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Abstract: The sequencing problem which minimizes the deviation between the actual (integral) and the

ideal (rational) cumulative production of a variety of models of a common base product is called the product

rate variation problem. If the objective is to minimize the maximum deviation, the problem is bottleneck

product rate variation problem and the problem with the objective of minimizing all the deviations is the

total product rate variation problem.

The problem has been widely studied with several pseudo-polynomial time exact algorithms and heuris-

tics. The lower bound of a feasible solution to the problem has been investigated to be tight. However, the

upper bound of a feasible solution had been established in the literature which could further be improved.

In this paper, we propose the improved upper bound for BPRVP and TPRVP.
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1. Introduction

The product rate variation problem has been developed when the manufacturing sys-

tems switched from mass production to mass customization in order to address customer’s

demand of a variety of products of a common base product at reasonable prices. The prob-

lem addresses sequencing of products in the assembly line, a part of a commonly known

Toyota production system [14, 15] in order to eliminate inventories and shortages. The chal-

lenge of this just-in-time approach is to prevent shortages while keeping the inventory at a

minimum level. Empirical observations have confirmed the positive effects of this approach

of mixed-model just-in-time (MMJIT) systems in manufacturing companies [7] and also

see [13]. The sequence planning is an important issue in mixed-model assembly lines and is

closely linked to the complexity of the system [19]. A group decision making approach has

been recently proposed in manufacturing systems, [18].

There exist two variants of the sequencing problem of MMJIT systems. One the bot-

tleneck product rate variation problem (BPRVP) with the objective of minimizing the

maximum deviation and the other the total product rate variation problem (TPRVP) with

the objective of minimizing all the deviations between the actual and the ideal cumulative
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productions [13]. Both variants of the problem have strong mathematical base with wide

real-world applications, see [3], a survey and therein.

The BPRVP is reduced into a perfect matching problem for a feasible solution and

a bisection search algorithm is used for its optimal solution. The solution procedure has

been improved with an improved upper bound and the necessary and sufficient condition

for the existence of a feasible solution [2]. The PRVP with the objective function other

than the absolute deviation has been solved in [4] and [8] by investigating the upper bounds

corresponding to the objective functions. The problem with different objective functions

yields solution in the same complexity O(DlogD), where D stands for the total demand of

all the models, of the problem with an absolute deviation objective [4, 8, 16]. An improved

upper bound to the BPRVP has been investigated in [10]. Moreover, the problem with

the asymmetric objective function that means different penalty for the inventory and for

the shortage has been established [9]. The penalty for tardiness is considered to be higher

than the penalty for earliness with the assumption that frequent and extensive shortages

are likely to threaten the trust of the customers in the ability of a company to deliver.

The TPRVP is also well studied with exact solution method which is firstly reduced

into an assignment problem and is solved in pseudo-polynomial time and also with some

heuristics [1, 4, 5, 6, 12, 13, 17]. The complexity of the exact solution method is D3, where

D is total demand of all copies. The lower and the upper bounds of the TPRVP have also

been established, [11]. However, the upper bound can further be improved.

The contribution proposed in this paper can be applied in developing production se-

quences in the assembly lines in which a variety of models of a common base product is

produced. The sequencing approach of production with the implementation of this investi-

gation is exact and based on some assumptions.

Let us consider total demand D of n, n ≥ 2, different models with di copies of model

i, i = 1, 2, . . . , n of a common base product. We assume equal processing time of each model

i, i = 1, 2, . . . , n, in total D equal time units which is called time horizon. A copy of a model

is produced in a time unit k means that the copy of the model is produced during the time

period from k− 1 to k,k = 1, 2, . . . , D. Consider ri = di
D to be the demand rate and xik and

kri, i = 1, 2, . . . , n; k = 1, 2, . . . , D, to be the actual and the ideal cumulative productions,

respectively, of model i produced during the time units 1 through k. Let us assume equal

cost for both inventory xik − kri > 0, and shortage kri − xik > 0. A non linear integer

programming formulation for the PRVP,[13, 16] is given below.

Minimize

Fm = maxik |xik − kri|m for BPRVP

Minimize

F̃m =
D∑

k=1

n∑
i=1

|xik − kri|m for TPRVP

subject to
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n∑
i=1

xik = k, k = 1, 2, . . . , D

xi(k−1) ≤ xik, i = 1, 2, . . . , n; k = 2, 3, . . . , D

xiD = di, xi0 = 0, i = 1, 2, . . . , n

xik ≥ 0, integer, i = 1, 2, . . . , n; k = 1, 2, . . . , D .

In this paper, we propose the improved upper bounds to the BPRVP and the TPRVP

both. The remainder of the paper is structured as follows. In Section 2, we discuss the level

curves, lower bound and improved upper bounds for both BPRVP and TPRVP as the main

contribution of the paper. The last section concludes the paper.

2. Bounds

Level curve

The actual cumulative production xik, i = 1, 2, . . . , n; k = 1, 2, . . . , D, a sequence-

dependent integer, has nD values with xik ∈ {j|j = 0, 1, 2, . . . , di; i = 1, 2, . . . , n}. However,

the ideal cumulative production kri, i = 1, 2, . . . , n; k = 1, 2, . . . , D, a sequence-independent

rational, is such that kri ∈ {diD , 2diD , . . . , di}, i = 1, . . . , n. Let j, j = 1, . . . , di, be the number

of copies of a model i, i = 1, 2, . . . , n, and (i, j) be the jth copy of model i, i = 1, 2, . . . , n.

There exist at most n + D different values of xik. Hence, one can replace xik by j with

j = 0, 1, . . . , di; i = 1, 2, . . . , n, in the level curve (see Fig. 1) of the objective value of the

function. The level curve for copy (i, j) of the objective function of the PRVP is defined as

fm
ij = |j − kri|m , i = 1, 2, . . . , n; j = 0, 1, . . . , di .

5 10 15 20
Time Horizon

10

20

30

40

Function Value

Figure 1. Level curves f2
ij for the instance (d1 = 4, d2 = 6, d3 = 10)

The horizontal line with the value B > 0 intersecting the level curve for each copy

(i, j), i = 1, 2, . . . , n; j = 1, 2, . . . , di,is called a bound for the problem.
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Lower bound

The importance of a lower bound LBm on the optimal value of function Fm for the

problem results from the fact that a feasible sequence s of an instance (d1, d2, . . . , dn) ob-

tained with an objective function value equal to the lower bound is optimal. However,

not all instances are even feasible at this value. The tight lower bound for BPRVP has

been investigated to be LBm = (1− rmax)m, see [4, 8]. It is note-worthy that a lower

bound on the absolute deviation objective function for the BPRVP has been established by

Steiner and Yeomans [16]. Likewise the lower bound for TPRVP has been investigated to

be LBm = nD (1− rmax)m , see [11].

Upper bound

An upper bound UBm, m being a positive integer, must satisfy the following two

inequalities which are the necessary and sufficient condition for the existence of a feasible

sequence for the BPRVP with the objective function Fm ,

n∑
i=1

(
⌊
k2ri + m

√
UBm

⌋
−
⌈
(k1 − 1)ri − m

√
UBm

⌉
) ≥ k2 − k1 + 1(2.1)

and

n∑
i=1

(
⌈
k2ri − m

√
UBm

⌉
−
⌊
(k1 − 1)ri + m

√
UBm

⌋
) ≤ k2 − k1 + 1(2.2)

with k1, k2 ∈ {1, . . . , D} , k1 ≤ k2, see Khadka [8]. If m = 1, the two inequalities become

the necessary and sufficient condition for the problem with the objective function F1, see

Brauner and Crama [2].

Initially the upper bound UB1 to the problem BPRVP has been investigated to be

UB1 = 1, [16] and later it has been improved to be UB1 = 1− 1
D for the problem with the

objective function F1, [2] and to be UBm = (1 − 1
D )m for the problem with the objective

function Fm, [8]. The upper bound UBm = (1 − 1
D )m can be improved to be UBm =

(1 − rmin)m, where rmin = dmin
D , in the case of an instance (d1, d2, . . . , dn) with dmin ≥ 1,

mini(di) = dmin, i = 1, 2, . . . , n.

Theorem 2.1. Let

UBm = (1− rmin)m , where rmin =
dmin

D
,min

i
(di) = dmin, i = 1, 2, . . . , n .

Then UBm is an upper bound on the largest value of the objective function Fm of a feasible

solution for BPRVP.

Proof. Let us consider a general instance (d1, d2, . . . , dn) with dmin ≥ 1, where mini(di) =

dmin, i = 1, 2, . . . , n. If UBm is an upper bound on the largest value of the objective function

Fm of a feasible solution for the BPRVP, then this bound UBm satisfies the inequality

|xik − kri|m ≤ UBm,(2.3)

for all i = 1, 2, . . . , n; k = 1, 2, . . . , D, for any feasible solution s ∈ X .
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We claim that the improved upper bound on the largest value of the objective function

Fm is

UBm =
(
1− rmin)m ,(2.4)

where

min
i

(ri) = rmin =
dmin

D
, i = 1, 2, . . . , n.

We need to show the proposed upper bound (2.4) satisfying the two inequalities (2.1)

and (2.2).

We can write⌊
kjri + m

√
UBm

⌋
= bkjri + 1− rminc .

=

⌊
kjri + 1− dmin

D

⌋
, i = 1, 2, . . . , n; j = 1, 2 .

If kjri is an integer,⌊
kjri + 1− dmin

D

⌋
= kjri, i = 1, 2, . . . , n; j = 1, 2 ,

and if kjri is not an integer,

kjri = bkjric+ (kjri)frac, i = 1, 2, . . . , n; j = 1, 2 ,

where (kjri)frac is the fractional part of kjri.

Since dmin
D ≤ (kjri)frac ≤ 1− dmin

D ,

bkjri + 1− rminc =

⌊
bkjric+ (kjri)frac + 1− dmin

D

⌋
≥ bkjric+ 1

> kjri, i = 1, 2, . . . , n; j = 1, 2 .

Therefore, ⌊
kjri + m

√
UBm

⌋
≥ kjri, i = 1, 2, . . . , n; j = 1, 2 .(2.5)

Likewise, ⌈
kjri − m

√
UBm

⌉
= dkjri − 1 + rmine .

=

⌈
kjri − 1 +

dmin

D

⌉
, i = 1, 2, . . . , n; j = 1, 2 .

If kjri is an integer,⌈
kjri − 1 +

dmin

D

⌉
= kjri, i = 1, 2, . . . , n; j = 1, 2,

and if kjri is not an integer,⌈
kjri − 1 +

dmin

D

⌉
=

⌈
bkjric+ (kjri)frac − 1 +

dmin

D

⌉
≤ dbkjrice

< kjri, i = 1, 2, . . . , n; j = 1, 2 .
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Therefore, ⌈
kjri − m

√
UBm

⌉
≤ kjri, i = 1, 2, . . . , n; j = 1, 2 .(2.6)

Hence, using the inequalities (2.5) and (2.6),

n∑
i=1

(
⌊
k2ri + m

√
UBm

⌋
−
⌈
(k1 − 1)ri − m

√
UBm

⌉
) ≥

n∑
i=1

k2ri −
n∑

i=1

(k1 − 1)ri

≥ k2 − k1 + 1 .

And,
n∑

i=1

(
⌈
k2ri − m

√
UBm

⌉
−
⌊
(k1 − 1)ri + m

√
UBm

⌋
) ≤

n∑
i=1

k2ri −
n∑

i=1

(k1 − 1)ri

≤ k2 − k1 + 1 .

This shows that

UBm = (1− rmin)m

satisfies the two inequalities (2.1) and (2.2) proving to be the upper bound of a feasible

solution for the BPRVP with the objective function

maxi,k |xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D .

�

In particular, for any instance (d1, d2, . . . , dn) with dmin = 1, the upper bound,

UBm = (1− rmin)m ,

is exactly the same as the upper bound established in [2] for the problem with the objective

function F1 and, in [8] for the objective function Fm, m being a positive integer.

The improved upper bound for TPRVP can be established to be

UBm = nD(1− rmin)m

, which has been proven below.

Theorem 2.2. Let

ŨBm = nD(1− rmin)m , rmin =
dmin

D
,min(di) = dmin, i = 1, 2, . . . , n.

Then ŨBm is an upper bound on the largest value of the objective function F̃m of a feasible

solution for TPRVP.

Proof. If ŨBm is an upper bound on the largest value of the objective function F̃m of a

feasible solution for TPRVP, then this bound ŨBm satisfies the inequality

D∑
k=1

n∑
i=1

|xik − kri|m ≤ ŨBm(2.7)

for any feasible solution x ∈ X .

It has been established that the improved upper bound is (1− rmin)m for BPRVP with

the objective function Fm.
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Now, we obtain

D∑
k=1

n∑
i=1

|xik − kri|m =
n∑

i=1

|xi1 − 1ri|m + · · ·+
n∑

i=1

|xiD −Dri|m

= |x11 − 1r1|m + · · ·+ |xn1 − 1rn|m + . . .

+ |x1D −Dr1|m + · · ·+ |xnD −Drn|m

≤ nD ·max
i,k
|xik − kri|m

≤ nD (1− rmin)m .

Hence, an upper bound ŨBm on the largest value of the objective function F̃m of a

feasible solution for TPRVP is given by

ŨBm = nD (1− rmin)m .

�

3. Concluding Remarks

We considered the product rate variation problem with the unimodular symmetric

objective function having zero at zero. It has two variants one the problem which is called

the bottleneck product rate variation problem with the objective Fm, m being a positive

integer, of minimizing its maximum deviation between the actual and the ideal cumulative

production of a variety of models of a common base product which has been solved with

an exact solution having its complexity DlogD, D being the total demand. The other

variant is known as total product rate variation problem with the objective function F̃m

of minimizing all the deviations instead of its maximum deviation. This problem has been

solved with many heuristics and an exact solution with complexity D3, [12].

A lower bound 1 − rmax of a feasible solution of BPRVP with the objective function

F1, [16], and (1− rmax)m for the objective function Fm, m being a positive integer, [8], and

an upper bound 1− 1
D for the objective function F1, [2], and (1− 1

D )m, [8], for the objective

function Fm of a feasible solution for the BPRVP have been established.

Likewise, a lower bound and an upper bound of a feasible solution of TPRVP nD(1−
rmax)m and nD

(
1− 1

D

)m
, m being a positive integer investigated in [11].

In this paper, we have proposed improved upper bounds to be (1− rmin)m and nD(1−
rmin)m for BPRVP and TPRVP, respectively. Implementation of the improved upper

bounds while applying the exisitng algorithms to find optimal solution would be interesting

in the future work.
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