. Fatou then posed the ques-

tion: Is this always true in the case of all transcendental entire functions? Sixty years

after the Fatou’s original question, Eremenko’s made a precise study of the escaping set of

transcendental entire functions and he posed his conjecture (strong version) 2.2.

The first family of transcendental entire functions whose escaping set has been investi-

gated was the family of exponential functions:

Eλ = λez, λ ∈ C

It was shown in [50] that every escaping point of this function can be connected to infinity

along a curve consisting of escaping points. In the same paper [50], they provided complete

classification of such escaping points and they organized in the form of differentiable curves

called rays which are diffeomorphic to open intervals together with endpoints (landing

points) of the ray. In fact, the most significant results in the direction of Eremenko’s

conjecture (strong version) given by Rottenfusser, Ruckert, Rempe and Schleicher in[47].

First of all, they provided an example of TEF f ∈ B such that every path connected

components of J(f) is bounded, together with the fact that F (f)∩ I(f) = ∅. This provides

the answer for the question of Eremenko’s conjecture in special case.

The feature of spider’s web (definition 2.1.3) has become very important instrument of

checking intricate structure of the set A(f). The intricate nature (structure) of A(f), where

AR(f) is a spider’s web has been investigated by Osborne in [28]. The following theorem

of Rippon and Stallard [40] provides certain nature of A(f) and I(f) that helps to prove

strong version of Eremenko’s conjecture:

Theorem 2.2.1. Let f be a transcendental entire function. Let R > 0 be such that

M(R, f) > r for r ≥ R and AR(f) be a spider’s web:

(1) Each point in I(f) belongs to the unbounded continuum in I(f) on which all points

escape to infinity uniformly.

(2) If K is a component of A(f)c, then either K ∩ I(f) = ∅ or all points in K escape to

infinity uniformly.

Part(1) of the Theorem 2.2.1 answers the question raised by Rempe in [34]. The same

thing also holds for many functions in the Eremenko-Lyubich class B which consists of

transcendental entire functions whose set of singular values is bounded. Rempe [36] also

recognized a TEF in the class B such that every path connected components of J(f) is

bounded for which theorem 2.2.1(1) does not hold. Together with this fact and similar fact

shown by Eremenko and Lyubich in [16] that I(f) ⊂ J(f) (in particular A(f) ⊂ J(f)) if

f ∈ B. In such a case, Eremenko conjecture 2.2 does not hold in general.

On the other hand, for many transcendental entire functions in the class B, the escaping

set consists of family of curves tends to ∞. This situation occurs if f is expressed as the

finite composition of functions of finite order that are belonged to the class B. In [36], this

statement is proved for large class of TEF f and also in [45] for the class H of functions
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satisfying head-start condition. This is the main result in the direction of Eremenko’s

conjecture (strong version) which is stated as follows:

Theorem 2.2.2. Suppose that f : C → C can be written as the finite composition f =

f1 ◦ f2 ◦ f3 ◦ · · · ◦ fn, where each fi, (i = 1, 2, 3 . . . , n) is of bounded type (that is, fi ∈ B)

and finite order, then I(f) ∪ {∞} is path connected.

We discussed some cases where the strong version of Eremenko’s conjecture holds.

There are some transcendental entire functions that disprove this conjecture. In [45], Rot-

tenfusser constructed a function F in logarithmic coordinate such that there is an escaping

point which can not connected to ∞ by a curve consisting of escaping points. As stated in

the following theorem, there are many entire functions which do not have AR(f) spider’s

web. In particular, if f ∈ B, then AR(f) is not a spider’s web.

Theorem 2.2.3. Let f be transcendental function. Let R > 0 be such that M(r, f) > r for

r ≥ R and let AR(f) be a spider’s web. Then there is no path to ∞ on which f is bounded

and so,

(1) f does not belongs to the class B.

(2) f has no exceptional points (that is, points with finite backward orbits).

We have seen that for a given TEF f , if AR(f) is a spider’s web, then each of sets A(f)

and I(f) is spider’s web. For such a function, the sets AR(f)), A(f) and I(f) are connected

and f has no bounded components and so both Eremenko’s and Baker’s conjecture hold.

With these strong dynamical properties, it is better to ask: Which function f that gives

AR(f) a structure of spider’s web? Several classes of functions that gives AR(f) a structure

of spider’s web are derived using the idea of following theorem.

Theorem 2.2.4. [40] Let f be transcendental function. Let R > 0 be such thatM(r, f) > r

for r ≥ R. Then AR(f) is a spider’s web if one of the following holds:

(1) f has a multiply connected Fatou component.

(2) f has very small growth.

(3) f has order less than 1
2 and regular growth.

(4) f has finite order, Fabry gaps and regular growth.

(5) f has a sufficiently strong version of pits effects and has regular growth.

Parts (1)−(3) of this theorem 2.2.4 are given in [38] and [39], and the class of functions

that are belong to (4), (5) are defined and described in [40, 54]. This theorem 2.2.4 is

important one for determining a function f for which AR(f) is a spider’s web. Next, we

give a criterion which allows us to construct many more functions if a function f is known

which gives AR(f) a structure of spider’s web.

Theorem 2.2.5. Let f be a TEF. Let R > 0 be such that M(r, f) > r for r ≥ R.Then for

n ∈ N, AR(fn) is a spider’s web if and only if AR(f) is a spider’s web.
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3. Classes of Functions giving the Structure of Spider’s Web

In this section we try to elaborate the idea for the classes of functions given in theorem

2.2.4. This theorem tells us there are large classes of functions that give AR(f), a structure

of escaping set whenever M(r, f) > r for r ≥ R > 0. Part (1) of this theorem is nothing

other than the following result which is a corollary of theorem 2.1.7(1).This theorem is

proved in [40].

Theorem 3.1. Let f be transcendental function. Let R > 0 be such that M(r, f) > r for

r ≥ R. If f is multiply connected Fatou component, then each of sets AR(f), A(f) and I(f)

is a spider’s web.

The classes of functions given in the rest parts (2)-(5) of theorem 2.2.4 are obtained by

using the following general results of Rippon and Stallard [40].

Theorem 3.2. Let f be transcendental function. Let R > 0 be such that M(r, f) > r for

r ≥ R. Then AR(f) is a spider’s web if and only if there exists a sequence of bounded simply

connected domains (Gn)n≥0 such that

(1) {z : |z| < Mn(R)} ⊂ Gn, for all n ≥ 0

(2) Gn+1 is contained in the bounded component of C \ f(∂Gn) for all n ≥ 0.

This result is very abstract and general. The essence of this theorem 3.2 holds if

domains Gn are replaced by discs. So the following result is considered a corollary of this

theorem 3.2 and this will be more applicable in order to construct examples.

Theorem 3.3. Let f be transcendental function. Let R > 0 be such that M(r, f) > r for

r ≥ R. Then AR(f) is a spider’s web if there exists a sequence (ρn) such that ρn > Mn(R)

and m(ρn) ≥ ρn+1, for all n ≥ 0. Where m(ρn) is a minimum modulus function with respect

to ρ.

We refer [22] for more detailed survey of this problem. The more strong results on this

problem are given in [23] and [39]. In these papers, it is shown that Baker conjecture holds

for all functions of small growth that have no unbounded Fatou components whenever the

condition of this theorem 3.3 is satisfied. It is also shown in [39] that the conditions of this

theorem are satisfied if f is a TEF and and there exists n ≥ 2 and r0 > 0 such that

log logM(r, f) <
log r

logn r
for r > r0

where logn r denotes nth iteration of logarithm function log r. A TEF f that satisfies this

condition is called a function of arbitrarily small growth.

The following theorem gives a general result for other classes of functions which are not

discussed above. For such classes of functions, the conclusion of theorem 3.2 holds. So, the

following theorem is also a corollary of theorem 3.2 and this will also be more applicable in

order to construct concrete examples.

Theorem 3.4. Let f be transcendental function. Let R > 0 be such that M(r, f) > r for

r ≥ R. Then AR(f) is a spider’s web if for some m > 1



74 B. H. SUBEDI, A. SINGH

(1) there exists ρ ∈ (r, rn) with m(ρ) ≥ M(r, f), for all r ≥ R0 > 0, and

(2) there exists a sequence (rn) such that rn > Mn(R, f) and M(rn, f) ≥ rmn+1, for

n ≥ 0.

Note that function f that satisfies the part (2) of this theorem 3.4 is called the function

of regular growth and the condition is known as regularity condition. Note that there are

more stronger regularity conditions than the condition given in this theorem 3.4(2). They

are ψ-regularity and log-regularity where log-regularity is more stronger than ψ-regularity.

We refer [53, 54], for more detailed study of both regularity conditions. In fact, if f has

order less than 1
2 , then f satisfies part (1) of this theorem 3.4 for all sufficiently large values

of m. If function f has finite order and positive lower order, then f satisfies part (2) of this

theorem 3.4. For more detailed study of the existence of both part of this theorem 3.4 we

refer [1, 39, 40, 54].

Now we have arrived in the position of to be more specific. From theorem 3.4, [22],

[40] and [54], we have arrived the following conclusions.

Theorem 3.5. (1) If f is a TEF of finite order and positive lower order, then f is

log-regular.

(2) If f is a TEF of order less than 1
2 and positive lower order, then AR(f) is a spider’s

web, where R > 0 is such that M(r, f) > r for r ≥ R.

How to to produce classes of functions that satisfy theorem 3.5(2) ? As suggested in

[54], the following operator will be quite helpful

Tm,n(f(z)) =
1

n

n∑

k=1

f(e
2πik
n z

m
n )

for all m,n ∈ N, and f is entire function. We choose a consistent branch of the nth root for

each term in the sum. Note that this operator has the following elementary properties:

T1,m ◦ T1,n = T1,nm and Tm,n(f(z
n)) = f(zn)

. The most important Property of this operator appears in the order and lower order of a

function as shown in the following results.

Theorem 3.6. If f is a TEF of order ρ(f), then Tm,n(f) is well defined entire function

(for all m,n ∈ N) of order at most m
n ρ(f).

Theorem 3.7. Let f(z) =
∑∞

p=0 apz
p be a TEF and let m,n ∈ N.

(1) If lim infp→∞
P log p

log |apn|−1 > 0, then Tm,n(f) has positive lower order.

(2) If Tm,n(f) has positive lower order and g(z) =
∑∞

p=0 bpz
p be a TEF with |bp| ≥ |ap|

for sufficiently large p, then Tm,n(g) has a positive lower order.

For the proof of these both theorems 3.6, 3.7, we refer [54]. Finally, we examine some

explicit classes of functions g for which AR(g) is a spider’s web.

Example 3.1. Let f(z) = ez and g = Tm,n(f(z)), where n > 2m. Then AR(g) is a spider’s

web, where R > 0 is such that M(r, g) > r for r ≥ R.
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Solution: Since ρ(f) = 1 and satisfies inequality of theorem 3.7(1) for n > 1. g has order

less than 1
2 by theorem 3.6 and positive lower order by 3.7(1).Thus by theorem 3.5(2), AR(g)

is a spider’s web, where R > 0 is such that M(r, f) > r for r ≥ R.

Example 3.2. Let f(z) = zez
2

+ez and g = Tm,n(f(z)), where n > 4m and n is odd. Then

AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r for r ≥ R.

Solution: Since ρ(f) = 1 and satisfies inequality of theorem 3.7(1) for odd n (n > 1). By

theorem 3.6, g has order less than 1
2 and positive lower order by 3.7(2). So by theorem

3.5(2), AR(g) is a spider’s web, where R > 0 is such that M(r, f) > r for r ≥ R.

As a particular case of example 3.1, the following is a famous TEF g that gives AR(g),

a structure of spider’s web.

Example 3.3. Let f(z) = ez and g = T2,4(f(z)), where n ≥ 2m. Then AR(g) is a spider’s

web, where R > 0 is such that M(r, g) > r for r ≥ R.

Solution: From example 3.1, AR(g) is a spider’s web, where R > 0 is such that M(r, f) > r

for r ≥ R. In this case, g(z) = T2,4(f(z)) =
∑∞

n=0
zn

(4n)! =
1
2(cos z

1

4 +cosh z
1

4 ). This function

has order 1
4 and positive lower order. In particular, for the function h(z) = 2g(z4) =

cos z + cosh z, for which AR(h) is a spider’s web.

For further explicit examples of classes of functions indicated by the theorem 2.2.4 that

give AR(f), a structure of spider’s web, we refer [38, 40, 54].

At the end of this section, we introduce some open problems arising from very familiar

classes of transcendental entire functions about the structure of escaping set.

Let ωk
n = e

2πik
n be nth roots of unity for some n ∈ N with k = 1, 2, . . . , n. Let

En = {f : f(z) =
n∑

k=1

ake
(ωk

nz), ak #= 0 for k = 1, 2, . . . n}

In particular,

E1 = {f : f(z) = λez, λ ∈ C}

is a well known exponential family and

E2 = {f : f(z) = αez + βe−z,α #= 0,β #= 0, and α,β ∈ C}

is well known cosine family upto conjugacy. As we indicated in introduction section, E1

and E2 are most familiar classes of TEF f in Eremenko-Lyubich class B.

From example 3.3, we observed that function g(z) = cos z + cosh z gives AR(g), a

structure of spider’s web. We easily deduce that g ∈ E4. In [54], Sixsmith drew the

following statement as a open problem.

Open Problem: Is is true that if f ∈ En, for n ≥ 3, then AR(f) is a spider’s web?

Note that all functions in En are log-regular and so from [41] that all functions in En

do not have multiply connected Fatou components. Therefore, if this question is solved,

then by theorem 2.1.7(4), each of AR(f) ∩ J(f), A(f) ∩ J(f), I(f) ∩ J(f) and J(f) is a

spider’s web.
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