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Abstract: In this paper, using the variant of Frontini-Sormani method, some higher order methods for find-

ing the roots (simple and multiple) of nonlinear equations are proposed. In particular, we have constructed

an optimal fourth order method and a family of sixth order method for finding a simple root. Further, an

optimal fourth order method for finding a multiple root of a nonlinear equation is also proposed. We have

used different weight functions to a cubically convergent Forntini-Sormani method for the construction of

these methods. The proposed methods are tested on numerical examples and compare the results with some

existing methods. Further, we have presented the basins of attraction of these methods to understand their

dynamics visually.
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1. Introduction

While working in the field of physical science, engineering and social science, non

linearity is the integral part of human life. Non linear equations are frequently appeared

while modeling any physical problem into mathematical form. Analytical methods generally

fail to solve such type of problems and therefore the iterative methods are the best alternate.

As a result, solutions of nonlinear equations by iterative methods has been a great area of

interest for long time.

One of the most commonly used iterative method to solve nonlinear equation f(x) = 0

is the well known Newton’s method given by

(1.1) xn+1 = xn −
f(xn)

f ′(xn)
.

Method 1.1 converges quadratically for simple roots and linearly for multiple roots. How-

ever, for multiple roots with known multiplicity m, the quadratically convergent modified
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Newton’s method is given by

xn+1 = xn −m
f(xn)

f ′(xn)
.

Many researchers keep contributing towards method 1.1 to improve the order of con-

vergence in several ways. Among many others, Traub [24] and later the same method with

different approach rediscovered by Frontini and Sormani [14] presented the following third

order method for finding simple root of a nonlinear equation:

yn = xn −
1

2

f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn)

f ′(yn)
(1.2)

We notice that the method (1.2) requires three functions evaluations per iteration to

attain third order of convergence, so it is not an optimal in the sense of Kung-Traub [18].

The main goal and motivation in the construction of new method is not only to increase

the order of convergence but also to achieve highest possible computational efficiency of

the method. There are various techniques for increment of the order of convergence of an

iterative method. One of them is using weight functions on a non optimal method. Babajee

et al. [2], Chand et al. [7], Chun et al. [10], Sharma et al. [22] and the references therein

and many more have worked in this area.

In this direction, Sharifi et al. [21], used weight functions on a third order Heun’s

method, and proposed a fourth order method given by

yn = xn −
2

3

f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn)

4

(
1

f ′(xn)
+

3

f ′(yn)

)(
1 +

3

8

(
f ′(yn)

f ′(xn)
− 1

)2

− 69

64

(
f ′(yn)

f ′(xn)
− 1

)3

+

(
f(xn)

f ′(yn)

)4)
.

(1.3)

Babajee [2], presented the following fourth order method using weight function:

yn = xn −
2

3

f(xn)

f ′(xn)
,

xn+1 = xn −
(

1 +
1

4
(t− 1) +

3

8
(t− 1)2

)
f(xn)

f ′(yn)
(1.4)

where t =
f ′(yn)

f ′(xn)
.

Further, using lower order methods, some higher order methods have been presented

in the literature. Among many others, Sharma et al. [23], presented a family of sixth order

method given by

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

f(xn)

f(xn)− 2f(yn)
,

xn+1 = zn −
f(zn)

f ′(xn)

f(xn) + af(yn)

f(xn) + (a− 2)f(yn)
,(1.5)
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where, a ∈ R.

In [11], Chun and Neta presented following sixth order method obtained from Kung-

Traub method [18]

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

1(
1− f(yn)

f(xn)

)2 ,
xn+1 = zn −

f(zn)

f ′(xn)

1(
1− f(yn)

f(xn)
− f(zn)

f(xn)

)2 .(1.6)

Again, using the iterative methods for simple roots, authors have developed new meth-

ods for finding multiple roots of known multiplicity m ≥ 1. The first multipoint optimal

method for multiple roots was developed by Li et al. [16] in 2009, almost a half century

after constructing the first optimal multipoint method for simple roots by Ostrowski [20]

in 1960. After that many authors have studied and developed many iterative methods for

multiple roots. Interested readers can follow [4], [8], [17], [22] and references therein.

For a known multiplicity m, in 2013, Liu et al. [17] presented a fourth order method

given by:

y = xn −m
f(xn)

f ′(xn)
,

wn =

(
f ′(yn)

f ′(xn)

) 1
m−1

,

xn+1 = yn −m
(
wn +

(
2m

m− 1

)
w2
n

) f(xn)

f ′(xn)
.(1.7)

In 2010, Sharma et al. [22] presented following fourth order method based on modified

Jarrat’s method:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn − a1w1 − a2w2 − a3
w2
2

w1
,(1.8)

where w1 =
f(xn)

f ′(xn)
, and w2 = f(xn)

f ′(yn)
. The values of the parameters are given by

a1 =
m

8
(m3 − 4m+ 8),

a2 = −m
4

(m− 1)(m+ 2)2
(

m

m+ 2

)m

,

a3 =
m

8
(m+ 2)3

(
m

m+ 2

)2m

.

Since, dynamical properties of a rational operator associated with an iterative method,

gives important information about the convergence, efficiency and stability of the method,
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from the last few decades, study of dynamical behavior of such operators has become a

rapidly growing area of research. There is an extensive literature, e.g., [1, 9, 12, 19, 22, 26]

and the references therein on the dynamics of the rational function generated by iterative

methods.

In this paper, using weight function on a variant of the method (1.2), we propose an

optimal fourth order method and a family of sixth order methods to find a simple root of a

nonlinear equation. Also, we extend the method (1.2) to find a multiple root of a nonlinear

equation and obtain an optimal fourth order method. This is done in Section 2. In section 3,

we check performance of the proposed methods with the help of some test functions and the

results obtained are compared with some existing methods. Finally, in Section 4, dynamics

of these methods are analyzed with the help of their basins of attraction.

2. Development of Methods and Their Convergence Analysis

2.1. Fourth Order Method for Simple Roots. We propose a fourth order method by

using weight function on a variant of Frontini-Sormani method (1.2). In fact, our proposed

method is

(2.1)

yn = xn −
2

3

f(xn)

f ′(xn)
,

xn+1 = xn −H(t)
f(xn)

f ′(yn)
,

where, H(t) =
a1 + a2t

a3 + t
is a weight function, a1, a2 and a3 are constants to be determined

and t =
f ′(yn)

f ′(xn)
. We prove the following theorem:

Theorem 2.1. Let f be a real or complex valued function defined on some interval I having

sufficient number of smooth derivatives. Let α be a simple zero of the function f and the

initial guess x0 close enough to α. Then the method (2.1) has fourth order of convergence

if a1 = −3
2 , a2 = 5

6 and a3 = −5
3 .

Proof. Denote cj =
f (j)(α)

j! · f ′(α)
and en = xn−α is the error in x and dn = yn−α is the error

in y at nth iteration. Taylor’s series expansion of f(xn), and f ′(xn) about α are given by:

(2.2) f(xn) = f ′(α)
(
en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)

)
and

(2.3) f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)

)
.

Then, using (2.2) and (2.3) in first equation of (2.1), we obtain

dn =
1

3

(
en + 2c2e

2
n − 4(c22 − c3)e3n + 2(4c32 − 7c2c3 + 3c4)e

4
n +O(e5n)

)
.



18 PREM CHAND

Therefore, Taylor’s series expansion of f ′(yn) about α is given by

f ′(yn) = f ′(dn + α)

= f ′(α)
(

1 +
2

3
c2en +

1

3
(4c22 + c3)e

2
n +

4

27
(−18c32 + 27c2c3 + c4)e

3
n

+
1

81

(
432c42 − 864c22c3 + 396c2c4 + 216c23 + 5c5

)
e4n +O(e5n)

)
.(2.4)

Now, from (2.3) and (2.4), we get

t =
f ′(yn)

f ′(xn)
,

= 1− 4

3
c2en +

4

3

(
3c22 − 2c3

)
e2n −

8

27

(
36c32 − 45c2c3 + 13c4

)
e3n

+
4

81

(
540c42 − 999c22c3 + 363c2c4 + 216c23 − 100c5

)
e4n +O(e5n).(2.5)

Using (2.5) on the weight function of (2.1), we obtained

H(t) =
a1 + a2t

a3 + t

=
a1 + a2
1 + a3

+
4c2(a1 − a2a3)

3(1 + a3)2
en −

4(a1 − a2a3)
9(1 + a3)3

(
c22(5 + 9a3)− 6c3(1 + a3)

)
e2n

+
8(a1 − a2a3)
27(1 + a3)4

(
4c32(2 + 9a3 + 9a23)− 3c3c2(7 + 22a3 + 15a23) + 13c4(1 + a3)

2
)
e3n

−
(

1− a2a3
81(1 + a3)5

)(
16c42

(
2 + 63a3 + 180a23 + 135a33

)
− 36c22c3

(
15 + 109a3 + 205a23 + 111a33

)

+ 4c2c4(155 + 363a3)(1 + a3)
2 + (1 + a3)

2
(
288c23(1 + 3a3)− 401c5(1 + a3)

))
e4n +O(e5n).

(2.6)

Therefore, in view of (2.2), (2.4) and (2.6), from (2.1), we obtain

en+1 =

(
1− a1 + a2

1 + a3

)
en +

((5a1 + a2) + a3(a1 − 3a2)) c2
3(1 + a3)2

e2n

+
2

9(1 + a3)3

(
c22
(
15a1 + 7a2 + 6a3(5a1 + a2) + a23(7a1 − 9a2)

)
− 3c3(1 + a3) (5a1 + a2 + a3(a1 − 3a2))

)
e3n −

1

27(1 + a3)4

(
4c32

(
19a1 + 22a2

+ 96a1a3 + 69a2a3 + a23(115a1 + 36a2) + a33(22a1 − 27a2)
)
− 3c2c3(1 + a3)

(
81a1 + 41a2

+ 6a3(31a1 + 7a2) + a23(41a1 − 63a2)
)

+ c4(1 + a3)
2(127a1 + 23a2 + 23a1a3 − 81a2a3)

)
e4n

+O(e5n).

(2.7)

In order to get fourth order of convergence, we must have

1 + a3 − a1 − a2 = 0,

5a1 + a2 + a3(a1 − 3a2) = 0,

c22
(
15a1 + 7a2 + 6a3(5a1 + a2) + a23(7a1 − 9a2)

)
− 3c3(1 + a3) (5a1 + a2 + a3(a1 − 3a2)) = 0,
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which on solving gives

a1 = −3

2
, a2 =

5

6
, a3 = −5

3
.

Substituting these values of the parameters in (2.7), the error equation of (2.1)is obtained

as:

en+1 =
1

9
(33c32 − 9c2c3 + c4)e

4
n +O(e5n).

Hence, the assertion is proved. �

2.2. Sixth Order Method for Simple Roots. In view of Theorem 2.1, our proposed

fourth order method for finding simple roots of a nonlinear equation is given by

(2.8)

yn = xn −
2

3

f(xn)

f ′(xn)
,

xn+1 = xn −
( 9− 5 f ′(yn)

f ′(xn)

10− 6 f ′(yn)
f ′(xn)

)
f(xn)

f ′(yn)
.

It is an optimal method in the sense of Kung-Traub conjecture [18] and having the effi-

ciency index 1.5874. Higher order methods can be obtained by using (2.8) in the Newton’s

component as below:

yn = xn −
2

3

f(xn)

f ′(xn)
,

zn = xn −

 9− 5 f ′(yn)
f ′(xn)

10− 6f ′(yn)
f ′(xn

 f(xn)

f ′(yn)
,

xn+1 = zn −
f(zn)

f ′(zn)
.(2.9)

It is eighth order method at the cost of five functions evaluation per iteration and it’s

efficiency index is 1.5157. If we approximate f ′(zn) in (2.9) by already known value(s) and

apply some weight function, we obtain a new method. Precisely, we propose the following

method:

yn = xn −
2

3

f(xn)

f ′(xn)
,

zn = xn −

 9− 5 f ′(yn)
f ′(xn)

10− 6f ′(yn)
f ′(xn

 f(xn)

f ′(yn)
,

xn+1 = zn −G(t)
f(zn)

f ′(xn)
(2.10)

where, G(t) is a weight function and t is as given in (2.1). We prove the following theorem

for the convergence of (2.10):

Theorem 2.2. Let f be a real or complex valued function defined on some interval I having

sufficient number of smooth derivatives. Let α be a simple root of the equation f(x) = 0

and the initial guess x0 is close enough to α. Then, the method (2.10) has sixth order of

convergence if G(0) =
5

2
+

1

2
G′′(0) and G′(0) = −3

2
−G′′(0) and G′′(0) ∈ R.
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Proof. Let, θn = zn − α, then, in view of (2.2), (2.3) and (2.1), from second equation of

(2.10), we obtain

θn =
1

9

(
33c32 − 9c2c3 + c4

)
e4n +

(
−1

9
244c42 + 24c3c

2
2 −

20c4c2
9
− 2c23 +

31c5
108

)
e5n +O(e6n).

Therefore,

f(zn) = f(θn + α)

= f ′(α)
(1

9

(
33c32 − 9c3c2 + c4

)
e4n −

1

108

(
2928c42 − 2592c3c

2
2 + 240c4c2 + 216c23 − 31c5

)
e5n

+O(e6n)
)(2.11)

The weight function G(t) can be expand in Taylor’s series about 0 as

G(t) = G(0) + tG′(0) +
t2

2
G′′(0) + · · · ,

= b1 + b2t+ b3t
2 + · · · ,(2.12)

where, for simplicity, b1 = G(0), b2 = G′(0) and b3 = 1
2G
′′(0).

In view of (2.3),(2.5), (2.11) and (2.12), from (2.10), we obtain

en+1 = −1

9

(
33c32 − 9c3c2 + c4

)
(b1 + b2 + b3 − 1) e4n

+
1

108

(
24c42 (155b1 + 177b2 + 199b3 − 122)− 72c22c3 (39b1 + 41b2 + 43b3 − 36)

+ 8c2c4 (33b1 + 35b2 + 37b3 − 30) +
(
216c23 − 31c5

)
(b1 + b2 + b3 − 1)

)
e5n

+
1

328

(
− 24c52(2881b1 + 3699b2 + 4605b3 − 1951)

+ 36c32c3 (2357b1 + 2793b2 + 3245b3 − 1790)− 8c22c4 (1629b1 + 1779b2 + 1937b3 − 1431)

+ c2

(
c5 (1293b1 + 1417b2 + 1541b3 − 1107)− 108c23 (171b1 + 187b2 + 203b3 − 150)

)

+ 2
(

6c3c4 (207b1 + 215b2 + 223b3 − 198)− 83c6 (b1 + b2 + b3 − 1)
))

e6n +O(e7n)

(2.13)

In order to get sixth order of convergence, we must have

b1 + b2 + b3 − 1 = 0, and

24c42 (155b1 + 177b2 + 199b3 − 122)− 72c22c3 (39b1 + 41b2 + 43b3 − 36)

+8c2c4 (33b1 + 35b2 + 37b3 − 30) +
(
216c23 − 31c5

)
= 0.

On solving these equations, we obtain b1 =
5

2
+ b3 and b2 = −3

2
− 2b3. This implies that

G(0) =
5

2
+

1

2
G′′(0) and G′(0) = −3

2
−G′′(0) and G′′(0) ∈ R. With these values of b1 and

b2, from (2.13), the error equation of the method (2.10) is obtained as

en+1 = − 1

81

(
33c32 − 9c3c2 + c4

) (
(16b3 − 54)c22 + 9c3

)
e6n +O(e7n).

This completes the proof of the theorem. �
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In (2.10), if we take the weight function

G(t) = (
5

2
+ β)− (

3

2
+ 2β)t+ βt2,

where t =
f ′(y)

f ′(x)
and β = G′′(0). Then, the family of the sixth order method is obtained as

yn = xn −
2

3

f(xn)

f ′(xn)
,

zn = xn −
( 9− 5 f ′(yn)

f ′(xn)

10− 6f ′(yn)
f ′(xn

)
f(xn)

f ′(yn)
,

xn+1 = zn −
((

5

2
+ β

)
−
(

3

2
+ 2β

)
t+ βt2

)
f(zn)

f ′(xn)
.(2.14)

Method (2.14) involves four functions evaluation per iteration. So, the efficiency index

of the method is 1.5651, which is better than eighth order method (2.9).

2.3. Modification for multiple roots. Methods proposed in the previous subsection

converge accordingly whenever α is a simple root of the equation f(x) = 0. On the other

hand, if α is a multiple root, then these methods do not retain their order of convergence.

For example, if we apply (2.8) to find the multiple root of the equation f(x) = 0 having

multiplicity m, then, the error equation of the method is obtained as

en+1 =

(
1− 10µ+m(−9 + 5µ)

2m (6µ+m(−5 + 3µ))

)
en +O(e2n), µ =

(
m

m+ 2

)m

which shows the linear convergence of the method (2.8) for multiple roots.

In this subsection, we modify the method (2.8) to find the multiple roots of any equation

with known multiplicity m. In fact, we propose the following:

(2.15)

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
(p1 − p2 f ′(yn)

f ′(xn)

p3 − f ′(yn)
f ′(xn)

)
f(xn)

f ′(yn)
.

where, p1, p2 and p3 are constants to be determined. We prove the following theorem:

Theorem 2.3. Let f be a real or complex valued function defined on some interval I having

sufficient number of smooth derivatives. Let α be a multiple root with multiplicity m ≥ 1 of

the equation f = 0 and the initial guess x0 is close enough to α. Then, the method (2.15)

has fourth order of convergence if

p1 = −µ
2(m− 2)(m+ 2)3

2m2
,

p2 = −µ(16− 16m− 8m2 + 2m3 +m4)

2m2
,

p3 =
µ(8− 4m+m3)

m3
.
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Proof. If α is a multiple root with multiplicity m of the equation f(x) = 0, then

f(α) = f ′(α) = · · · = fm−1(α) = 0 and fm(α) 6= 0.

Denote kj =
m!

(m+ j)!

f (m+j)(α)

f (m)(α)
, j = 1, 2, · · · and expand f(xn) and f ′(xn) in Taylor’s

series about α, we obtain:

(2.16) f(xn) =
fm(α)

m!
emn
(
1 + k1en + k2e

2
n + k3e

3
n + k4e

4
n +O(e5n)

)
.

and

(2.17)

f ′(xn) =
fm(α)

m!
em−1n

(
m+ (m+ 1)k1en + (m+ 2)k2e

2
n + (m+ 3)k3e

3
n + (m+ 4)k4e

4
n +O(e5n)

)
.

Using (2.16) and (2.17) in first equation of (2.15), we obtain:

dn =
m

m+ 2
en +

2k1
m(m+ 2)

e2n −
2
(
k21(m+ 1)− 2k2m

)
m2(m+ 2)

e3n

+
2
(
3k3m

2 + k31(m+ 1)2 − k2k1m(3m+ 4)
)

m3(m+ 2)
e4n +O(e5n.

Therefore, Taylor’s series expansion of f ′(yn) about α is given by

f ′(yn) = f ′(dn + α)

= f ′(α)µ
[m+ 2

m!en
+
k1
(
m3 + 3m2 + 2m− 4

)
m2m!

+
1

m4m!

(
k2m

2(m3 + 4m2 + 4m− 8)

− 4k21(m− 2)
)
en +

1

3m6(m+ 2)2m!

(
− 12k1k2(m+ 2)2

(
m2 + 4m− 8

)
m2

+ 4k31(m+ 2)2
(
m4 + 5m3 − 4m2 + 4m− 12

)
+ 3m4k3

(
m5 + 9m4 + 30m3 + 36m2 − 24m− 48

) )
e2n +O(e3n)

]
.(2.18)

In view of (2.16), (2.17) and (2.18), we obtain from (2.15)

en+1 =
1

µ(m+ 2) (µ(m+ 2)− p3m)

[
A1en +A2e

2
n +A3e

3
n +A4e

4
n

]
+O(e5n)(2.19)
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where

A1 = p1m+ (m+ 2)µ ((m+ 2)µ− p2 − p3m)

A2 =
k1

m2(m+ 2) (µ(m+ 2)− p3m)

(
p2(m+ 2)2µ

(
µ(m2 + 2m− 4)− p3m2

)
+ p1m

(
p3m(m2 + 2m− 4)− µ(m3 + 4m2 − 4m− 16)

) )
A3 =

1

m3 ((m+ 2) (µ(m+ 2)− p3m))2

[(
− p2µ(m+ 2)3

(
p23m

3(m+ 1)− 2p3µ(m4 + 3m3 − 2m− 4)

+ µ2(m4 + 5m3 + 4m2 − 8m− 16)
)

+ p1
(
p23m

3(m4 + 5m3 + 4m2 − 8m− 16)

+ µ2(m+ 2)2
(
m5 + 5m4 − 20m2 − 32m+ 16

)
− 2p3m

2µ
(
m5 + 7m4 + 12m3 − 10m2 − 52m− 48)

))
k21

− 2m(m+ 2) (p3m− µ(m+ 2))
(
p2µ(m+ 2)2

(
µ(m2 + 2m− 4)− p3m2

)
+ p1m

(
p3m(m2 + 2m− 4)− µ(m3 + 4m2 − 4m− 16)

) )
k2

]

and

A4 =
1

3m5
(
(m+ 2) (µ(m+ 2)− p3m)

)3
[(
− p2µ(m+ 2)4

(
3p33m

5(m+ 1)2

− p23mµ
(
9m6 + 36m5 + 37m4 + 2m3 − 52m2 − 32m− 48

)
+ p3mµ

2
(
9m6 + 54m5 + 101m4 + 44m3 − 132m2 − 176m− 176

)
− µ3

(
3m7 + 24m6 + 67m5 + 66m4 − 64m3 − 184m2 − 144m− 32

) )
+ p1m

(
p33m

3
(
3m7 + 24m6 + 67m5 + 66m4 − 64m3 − 184m2 − 144m− 32

)
− µ3(m+ 2)3

(
3m7 + 24m6 + 59m5 + 18m4 − 212m3 − 296m2 − 48m+ 224

)
+ p3µ

2(m+ 2)2
(
9m8 + 72m7 + 185m6 + 102m5 − 488m4 − 872m3 − 480m2 + 128m+ 192

)
− p23m2µ

(
9m8 + 90m7 + 337m6 + 536m5 − 40m4 − 1440m3 − 2096m2 − 1280m− 256

) ))
k31

+ 3m2(m+ 2) (p3m− µ(m+ 2))

(
p2µ(m+ 2)3

(
p23m

3(3m+ 4)

− 2p3µ
(
3m4 + 10m3 + 4m2 − 8m− 16

)
+ µ2

(
3m4 + 16m3 + 20m2 − 16m− 64

) )
− p1

(
p23m

3
(
3m4 + 16m3 + 20m2 − 16m− 64

)
+ µ2(m+ 2)2

(
3m5 + 16m4 + 12m3

− 48m2 − 128m+ 64
)
− 2p3m

2µ
(
3m5 + 22m4 + 48m3 − 160m− 192

) ))
k1k2

− 3m3 (p3m− µ(m+ 2))2
(
− p2µ(m+ 2)2

(
µ
(
3m4 + 18m3 + 28m2 − 24m− 48

)
− 3p3m

2(m+ 2)2
)
− p1m

(
p3m

(
3m4 + 18m3 + 28m2 − 24m− 48

)
− µ

(
3m5 + 24m4 + 56m3 − 32m2 − 240m− 192

) ))
k3

]
.
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The method (2.15) is of fourth order if in (2.19)

A1 = 0, A2 = 0 and A3 = 0

which on solving, gives the desired values of p1, p2 and p3. Also, with these values of

Ai, i = 1, 2, 3, (2.19) gives the following error equation of the method (2.15):

en+1 =
1

3m4(m+ 2)2 (m2 + 2m− 4)

(
k31
(
m7 + 8m6 + 22m5 + 18m4 − 28m3 − 40m2 − 16m− 64

)
− 3k1k2m

3(m+ 2)2
(
m2 + 2m− 4

)
+ 3k3m

5
(
m2 + 2m− 4

) )
e4n +O(e5n).

Hence, the assertion is proved. �

3. Numerical Examples

In this section, theoretical results proved in the previous section are verified practically.

We check the performance of all the proposed methods on some test functions and compare

the various results with some known methods.

We test numerically the order of convergence of the proposed methods by using Com-

putational Order of Convergence (or COC) defined by Grau-Sanchez et al. [15]. They define

COC of a sequence {xn} by

(3.1) COC =
log | ẽn

ẽn−1
|

log | ẽn−1

ẽn−2
|
, n = 2, 3, · · ·

where ẽn = xn−xn−1. The use of COC, as given by (3.1) serves as a practical check on the

theoretical error calculations.

For simple roots, we take following test functions fi(x), i = 1, 2 with initial guesses x0:

f1(x) = sin2 x− x2 + 1, x0 = 2,

f2(x) = x2 − ex − 3x+ 2, x0 = 1

For multiple roots, the test functions gi(x), i = 1, 2, multiplicity m and initial guesses

x0 are taken as

g1(x) =
(√
x+ log x− 5

)4
, m = 4, x0 = 1,

g2(x) =
(
ex

2+7x−30 − 1
)6
, m = 6, x0 = 3.2

For simple roots, we compare the results obtained from fourth order method (2.8),

which is denoted by M41, with the two known methods (1.3) and (1.4), which are denoted

by M42 and M43 respectively. Table 1 shows the results obtained from these methods.

Similarly, the results obtained from the sixth order method (2.14) with β = 0, denoted

by M61, are compared with the two known methods (1.5) denoted by M62 for a = 2 and

(1.6) which is denoted by and M63. Table 2 shows the results obtained from sixth order

methods. Finally, in Table 3, the results for multiple roots are presented. For this, we

take our proposed fourth order method (2.15), which is denoted by M1, and the two known

methods (1.7) and (1.8), which are denoted by M2 and M3 respectively. In each case, we
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compare the results obtained from first four iterations. From the tables, we observe that the

results obtained from proposed methods are competitive with other known methods of the

same order. But the results obtained from M1 are much better than its two counterparts,

viz., M2 and M3 for all the three examples.

In each of the table, aE(−b) stands for a× 10−b. We have done our calculations with

several number of significant digits (upto 1500 significant digits) to minimize the round

off error using Mathematica 9. Further, due to limitations, we show the results up to 14

decimal places for the approximate root xn.

Methods Iterations

Test functions (fi(x))

f1 f2

xn |f(xn)| d = |xn − xn−1| COC xn |f(xn)| d = |xn − xn−1| COC

M41

1 1.42854602264018 0.0608 0.5715

3.99

0.257721519154245 0.0007 0.7423

4

2 1.40449214651858 1.237 E(-6) 0.0241 0.257530285439860 1.984 E(-17) 0.0002

3 1.40449164821534 2.573 E(-25) 4.983 E(-7) 0.257530285439860 1.128 E(-71) 5.251 E(-18)

4 1.40449164821534 4.818 E(-100) 1.037 E(-25) 0.257530285439860 1.177 E(-288) 2.985 E(-72)

M42

1 1.34651146339548 0.1374 0.6535

4.13

0.028008046701890 0.8884 0.972

4.63

2 1.40448821376536 8.526 E(-6) 0.058 0.258206488835457 0.0026 0.2302

3 1.40449164821534 2.86 E(-23) 3.43 E(-6) 0.257530285439862 4.931 E(-15) 0.0007

4 1.40449164821534 3.624 E(-93) 1.152 E(-23) 0.257530285439860 7.578 E(-62) 1.305 E(-15)

M43

1 1.42531031266043 0.0525 0.5747

3.99

0.257718325301160 0.0007 0.7423

4

2 1.40449182932916 4.496 E(-7) 0.0208 0.257530285439860 2.369 E(-17) 0.0002

3 1.40449164821534 2.777 E(-27) 1.811 E(-7) 0.257530285439860 2.926 E(-71) 6.269 E(-18)

4 1.40449164821534 4.044 E(-108) 1.119 E(-27) 0.257530285439860 6.81 E(-287) 7.743 E(-72)

Table 1. Numerical Results of fourth order methods for simple roots

Methods Iterations

Test functions (fi(x))

f1 f2

xn |f(xn)| d = |xn − xn−1| COC xn |f(xn)| d = |xn − xn−1| COC

M61

1 1.42854602264018 0.0608 0.5888

5.99

0.257721519154245 0.0007 0.7425

5.99

2 1.40449165158474 8.364 E(-9) 0.0067 0.257530285439860 9.277E(-23) 8.893E(-6)

3 1.40449164821534 3.548 E(-49) 5.4E(-13) 0.257530285439860 9.93E(-143) 9.046E(-36)

4 1.40449164821534 2.107E(-291) 1.499E(-73) 0.257530285439860 1.499E(-862) 1.003E(-215)

M62

1 1.40872501636896 0.0105 0.5913

5.99

0.257557067100725 0.0001 0.7424

6

2 1.40449164821535 2.071E(-14) 0.0042 0.257530285439860 2.937E(-32) 0.00002

3 1.40449164821534 1.241E(-84) 8.343E(-15) 0.257530285439860 1.753E(-197) 7.772E(-33)

4 1.40449164821534 5.76E(-506) 5.001E(-85) 0.257530285439860 7.934E(-1189) 4.64E(-198)

M63

1 1.40801383147755 0.0088 0.592

5.99

0.257556453236163 0.0001 0.7424

6

2 1.40449164821534 7.278E(-15) 0.0035 0.257530285439860 1.386E(-31) 0.00002

3 1.40449164821534 2.470E(-87) 2.932E(-15) 0.257530285439860 1.049E(-192) 3.667E(-32)

4 1.40449164821534 3.779E(-522) 9.952E(-88) 0.257530285439860 1.976E(-1159) 2.776E(-193)

Table 2. Numerical Results of sixth order methods for simple roots
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Methods Iterations

Test functions (gi(x))

g1 g2

xn |g(xn)| d = |xn − xn−1| COC xn |g(xn)| d = |xn − xn−1| COC

M1

1 8.34283806280616 9.226E(-9) 7.343

4

3.072501442580200 15.556 0.1275

3.78

2 8.30943269423444 5.078E(-49) 0.0334 3.004662021752300 5.963E(-8) 0.0678

3 8.30943269423157 4.631E(-210) 2.873E(-12) 3.000000187660250 2.108E(-34) 0.0047

4 8.30943269423157 3.202E(-854) 1.579E(-52) 3.000000000000000 1.020E(-139) 1.877E(-7)

M2

1 5.22224727313623 1.271 4.222

4.05

3.096465184959970 266.804 0.1035

3.54

2 8.25518500344720 6.512E(-8) 3.033 3.020404720495330 0.0008 0.0761

3 8.30943268977097 2.95E(-36) 0.0542 3.000184593232500 1.924E(-16) 0.0202

4 8.30943269423157 1.28E(-149) 4.461E(-9) 3.000000000002110 4.297E(-64) 0.0002

M3

1 7.91111508454778 2.009E(-4) 6.911

4.01

3.073793036880630 18.355 0.1262

3.78

2 8.30943259155894 8.28E(-31) 0.3983 3.005102578449770 1.043E(-7) 0.0687

3 8.30943269423157 1.943E(-136) 1.027 3.000000276592830 2.161E(-33) 0.0051

4 8.30943269423157 5.89E(-559) 4.019 3.000000000000000 1.36E(-135) 2.766E(-7)

Table 3. Numerical Results of fourth order method for multiple roots

4. Basins of attraction

The basins of attraction of a rational function is the union of sets of initial values which

on successive iteration converge to the attracting fixed points of the function. Generally, if

we are close enough to one of the fixed point, then we should be in the basin of attraction

of that point. But, near the boundary of the basin of attraction of different fixed points, we

may have the chaotic region depending upon the function. Whenever an iterative method

is applied to a polynomial, a rational operator R is obtained. The fixed points of such an

operator are the roots of the polynomial as well as others. The fixed points which are not

the roots of the polynomial, are called extraneous or strange fixed points. The roots of

the involved polynomial are always the (super) attracting fixed points where as extraneous

fixed points may be attractive, repulsive or neutral. The existence of extraneous fixed points

causes the chaotic basin of attraction of any rational operator [26].

Formally, if z0 is an attracting fixed point of the rational operator R, then the basin of

attraction of z0 is the set

B(z0) = {z ∈ Ĉ : Rn(z)→ z0 as n→∞},

where, Ĉ is the extended complex plane, i.e. Ĉ = C ∪ {∞}.

The basins of attraction of an iterative method gives information about the stability

of the method. Wider and smoother the basins, more stable is the method. On the other

hand, a method having basins with chaotic dynamics with greater irregularity in it, is the

less stable. For a comprehensive study of dynamics of rational functions, the interested

readers can follow [3], [5], [6], [13] and references therein.

The basins of attraction are generated by Mathematica 9 using the idea of Varona [25].

We have used a mesh of 400 × 400 points in the region [−2, 2] × [−2, 2] of the complex

plane. Different colors represent the basins of attraction of different roots of the polynomial

involved. The roots are represented by white spots. Black region shows the no convergence
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(i) z2 + 1. (ii) z3 − 1. (iii) z3 − z.

Figure 1. Basins of attraction of various fixed points of M41.

(i) z2 + 1. (ii) z3 − 1. (iii) z3 − z.

Figure 2. Basins of attraction of various fixed points of M61.

of the initial guess within the maximum number of iterations or whose orbit converges to

another thing (strange fixed points, cycles, etc.) or diverges. We work with a tolerance of

103 and a maximum number of 40 iterations.

To understand the dynamical behavior of the methods visually, the basins of attraction

of the methods M41(z) and M61(z) for the polynomials p(z) = z2 + 1, p(z) = z3 − 1 and

p(z) = z3 − z are presented in Figure 1 and 2. From the figures, it can be observed that

the basin of attraction becomes more chaotic as the order of the method increases for any

polynomial. In other words, the basins of attraction of the method M61 is more chaotic

than that of M41 for any particular polynomial. Consequently, M61 is less stable than the

method M41.

For multiple roots, we apply the method M1(z) to the polynomials p(z) = (z2 + 1)2,

p(z) = (z3 − 1)2, p(z) = (z2 + 1)4 and p(z) = (z3 − 1)4. The corresponding basins of

attraction are presented in Figure 3. From the figure, it is clear that as the multiplicity

of the polynomial increases, the basins of attraction becomes more chaotic. Therefore,

the method (2.15) is more appropriate for finding the zeros of the functions having lower

multiplicity.
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(i) (z2 +

1)2.

(ii) (z2 +

1)4.

(iii)

(z3−1)2.
(iv) (z3−
1)4.

Figure 3. Basins of attraction of various fixed points of M1.

5. Conclusion

We have developed three higher order iterative methods for solving nonlinear equations

using weight functions on the variants of cubically convergent Frontini-Sormani method.

Two methods having order of convergence four and six are for computing simple root and

a fourth order method to compute multiple root of a nonlinear equation. Both the fourth

order methods are optimal and the sixth order method is non-optimal as it requires four

functions evaluation per iteration. The numerical results obtained from the proposed meth-

ods are found to be competitive with existing methods. The dynamics of the proposed

methods is discussed with the help of basins of attraction of the fixed points and stability

of the methods is analyzed.

Further extension: All the methods developed in this paper can be extended for multi-

variate function in which first order derivative is replaced by an equivalent Jacobian matrix.
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