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Abstract: Multi-commodity flow problem appears when several distinct commodities are shipped from

supply nodes to the demand nodes through a network without violating the capacity constraints. The

quickest multi-commodity flow problem deals with the minimization of time satisfying given demand. In

general, the quickest multi-commodity flow problems are computationally hard. The outbound lane capac-

ities can be increased through reverting the orientation of lanes towards the demand nodes. We present

two approximation algorithms by introducing partial contraflow technique in the continuous-time quickest

multi-commodity flow problem: one polynomial-time with the help of length-bounded flow and another

FPTAS by using ∆-condensed time-expanded graph. Both algorithms reverse only necessary arc capacities

to get the optimal solutions and save unused arc capacities which may be used for other purposes.
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1. Introduction

Routing of several distinct commodities from specific supply nodes to corresponding

demand nodes is essential in day to day life. The transshipment of commodities is a network

routing problem in which the sum of flow of commodities on each arc is bounded by its

capacity. The problems modeled as a multi-commodity flow problem are message routing in

telecommunication, railway network, vehicle routine in transportation, production planning,

and logistics, etc. For more details, we refer to [1, 3, 14, 29, 31].

The road traffic network is considered as a network. The source points, destination

points, and the junction of roads represent nodes and link from one node to another node is

an arc. The arcs are assigned with capacity and travel time (cost) in the network. The chain

from a specific source to its corresponding destination is a source-sink path. Commodities

that are transshipped through the network along the path is considered as a flow.
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Generally, network flow problems can be classified into two ways: static flow and

dynamic flow (also known as flow over time) problems. The problem in which supply

and demand on the origin and destination nodes are given, and wish to find the minimum

possible time to fulfill the demand is called the quickest flow problem. By applying a binary

search to the maximum flow solution of Ford and Fulkerson [10], Burkard et al. [4] provided

the first polynomial-time-bound for this problem. Furthermore, a strongly polynomial-

time-bound by incorporating a parametric approach to the minimum cost flow problem is

obtained by the same authors.

The problem is extended to the case of a multi-terminal network. Hoppe and Tardos [13]

presented a polynomial-time solution as one of such extensions, in which the vector of

supplies and demands at the terminals are given, where the task is to find a flow over

time that satisfies all supplies and demands within minimum possible time, is the quickest

transshipment problem.

Fleischer and Skutella [8] generalized the dynamic flow problem introduced by Ford

and Fulkerson [10] to the case of a multi-commodity network. The static multi-commodity

flow problem is solved in polynomial-time by using the ellipsoid or interior point method.

However, the multi-commodity dynamic flow problem is NP-hard, [12]. Authors in [8] have

investigated approximate solutions of the quickest multi-commodity flow (QMCF) problem.

They developed two algorithms: one polynomial-time algorithm by using T -length bounded

approximation and another fully polynomial-time approximation scheme (FPTAS) by using

∆-condensed time-expanded network.

Contraflow strategy increases the flow value by expanding the capacity of the lanes

through reversing the orientation of lanes towards the demand nodes. Rebennack et al. [28]

developed the models and provided analytical solutions for the two-terminal maximum and

quickest flow problems. Furthermore, they developed strongly polynomial-time algorithms,

where lane reversals are made at time zero and kept fixed afterward.

The optimal solution to the earliest arrival flow in a two-terminal network for a discrete-

time setting is provided by Pyakurel and Dhamala in [19, 22]. By using the natural trans-

formation, this discrete solution has been transformed into a continuous-time setting by the

same authors in [20, 21]. Pyakurel et al. [23] designed the approximation algorithms for the

earliest arrival transshipment problem with arbitrary and zero transit times on each arc.

Furthermore, authors in [25] presented a strongly polynomial-time algorithm for the quick-

est flow problem and developed an approximation algorithm with load-dependent transit

times. Dhungana and Dhamala [7] presented an algorithm for the maximum dynamic flow

improvement problem with lane reversals having budget-constrained. Nath et al. [18] in-

vestigated the quickest contra-flow-loc problem with an objective of minimum increment of

optimal time.

By reverting only necessary arc capacities to increase the flow value, Pyakurel et al. [27]

developed a partial contraflow approach. This approach saves unused arc capacities that

can be used for the logistic supports and facility location in emergency periods. Authors

in [26] introduced partial contraflow with path reversals. Recently, Dhamala et al. [5]
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presented two approximation algorithms for the QMCF problem with a partial contraflow

in the discrete-time setting.

In this paper, we apply a partial contraflow approach in the QMCF problem and

introduce the quickest multi-commodity contraflow (QMCCF) problem in a continuous-

time setting. By reducing the multi-commodity flow problem into the single-commodity

flow problems and decomposing the flow along the paths, we present two approximate

algorithms to solve the problem. The first algorithm approximates it in polynomial-time

by using a T -length bounded approach and second by using ∆-condensed time-expanded

network in fully polynomial-time. The major significance of this study is the reduction of

the delivery time of commodities by applying partial contraflow technique.

The rest of the paper is organized as follows. Section 2 provides some basic termi-

nologies and models used in the article. The quickest multi-commodity flow problem with

partial contraflow is introduced in Section 3. In this section, we present two algorithms for

approximate solutions to this problem. The paper is concluded in Section 4.

2. Basic Terminologies and Flow Models

The transmission of more than one different commodities from respective sources to the

corresponding sinks through a network concerns with the multi-commodity flow problem.

In this section, we present the mathematical formulation of the flow models for multi-

commodity flow.

2.1. Flow models: Consider a static network topology N = (V,E,K, b, di, S,D) with node

set V , arc set E ⊆ V × V , and the set of commodities K = {1, 2, ...., k}, where |V | = n

and |E| = m. S and D represent the set of sources and sinks respectively. For each

commodity i ∈ K, di represents the demand of commodity i that is to be routed through

a unique source-sink pair (si, ti), where si ∈ S ⊂ V and ti ∈ D ⊂ V . The capacity

function b : E → R+ restricts the flow of commodities on each arc e = (v, w). We denote

E+(v) = {(v, w) | w ∈ V } and E−(v) = {(w, v) | w ∈ V } as the sets of out going arcs from

node v and incoming arcs to node v, respectively, such that E+(D) = ∅ and E−(S) = ∅
except in contraflow network.

Network with the temporal dimension, denoted by N = (V,E,K, b, τ, di, S,D, T ), is a

dynamic network, where a non-negative transit time function τ : E → R+ measures the

time to transship the flow from the tail (v) to the head (w) of arc e = (v, w). The time

horizon T given in network N is denoted by T = {0, 1, ..., T} in discrete-time settings and

T = [0, T ) in continuous-time settings.

Static multi-commodity flow. A static multi-commodity flow g for the given static net-

work N without temporal dimension is a sum of all non-negative static flows gi defined by
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the functions gi : E → R+ for each commodity i satisfying

∑
e∈E+(v)

gie −
∑

e∈E−(v)

gie =


di if v = si

−di if v = ti

0 otherwise

∀i ∈ K(2.1)

0 ≤
∑
i∈K

gie ≤ be ∀e ∈ E.(2.2)

The first and second conditions of constraint in (2.1) represent the supply and demand

at sources and sinks, respectively, whereas the third condition represents flow conservation

for each commodity at intermediate nodes. The constraints in (2.2) are bundle constraints

bounded by arc capacities. The cost of static flow g is defined as

c(g) =
∑
e∈E

∑
i∈K

cieg
i
e(2.3)

where, cie represents the cost coefficient associated with arc e ∈ E and commodity i ∈ K.

Dynamic multi-commodity flow. For a given network N, a dynamic multi-commodity

flow f with constant transit time τ on arcs is a sum of flows defined by f i : E × T → R+

satisfying the constraints (2.4 - 2.6).

∑
e∈E+(v)

∫ T

0
f ie(θ)dθ −

∑
e∈E−(v)

∫ T

τe

f ie(θ − τe)dθ =


di if v = si

−di if v = ti

0 otherwise

∀i ∈ K(2.4)

∑
e∈E+(v)

∫ δ

0
f ie(θ)dθ −

∑
e∈E−(v)

∫ δ

τe

f ie(θ − τe)dθ ≤ 0 ∀ v /∈ {si, ti}, i ∈ K, δ ∈ T(2.5)

0 ≤ fe(δ) =
∑
i∈K

f ie(δ) ≤ be ∀e ∈ E, i ∈ K, δ ∈ T(2.6)

Here, the third condition of the constraints in (2.4) are flow conservation constraints at

time horizon T . The strict inequality in (2.5) represents weak flow conservation constraints

that allow to store the flow at intermediate nodes, where as equality in (2.5) represents flow

conservation at intermediate nodes for all times δ without intermediate storage. Similarly,

the bundle constraints in (2.6) are bounded above by the capacities. The goal is to transship

the given amount of flow in order to satisfy the demand di of each commodity i from si to

ti, which is stated in first two conditions of (2.4). The cost of dynamic flow f is defined by

c(f) =
∑
e∈E

∑
i∈K

cie

∫ T

0
f ie(θ)dθ.(2.7)

The bound of cost for every single commodity i is calculated as

∑
e∈E

cie

∫ T

0
f ie(θ)dθ ≤ Ci,(2.8)

and the budget constraints for dynamic flow f , stated in (2.7), is bounded by C.
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2.2. Natural Transformation: Natural transformation is a technique to transform the

solution of discrete dynamic flow problem to the continuous parameters. Fleischer and

Tardos [9] presented the relations between discrete and continuous flow models with the

notion of natural transformation by defining fe[θ, θ + 1) = φe(θ), where f represents the

continuous dynamic flow for unit time interval [θ, θ + 1) and φ represents the discrete

dynamic flow entering arc e at time θ ∈ {0, 1, ..., T}, (see also [6]). With the help of this

natural transformation, multi-commodity flow can be extended as follows: any discrete

dynamic flow φie(θ) with integral time horizon T is equivalent to the continuous dynamic

flow f ie[θ, θ + 1) by incorporating the flow φie(θ) entering arc e at time step θ ≤ T − τe as a

constant flow rate on arc e during the unit time interval [θ, θ + 1).

2.3. Auxiliary Network: For a given two-way network N, the corresponding auxiliary

network is denoted by Na = (V,Ea,K, ba, τa, di, S,D, T ), with undirected edges in Ea =

{(v, w) : (v, w) or (w, v) ∈ E}, where ←−e = (w, v) is the reversed arc of e = (v, w). The

capacity of auxiliary arc is the sum of capacities of arcs e and ←−e such that bae = be + b←−e ,

where be = 0 if e /∈ E. The transit time of auxiliary arc is

τae =

{
τe if e ∈ E
τ←−e otherwise.

All others parameters are same.

Contraflow means the flipping of the orientation of arcs to increase the flow and reduce

the time horizon by increasing the arc capacities as defined above. In partial contraflow,

only necessary arc capacities are reversed to increase the flow value. The main idea behind

the partial contraflow for a static network is as follows.

• Arc ←−e = (w, v) is reversed if and only if either flow along the arc e = (v, w) is

greater than its capacity or there is nonnegative flow along the arc e = (v, w) /∈ E.

If ge > be and bae > ge, where bae = be + b←−e , then the arc ←−e is reversed partially and

unused capacity of arc ←−e is saved.

• If ge > be and bae = ge, then we have to reverse the arc ←−e completely. Thus no

capacity is saved.

• If ge < be neither arc e nor arc ←−e is reversed, then remaining capacity of arc e and

all capacity of arc ←−e are saved.

Dynamic multi-commodity contraflow model. Consider a pre-defined two-way net-

work N, a dynamic multi-commodity flow f with constant transit time τ on arcs is a sum

of flows defined by f i : E × T→ R+ satisfying the constraints (2.4-2.5) with

0 ≤ fe(δ) =
∑
i∈K

f ie(δ) ≤ be + b←−e ∀e ∈ E, i ∈ K, δ ∈ T.(2.9)

The constraints in 2.9 represent the flows on the arcs which are bounded above by the

contraflow capacities.

Example 2.1. Consider a two-commodity network with capacity and transit time on the

arcs as shown in Figure 1. Flows are to be transshipped from s1 to t1 for Commodity-1
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and s2 to t2 for Commodity-2. In Figure 1, (b) represents the auxiliary network of (a).

Figure 1 (c) illustrates a feasible multi-commodity static flow and (d) shows the saving of

unused arcs using partial contraflow. In Figure 1 arcs (u, t2) and (v, t1) represent fly over

arcs without intersections. To reallocate the capacity of bundle constraint on arc (x, y), we

use resource-directive decomposition method. This method solves the problem by reducing

multi-commodity flow problem into the independent single-commodity flow problems by

reallocating capacity of each arc to each commodity in such a way that optimal solution is

obtained.
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x y
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Figure 1. (b) Represents the auxiliary network of the given network (a).

(c) Represents the static multi-commodity flow and (d) is the network having

flow and saved capacity on the arcs.

2.4. Temporally repeated flow: Ford and Fulkerson [10] introduced the concept of tem-

porally repeated flow to calculate maximum dynamic flow by temporally repeating the

feasible static flow without intermediate storage. Let Pi be the collection of si − ti paths

that carries the flow of commodity i ∈ K such that ∪ki=1Pi = P, where P is the set of all

multi-commodity paths. Let gi be a feasible static si−ti flow. Then the path decomposition

of the flow gi is defined by

gie =
∑

P∈Pi:e∈P
gip.

Let τP be the transit time of every path P ∈ Pi which is bounded from above by T . Then for

the feasible static flow gi in N with path decomposition (giP )P∈Pi , the temporally repeated

flow sends flow giP at constant rate in to path P ∈ Pi starting from time 0 to T − τP .
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For such flow gi with decomposition (giP )P∈Pi such that giP = 0 for all P ∈ Pi with

τP > T , the value of corresponding temporally repeated dynamic flow f i for commodity i

is

|f i| =
∑
P∈Pi

(T − τP )giP = T |gi| −
∑
e∈E

τeg
i
e.(2.10)

2.5. Approximation scheme: In multi-commodity flow problems, the linear program-

ming techniques provide polynomial-time solutions. However, in many applications, these

techniques can take a long time to solve the problems. So, approximation algorithms that

provide solutions close to the optimal solution are the better options rather to find exact so-

lutions. As a consequence, an intense attempt was made to obtain an efficient approximate

algorithm for the multi-commodity flow problem.

Let the optimal solution of the objective function be denoted by OPT (I), where I ∈ X
is an instance of a minimization (or a maximization) problem X . Suppose ε > 0, an

algorithm A is called a (1 + ε) (or (1 − ε)) approximation algorithm for problem X , if for

each instances I of X it produces a feasible solution with objective value A(I) such that

|A(I)−OPT (I)| ≤ ε OPT (I)

• For a problem X , a polynomial-time approximation scheme (PTAS) is an approxi-

mation scheme having time complexity polynomial in the input size of the problem.

• For a problem X , a fully polynomial-time approximation scheme (FPTAS) is an

approximation scheme having time complexity polynomial in the input size of the

problem and also polynomial in 1/ε.

3. Continuous-time QMCF with Partial Contraflow

We introduce the contraflow strategy to the continuous-time QMCF problem in this

section. The continuous-time QMCCF problem shifts given amount of commodities from si

to ti in minimum time by reversing the direction of arcs towards the demand nodes without

any processing cost. We also develop an efficient algorithm for an approximate solution to

this problem. Moreover, our algorithm saves the capacity of lanes that are not necessary

to reverse for reducing the time into quickest one. This extends the network flow models

introduced in [8] and [12] into partial contraflow framework introduced in [5] and [27].

Problem 3.1. Consider a network N = (V,E,K, b, τ, di, S,D, T ). The continuous-time

QMCCF problem is to find the minimum possible time satisfying the constraints 2.4, 2.5,

and 2.9 that transship given amount of commodities di from si to ti with bounded cost for

each i ∈ K by reversing the direction of necessary arcs at time zero.

NP-hardness of the multi-commodity flow over time problem with or without inter-

mediate node storage is shown by Hall et al. [12] even in case of series-parallel graphs or

having only two commodities.

Theorem 3.2. The continuous-time QMCCF problem with bounded cost is NP-hard.



QUICKEST CONTINUOUS MULTI-COMMODITY CONTRAFLOW MODELS AND ALGORITHMS 37

Proof. The maximum dynamic multi-commodity flow problem is NP-hard, [12]. It can

be solved as a static flow problem using time-expanded graph in pseudo-polynomial-time

complexity without restriction on intermediate node storage [24]. The quickest temporally

repeated flow with bounded cost is strongly NP-hard and does not allow FPTAS unless

P = NP. As in [12], the quickest multi-commodity flow without intermediate node storage

and simple flow paths holds the same hardness. The contraflow problem is NP-complete

which is shown in [16] by using 3-SAT. It follows the NP-hardness of continuous-time

QMCCF problem with bounded cost. �

As continuous-time QMCF problem is NP-hard, an approximate solution to this prob-

lem is presented in [8] by using two approaches: a length-bounded approach and condensed

time-expanded network. We introduce the concept of partial contraflow in these two ap-

proaches and provide approximate algorithms to solve the Problem 3.1.

3.1. Length bounded flow: The multi-commodity path flow gi satisfying demands and

supplies di at terminals S ∪D is a T-length bounded flow if the flow on each path P ∈ Pi

can be decomposed into the sum of flows giP , i.e., gi =
∑

P∈Pi g
i
P with giP > 0 such that

the length τP =
∑

e∈P τe ≤ T . The set of all T -length bounded paths is denoted by

PT
i = {P ∈ Pi : τP ≤ T} ⊆ Pi. As T -length bounded static flow problem satisfying multi-

commodity demands is NP-hard, an approximate solution to this problem is presented

in [8] within polynomial-time complexity. As in [15], we present Algorithm 1 to calculate

approximate solution of continuous-time QMCCF problem.

Algorithm 1: Approximate Continuous-time QMCCF Algorithm

Input : Given multi-commodity flow network N = (V,E,K, b, τ, di, S,D, T )

Output: The continuous-time QMCCF

(1) The given network is transformed to auxiliary network by adding two-way

capacities as Na = (V,Ea,K, ba, τa, di, S,D, T ) as

bae = be + b←−e

τae :=

{
τe if e ∈ E
τ←−e otherwise.

(2) Compute the continuous-time QMCF on the transformed network Na by using

approximate length-bounded algorithm of [8] for quickest multi-commodity flow

problem with bounded cost on auxiliary network.

(3) Decompose the flow along the si − ti paths and cycles and remove the cycles ∀i.
(4) Reverse ←−e ∈ E up to the capacity ge − be iff ge > be, be replaced by 0 whenever

e /∈ E, ∀i, where ge =
∑k

i=1 g
i
e.

(5) For each e ∈ E, if ←−e is reversed, sc(
←−e ) = bae − ge and sc(e) = 0. If neither e nor ←−e

is reversed, sc(e) = ue − ge > 0, where sc(e) is the saved capacity of e.

(6) Transform the solution to the original network.
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First, we present Lemma 3.3 to recall the solution procedure of the QMCF problem

with bounded cost in Step 2 of Algorithm 1. Next for the correctness of Algorithm 1, we

prove Theorem 3.4.

Lemma 3.3. The T -length bounded approximate continuous-time QMCF with bounded cost

can be computed on an auxiliary network in polynomial-time complexity.

Proof: Consider an auxiliary network Na with predetermined time horizon T , bounded

cost C and precision ε > 0. Then, a static flow g is computed as gie = 1
T

∫ T
0 f ie(θ)dθ for all

e ∈ Ea and i ∈ K by averaging the feasible dynamic flow f on each arc. The feasibility of

g can be shown as follows.

• Capacity constraints:∑
i∈K

gie =
1

T

∫ T

0

(∑
i∈K

f ie(θ)

)
dθ ≤ 1

T

∫ T

0
baedθ = bae

• Flow conservation:∑
e∈E+(v)

gie −
∑

e∈E−(v)

gie

=
1

T

∫ T

0

 ∑
e∈E+(v)

f ie(θ)−
∑

e∈E−(v)

f ie(θ)

 dθ

= 0 ∀v ∈ V \ {si, ti} and i ∈ K

Furthermore, flow g satisfies the following three conditions: it is (i) (1+ε)T -length bounded,

(ii) satisfies a fraction 1
T of the supplies and demands and (iii) c(g) = c(f)

T . We iterate

the process until such flow exists. First condition follows from Dhamala et al. [5]. As

|gi| = 1
T

∫ T
0 |f

i(θ)|dθ ≥ 1
T di for all i, second condition is at hand and third condition is as

similar to second one.

Now, flow is send into each path P with flow rate giP by using T -length bounded path

decomposition of g. The flow is pushed for next T time units so that total flow will reach

at destination in at most 2T time. Thus, arbitrary feasible static flow g satisfying above

requirements can be turned into feasible dynamic flow f with time horizon 2T meeting the

same requirements as f .

By setting the cost ce = τe on static flow gie, we have∑
e∈Ea

τe g
i
e =

1

T

∑
e∈Ea

τe

(∫ T

0
f ie(θ)

)
dθ =

1

T
c(f i).

Due to T -length boundedness, flow can travel along the path with cost at most T and total

cost is bounded above by T |f i|. The temporally repeated flow with time horizon 2T can be

calculated as

2T |gi| −
∑
e∈Ea

τe g
i
e = 2|f i| − 1

T
c(f i) ≥ |f i| ≥ di, ∀i ∈ K,

where |gi| = |f i|
T . Thus, static flow gi satisfies the demand di for all i ∈ K within time 2T .



QUICKEST CONTINUOUS MULTI-COMMODITY CONTRAFLOW MODELS AND ALGORITHMS 39

By incorporating length boundedness into binary search, the optimal make-span T ∗

yields T ∗ ≤ T ≤ (1 + ε′/4)T ∗ for any ε′ > 0 to obtain T . Setting ε = ε′/4, we have dynamic

flow with make-span (2 + ε)T ≤ (2 + ε′)T ∗. �

Theorem 3.4. T -length bound approximate solution to the continuous-time QMCCF prob-

lem with bounded cost can be obtained by using Algorithm 1.

Proof: The theorem will be proved in two parts, in the first part we show the feasibility

and in the next part, we show the optimality of the algorithm. To show the feasibility of

Algorithm 1, it is enough to show that Step 4 is well defined because Step 1-3 are feasible.

By removing flow in cycles in Step 3, flow is either in direction e = (v, w) or in ←−e = (w, v)

but not in both directions. Hence, the flow obtained from Step 4 is feasible flow with arc

reversal in the network N. The capacity of unused arcs are saved in Step 5 by reversing only

necessary arcs in Step 4. Since the obtained flow obeys capacity constraint on each arc in

the auxiliary network, the algorithm is feasible. Now we show the optimality. Depending

on the feasibility, we conclude that an optimal solution to an approximate continuous-time

QMCCF problem with bounded cost on two-terminal network N is also a feasible solution to

the approximate continuous-time QMCF problem with bounded cost on the corresponding

auxiliary network Na.

The solution of maximum contraflow problem with single source-sink can be computed

in strongly polynomial-time complexity O(mn+n2m3 log n), [28]. By incorporating a para-

metric search of [4], a strongly polynomial-time bound for the quickest contraflow problem

can be found. This problem can be solved with partial lane reversals and saves unused lane

capacities in time O(nm2(log n)2), [27]. On the other hand, by separating the paths Pi

from si − ti for each commodity i ∈ K, the multi-commodity flow problem can be reduced

to a single commodity flow problem and can be solved as a single commodity flow problem.

An approximate QMCF solution can be obtained optimally on the auxiliary network Na by

using Lemma 3.3. Moreover, any optimal solution on Na is equivalent to a feasible solution

to given network N.

The unused capacities of the arcs are saved by using partial contraflow as described in

Step 5 of Algorithm 1. Thus, an approximate QMCCF with bounded cost on each arc of

the network N can be computed optimally. �

Corollary 3.5. An approximate solution of continuous-time QMCCF problem can be com-

puted by using T -length bound in polynomial-time complexity.

Proof: The complexity of Algorithm 1 is dominated by Steps 2 and 3. Step 3 is solved

in O(mn) time. According to [8], Step 2 is solved in polynomial-time. Since other remaining

steps can be solved in linear time O(m), the problem can be computed in polynomial-time

complexity. �

3.2. An FPTAS for the continuous-time QMCCF problem: Let us consider a multi-

terminal network N = (V,E,K, b, τ, di, S,D, T ), where all parameters are integers. By

rescaling the time by large time steps instead of the unit time step, a polynomial-time bound
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is obtained. For ∆ > 0, If all transit times on arcs are multiple of ∆, then the condensed

time-expanded network can be obtained by rescaling the time as N∆
T = (V ∆

T , E
∆
M ∪ E∆

H)

such that dT/∆e is bounded by a polynomial in the input size, where the sets of nodes and

arcs are defined by

V ∆
T = {vα∆ : v ∈ V, α = 0, 1, 2, ..., dT/∆e − 1}

E∆
M = {(vα∆, wα∆+τe) : e = (v, w) ∈ E, α = 0, 1, ..., d(T − τe)/∆e − 1}

E∆
H = {(vα∆, vα∆+1) : e = (v, w) ∈ E, α = 0, 1, ..., dT/∆e − 2}.

The copies of V ∆
T corresponds to V in time T = {α∆} for discrete-time and T =

[α∆, (α + 1)∆) for continuous-time, where α = {0, 1, 2, ..., dT/∆e − 1}. In this setting,

capacities are rescaled by ∆be. If T and τe are multiple of ∆ for all e ∈ E, then any

dynamic multi-commodity flow f in N that completes by time horizon T corresponds to

a static multi-commodity flow g of equal value and cost in N∆
T and vice-versa, [8]. The

∆-condense time-expanded network transforms into the classical time-expanded network

by taking ∆ = 1. If arc transit times are not multiple of ∆, then transit times are scaled

to multiple of ∆ by τ ′e = dτe/∆e∆, for all arcs e ∈ E with 0 ≤ τ ′e − τe < ∆.

We present Algorithm 2 as in [11] to solve Problem 3.1 by using ∆-condensed time-

expanded network. A ∆-condensed auxiliary network is constructed by scaling capacities

of arcs ∆ times the sum of capacities of arcs e and ←−e of the given network. Flows are

sent through the transformed ∆-condensed auxiliary network N∆a having transit time τ ′ae .

By using FPTAS-Core of [8] and the lane reversal technique of [27], we solve the QMCCF

problem.

Algorithm 2: FPTAS for continuous-time QMCCF problem

Input : Given multi-commodity flow network N = (V,E,K, b, τ, di, S,D, T )

Output: The continuous-time QMCCF

(1) The given network is transformed to auxiliary network by adding two-way

capacities as N∆a = (V,Ea,K, ba, τ ′a, di, S,D, T ) as

bae = ∆(be + b←−e )

τ ′ae :=

{
dτe/∆e∆ if e ∈ E
dτ←−e /∆e∆ otherwise.

(2) Compute the continuous-time QMCF on ∆-condensed auxiliary network by using

FPTAS Core of [8] for QMCF problem with bounded cost on auxiliary network.

(3) Decompose the flow along the si − ti paths and cycles and remove the cycles ∀i .

(4) Reverse ←−e ∈ E up to the capacity ge − be iff ge > be, be replaced by 0 whenever

e /∈ E, ∀i, where ge =
∑k

i=1 g
i
e.

(5) For each e ∈ E, if ←−e is reversed, sc(
←−e ) = bae − ge and sc(e) = 0. If neither e nor ←−e

is reversed, sc(e) = be − ge > 0, where sc(e) is the saved capacity of e.

(6) Transform the solution to the original network.
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Lemma 3.6. An FPTAS for continuous-time QMCF problem with bounded cost can be

computed on an auxiliary network in fully polynomial-time.

Proof: Let N be a single commodity network with demand d as input with tentative

time horizon T and precision ε > 0. To calculate bounds on optimal make-span T ∗, a

standard binary search framework is used, [8]. Based on lower and upper bound, an ap-

proximate T with T ∗ ≤ T ≤ (1 + O(ε))T ∗ is calculated. Assuming 0 ≤ τ ′e − τe ≤ ∆, and

choosing appropriate ∆ = ε2T/n with T ′ = d(1 + ε)3T/∆e∆, there exists a static flow g in

the ∆-condensed time-expanded network N∆
T ′ satisfying demand (1 + ε)d. A dynamic flow

f can be calculated in the network N with time horizon at most (1 + ε)T ′ satisfying the

demand d with the help of g.

The process to find a static flow g in ∆-condensed time-expanded network satisfying

demand (1 + ε)d at cost (1 + ε)C for the correctness of Step 2 of the algorithm is as follows.

As τ ′a and T ′ are multiple of ∆ and flow over time that completes by time T corresponds

to a static flow of equal cost in N∆
T ′ . So, it suffices to show that, there exists a flow over

time f̄ with time horizon T ′ satisfying demand (1 + ε)d at cost (1 + ε)C.

The storage of flow at intermediate nodes is not necessary for single-commodity flow

problems with the cost. So, any flow f ′ on arc e at time θ can be written in the path flow

form as

f ′e(θ) =
∑

P∈P:e∈P
f ′P (θ − τe(P )),(3.1)

where τe(P ) is the length of subpath obtained by removing arc e and its successors. This

flow is reduced to a smooth dynamic flow by

fsmP (θ) =
1

εT

∫ θ

θ−εT
f ′P (ζ)dζ(3.2)

for all θ ∈ [0, (1+ε)2T+εT ). This flow fsmP has a cost c(f sm) = c(f ′) ≤ (1+ε)2C and satisfies

demands (1+ε)2D. Since each path P ∈ P is simple, therefore 0 ≤ τ ′P−τP ≤ n∆ = ε2T , and

the flow is feasible for all θ ∈ [0, (1+ε)2T+εT+ε2T ). Furthermore, taking fsc = f sm/(1+ε),

flow fsc is required flow satisfying demand (1 + ε)d at cost (1 + ε)C and time at most T ′

which corresponds to the static flow g. Similarly, for a given flow g, we can compute a flow

over time f in N satisfying demand D cost bounded by C and time horizon bounded by

(1 + ε)T ′. Hence, from O(log 1
ε ) static min cost flow computations in N∆

T with O(n
2

ε2
) nodes

and O(mn
ε2

) arcs, an approximate solution of quickest flow problem with bounded cost can

be obtained. Now, the result is generalized to the case of multi-commodity flow. In this

case, a flow that contains non-simple paths can be reduced to a simple path by delaying for

some time σ using intermediate storage.

A path on network N having nodes (v0, v1, . . . , vq) ∈ P σ in the path based model is

a path P σ with delays σj , j = 1, 2, . . . , q. To store flow at node vj while moving forward

from node vj to node vj+1 on path P σ, amount of time required is particularized by delay

σj , j = 1, 2, ..., q. The dynamic flow fPσ is the decomposition of dynamic flow f on paths

with the delay P σ by
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fe(θ) =
∑

Pσ :e∈P
fPσ(θ − τe(P σ)),(3.3)

where, τe(P
σ) is the time with delays on path P σ to reach the arc e.

Finally, after smoothing and scaling the flow function with delay we get,

fsc+sm,iPσ (θ) =
1

(1 + ε)εT ′

∫ θ

θ−εT
f iPσ(ζ)dζ.(3.4)

We check whether N∆
T contains continuous-time QMCF satisfying all demands di having

bounded cost with intermediate node storage in each search step of the algorithm, and

update the value of T . By using constant factor approximation algorithm, the lower bound

can be computed in polynomial-time. Applying geometric mean binary search steps for

static multi-commodity flow computations with bounded cost having the same number of

nodes and arcs, the estimated T ′ can be found within O(log 1
ε ). �

Theorem 3.7. An FPTAS provides an approximate solution to the continuous-time QM-

CCF problem with bounded cost by using Algorithm 2.

Proof: The theorem will be proved if we can show the feasibility and optimality of

the Algorithm 2. Step 1 and Step 6 are feasible as shown in Theorem 3.4. The feasibility

of Step 2 is shown in Lemma 3.6 and the feasibility of Step 4 is assured by Step 3, which

cancels the positive flow on cycles, so flow is in only one direction. Step 5 saves the unused

condensed capacity of the arc obtained by Step 4. Thus, Algorithm 2 gives a feasible

solution.

An optimal solution on two-terminal network N to Problem 3.1 is also a feasible so-

lution to the approximate continuous-time QMCF on the corresponding auxiliary network

N∆a having the same bound on cost. By reducing dynamic multi-commodity flow to a

static flow problem on the time-expanded network, the solution is computed in pseudo-

polynomial time complexity, [30], whereas ∆-condensed time-expanded network provides

approximate polynomial-time bound. On auxiliary network N∆a, an approximate quickest

flow solution can be obtained optimally by Lemma 3.6. As in Theorem 3.4, we can reduce

multi-commodity flow problem to single-commodity and relation of flow over time to the

quickest flow problem. Moreover, any optimal solution on N∆a is equivalent to the feasible

solution to given network N. Thus, an approximate continuous-time QMCCF solution with

bounded cost can be computed optimally on given network N. �

Corollary 3.8. An approximate continuous-time QMCCF can be computed in fully polynomial-

time complexity.

Proof: Since all other Steps except Steps 2 and 3 are computed in linear time, so the

complexity of Algorithm 2 is dominated by Steps 2 and 3. Step 3 is solved in O(mn) time.

A (1 + ε) approximate solution of static multi-commodity flow problem with bounded cost

can be obtained by O(log 1
ε ) computation in a N∆

T , [8]. Since there are ( n
ε2

) layers with

nodes (n
2

ε2
) and arcs (mn

ε2
) in N∆

T , the problem can be computed in fully polynomial-time. �
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Example 3.9. Consider a two-way network represented in Figure (1)(a) having two com-

modities Commodity-1 and Commodity-2 which are to be transshipped from source-sink

pairs s1− t1 and s2− t2, respectively. Let the demands for Commodity-1 and Commodity-2

be d1 = 10 and d2 = 17 units, respectively. We calculate the quickest time without con-

traflow from Figure (1)(a) in which the quickest time to satisfy the demand of Commodity-1

is T = [7, 8) and that for Commodity-2 is T = [6, 7). So the quickest time to satisfy both

demands is T = 8. Similarly, the quickest time with contraflow (cf. Figure (1)(c)) for

Commodity-1 and Commodity-2 are T = [5, 6) and T = [6, 7) so that the minimum time

to satisfy both demands is T = 7. This shows that due to contraflow, time is improved by

12.5 percent.

When we use length-bounded approximation without contraflow (cf. Figure (1)(a)) for

Commodity-1, paths with 5-length bound are essential (because, if we take 4-length bounded

paths and push the flow up to next 4 time units, the demands will not be satisfied) and flow

is pushed for the next 4 time intervals (T = [0, 1), [1, 2), [2, 3) and [3, 4)) so that demand

will satisfy within time T = [8, 9). For Commodity-2, paths of 4-length bound are essential

and flow is pushed for the next 4 time intervals so that demand will satisfy within the time

interval [7,8). So minimum time to satisfy both demands without contraflow is T = 9.

Similarly, with contraflow configuration (cf. Figure (1)(c)), Commodity-1 needs 4-length

bounded paths and flow is pushed for 2-time intervals so that the quickest time is T = [5, 6).

For Commodity-2, paths of 4-length bound are essential and flow is pushed for next 4 time

intervals so that the quickest time is T = [7, 8). The minimum time to satisfy both demands

with contraflow is T = 8. Due to contraflow, 11.1 percent of the time is saved.

To solve the problem by using ∆-condensed network with ∆ = 2, we first present the

network for Commodity-1 with condensed capacity and transit time in Figure (2)(b) and

present condensed time-expanded network in Figure (2)(c). The process for Commodity-2

is similar.

Here, using ∆-condensed time-expanded network with ∆ = 2 with contraflow configu-

ration, quickest time to fulfill demand d1 is T = [6, 8) (cf. Figure 2(c)). Similarly, we can

calculate the quickest time for d2 which takes the time T = [8, 10) and the minimum time to

satisfy both demands is T = 10. We calculate flow in ∆-condensed time-extended network

without contraflow from Figure 1(a), the time T = [8, 10) and T = [10, 12) are required for

Commodity-1 and Commodity-2, respectively. So minimum time to satisfy both demands

is T = 12. It shows that due to contraflow configuration, the quickest time is improved by

16.66 percent.

We summarize the Example 3.9 from the following table.

4. Conclusion

In day to day life, transporting several commodities from one place to another is essen-

tial. One of the major problems in operations research is the minimization of time (cost)

for the transshipment of these commodities from the supply nodes to the demand nodes.

The quickest flow problem has been investigated to fulfill the demand in minimum possible
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3,1
x y

6, 1

t1

4, 1

6, 0
s1 v

(a) capacity, transit time

3, 3 2, 5

6,2
x y

12,2

t1

8,2

12,0
s1 v

(b) condensed capacity, transit time

6,4 4, 6

s1 v x

(c) condensed time-expanded network, taking ∆ = 2.

y t1
10, 12

6, 8
6, 6

4, 4

6, 6

12, 12

T = [0, 2)

T = [2, 4)

T = [4, 6)

T = [6, 8)

Figure 2. (a) Network for Commodity-1 after contraflow. (b) ∆-

condensed network with condensed capacity and transit times on the arcs.

(c) ∆-condensed time-expanded network with ∆ = 2 for Commodity-1.

Table 1. Quickest time with and without lane reversals

case without LR with LR %Change

Normal 8 7 12.5

Length bound 9 8 11.1

∆-condensed 12 10 16.6

LR = Lane Reversals

time. In case of a single-commodity, efficient algorithms to solve quickest flow problems are

presented by the different researchers but the multi-commodity flow problem is NP-hard.

Moreover, a polynomial-time approximation algorithm by length-bounded function and an

FPTAS-Core by using ∆-condensed time-expanded network have been obtained.

Partial contraflow strategy is an important approach to reduce the time horizon by

expanding the capacity of the lanes in which only necessary arc capacities are reversed

towards demand nodes. It saves the capacity of unused arcs that can be used for logistic

supports in emergency periods.
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In this research, we investigated the continuous-time quickest multi-commodity flow

problem with partial contraflow. We introduced its mathematical model and presented

two algorithms, one a polynomial-time approximation and another an FPTAS. As we have

investigated the problem with constant transit time, our further interest is to extend these

approaches for flow-dependent, time-dependent and load-dependent attributes.
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