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Abstract: In this paper, we determine that every n-tupled generalized Cesàro matrices (C,α1, α2, ..., αn;

δ) ∈ B(Ank ; δ) for k ≥ 1, δ ≥ 0 and α1, α2, ..., αn > −1, need not be absolute kth power conservative since

the Cesàro matrices of order α for α > −1 are not conservative matrices, where for some given k ≥ 1 and

δ ≥ 0, if T ∈ B(Ak, δ); i.e., if
{
s0, s1, ...sn

}
satisfying

(0.1)

∞∑
n=1

nδk+k−1|sn − sn−1|k <∞,

implies
∞∑
n=1

nδk+k−1|tn − tn−1|k <∞.

Then, T is said to be absolutely kth power conservative.

Key Words: Absolute Summability, n-tupled sequence space, Bounded Operators, Absolute kth power

conservative.
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1. Introduction

Let
∞∑
n=0

an be a given infinite series such that

(1.1) sk = a0 + a1 + a2 + ...+ ak =
k∑
l=0

al,

where sk denotes the kth partial sum of the series
∞∑
n=0

an and
{
sn
}

define the sequence of

partial sums. Then the nth term of sequence-to-sequence transformation of
{
sn
}

is defined

by

(1.2) tn =

∞∑
k=0

tnksk =

∞∑
k=0

tn,n−ksn−k.

The sequence
{
tn
}

of the matrix means of the sequence
{
sn
}

is generated by the sequence of

the coefficients
{
tnk
}

. A sequence of the partial sums
{
sn
}

=
{
s0, s1, ..., sn

}
is of bounded
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variation if the series |s1 − s0|+ |s2 − s1|+ ...+ |sn − sn−1| converges or

(1.3)
∑
n

|∆sn| <∞.

The infinite series
∞∑
n=0

an with the sequence of the partial sum
{
sn
}

is absolute summable

by the method A (A-summable) to the limit s if it is A-summable to s, i.e. if limn→∞tn = s

and if the sequence
{
tn
}

is of bounded variation:

(1.4)
∑
n

| tn − tn−1| <∞.

Let nth term of transform for the sequence
{
sn
}

with Cesàro matrix is tαn. The infinite

series
∞∑
n=0

an is absolutely |A|k-summable of degree k ≥ 1, if
∞∑
n=1

nk−1|tn− tn−1|k converges.

If this is the case, we can write
∞∑
n=0

an ∈ |A|k.

Das [2] defines the absolute conservation by transforming the sequence
{
sn
}

into
{
tn
}

. Let

T represents sequence-to-sequence transformation. If, whenever
{
sn
}

converges absolutely,{
tn
}

converges absolutely, then T is called absolutely conservative. If the absolute conver-

gence of
{
sn
}

implies absolute convergence of
{
tn
}

to the same limit, T is called absolutely

regular. If T ∈ B(Ank) for some k ≥ 1; i.e., if
{
s0, s1, ...sn

}
satisfying

(1.5)
∞∑
n=1

nk−1|sn − sn−1|k <∞,

implies

(1.6)

∞∑
n=1

nk−1|tn − tn−1|k <∞.

Then, T is called absolutely kth power conservative. Note that when k > 1, (1.6) does not

necessarily imply the convergence of
{
sn
}

. There exists a sequence space Ak which is given

by

(1.7) Ak =

{{
sn
}

:
∞∑
n=1

nk−1|an|k <∞, an = sn − sn−1

}
.

If α = 0 in the inclusion statement involving (C,α) and (C, β), then we obtain the fact that

(C, β) ∈ B(Ak) for each β > 0, where B(Ak) denotes the algebra of all matrices that map

Ak to Ak.
For some given k ≥ 1 and δ ≥ 0, if T ∈ B(Ak, δ); i.e., if

{
s0, s1, ...sn

}
satisfying

(1.8)
∞∑
n=1

nδk+k−1|sn − sn−1|k <∞,

implies
∞∑
n=1

nδk+k−1|tn − tn−1|k <∞.

Then, T is said to be absolutely kth power conservative for the sequence space (Ak, δ) which

is given by
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(1.9) (Ak, δ) =

{{
sn
}

:

∞∑
n=1

nδk+k−1|an|k <∞, an = sn − sn−1

}

Many research articles [13]-[20] devoted to the study of summability of infinite series due

to its wide range of applications. Various investigations have been done to determine the

most important results on absolute summability factor of infinite series by using different

summability methods. The absolute summability (C,α), or |C,α| of a series was defined

by Fekete [4], for the case where α is an integer, and in the general case by Kogbetliantz

[6]. Whittaker [12] defined the absolute summability (A) or summability |A| and was the

first to investigate the summability |A| of a Fourier series. In 1957, Flett [5] obtained an

extension of summability |C| and defined absolute summability. Mazhar [7] gave the neces-

sary and sufficient conditions for the infinite series
∞∑
n=0

an to be |N̄ , pn| summable whenever

it is |C,α|k (α ≥ 0, k ≥ 1) summable. Dikshit [3] also has been given a general theorem

on absolute summability factors for Cesàro summability of infinite series and rectified the

deficiencies of the proof. Bor [1] gave a theorem dealing with |N̄ , pn| summability factors

taking an almost increasing sequence of the infinite series and provide the application of

the almost increasing sequences of infinite series. After this Sulaiman [11] gave the appli-

cations and generalization of the result of Bor [1]. The absolute Cesàro summability, the

absolute generalized Cesàro summability, the absolute Nölund summability, the absolute

Riesz summability, the absolute Euler summability etc. have been become a topic of great

interest since last two decades. In 2009, Savaş et al.[10] used the concept of absolute conser-

vation for Cesàro means which is generalization of the Das [2]. Savaş et al. [10] have proved

the theorems which give sufficient conditions of infinite series using the absolute summa-

bility factors. After reviewing several articles, we have dealt with absolute summability of

an infinite series and obtained some general results included the minimal set of sufficient

condition for n-tupled Triangle matrices T ∈ B(Ank).

2. Known results

In 2007, Savaş et al. proved that a Cesàro matrix of order α > −1 is a bounded

operator on Ak and in 2009, established a minimal set of sufficient conditions for a triangle

T ∈ B(Ak) as follows:

Theorem 2.1. (C,α) ∈ B(Ak) for each α > −1.

3. Main results

Let T be the infinite matrix for the series
∞∑

N1=1

∞∑
N2=1

...
∞∑

Nn=1

aN1,N2,...,Nn and

∆11...n timest
i1,i2,...,in
N1,N2,...,Nn
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= ti1,i2,...,inN1−1,N2−1,...,Nn−1 − {t
i1,i2,...,in
N1,N2−1,...,Nn−1 + ...+ ti1,i2,...,inN1−1,N2−1,...,Nn}

+ {ti1,i2,...,inN1,N2,N3−1,...,Nn−1 + ti1,i2,...,inN1,N2−1,N3,N4−1,...,Nn−1 + ...}

− {ti1,i2,...,inN1,N2,N3,N4−1...,Nn−1 + ti1,i2,...,inN1−1,N2,N3,N4,N5−1,...,Nn−1 + ...}

+ ...+ (−1)n ti1,i2,...,inN1,N2,...,Nn
(3.1)

There exists two infinite matrices T̄ and T̂ with T as follows:

t̄i1,i2,...,inN1,N2,...,Nn
=

N1∑
µ1=i1

N2∑
µ2=i2

...

Nn∑
µn=in

tµ1,µ2,...,µnN1,N2,...,Nn
(3.2)

and

t̂i1,i2,...,inN1−1,N2−1,...,Nn−1 = 411...n timest̄
i1,i2,...,in
N1−1,N2−1,...,Nn−1(3.3)

N1, N2, ..., Nn, i1, i2, ..., in = 0, 1, 2, ...

In the present paper, we generalize theorem 2.1 for n-tupled triangle matrices. Now, we

shall prove the following:

Theorem 3.1. (C,α1, α2, ..., αn; δ) ∈ B(Ank ; δ) for each α1, α2, ..., αn > −1, k ≥ 1 and

δ ≥ 0.

4. Proof of the Theorem

Let σα1,α2,...,αn
N1,N2,...,Nn

denotes the N1N2...Nn term of the (C,α1, α2, ..., αn) transform for the order

(α1, α2, ..., αn) in the sequence sN1N2...Nn ; that is,

(4.1) σα1,α2,...,αn
N1,N2,...,Nn

=
1

Eα1
N1
Eα2
N2
...EαnNn

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−insi1i2...in)

We shall show that (σα1,α2,...,αn
N1,N2,...,Nn

) ∈ (Ank , δ); i.e.,

∞∑
N1=1

∞∑
N2=1

...
∞∑

Nn=1

(N1, N2...Nn)δk+k−1
∣∣∣σα1,α2,...,αn
N1,N2,...,Nn

− σα1,α2,...,αn
N1−1,N2−1,...,Nn−1

∣∣∣k <∞,(4.2)

Let tα1,α2,...,αn
N1,N2,...,Nn

denote the N1N2...Nn term of the (C,α1, α2, ..., αn) transform in term of

N1N2...NnaN1N2...Nn ; that is,

tα1,α2,...,αn
N1,N2,...,Nn

=
1

Eα1
N1
Eα2
N2
...EαnNn

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in×

× (i1i2...inai1i2...in)(4.3)

For α1, α2, ...αn > −1,

Since

tα1,α2,...,αn
N1,N2,...,Nn

= N1N2...Nn

[
σα1,α2,...,αn
N1,N2,...,Nn

− (σα1,α2,...,αn
N1−1,N2,...,Nn

+ σα1,α2,...,αn
N1,N2−1,...,Nn

+ ...+ σα1,α2,...,αn
N1,N2,...,Nn−1)

+ (σα1,α2,...,αn
N1−1,N2−1,N3,...,Nn

+ σα1,α2,...,αn
N1−1,N2,N3−1,N4,...,Nn

+ σα1,α2,...,αn
N1−1,N2,N3,...,Nn−1)− ...+ (−1)nσα1,α2,...,αn

N1−1,N2−1,...,Nn−1

]
,(4.4)
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then condition (4.2) can also be written as,

∞∑
N1=1

∞∑
N2=1

...

∞∑
Nn=1

(N1, N2...Nn)δk−1
∣∣∣tα1,α2,...,αn
N1,N2,...,Nn

∣∣∣k <∞.(4.5)

Using Holder’s inequality, we have
∞∑

N1=1

∞∑
N2=1

...
∞∑

Nn=1

(N1, N2...Nn)δk−1
∣∣∣tα1,α2,...,αn
N1,N2,...,Nn

∣∣∣k

=
∞∑

N1=1

∞∑
N2=1

...
∞∑

Nn=1

(N1, N2...Nn)δk−1

∣∣∣∣∣ 1

Eα1
N1
Eα2
N2
...EαnNn

×

×
N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in(i1i2...inai1i2...in)

∣∣∣∣∣
k

≤
∞∑

N1=1

∞∑
N2=1

...

∞∑
Nn=1

(N1, N2...Nn)δk−1

Eα1
N1
Eα2
N2
...EαnNn

×

×
N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in(i1i2...in)k|ai1i2...in |k×

×

{
1

Eα1
N1
Eα2
N2
...EαnNn

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in

}k−1
(4.6)

By using,

1

Eα1
N1
Eα2
N2
...EαnNn

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in = 1,

we have
∞∑

N1=1

∞∑
N2=1

...

∞∑
Nn=1

(N1, N2...Nn)δk−1|tα1,α2,...,αn
N1,N2,...,Nn

|k

≤
∞∑

N1=1

∞∑
N2=1

...
∞∑

Nn=1

(N1, N2...Nn)δk−1

Eα1
N1
Eα2
N2
...EαnNn

×

×
N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in(i1i2...in)k|ai1i2...in |k

≤
∞∑
i1=1

∞∑
i2=1

...
∞∑
in=1

(i1i2...in)k|ai1i2...in |k×

×
∞∑

N1=i1

∞∑
N2=i2

...
∞∑

N1=in

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in

(N1, N2...Nn)1−δkEα1
N1
Eα2
N2
...EαnNn

= O(1)

∞∑
i1=1

∞∑
i2=1

...

∞∑
in=1

(i1i2...in)δk+k|ai1i2...in |k×

×
∞∑

N1=i1

∞∑
N2=i2

...

∞∑
N1=in

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in

N1N2...NnE
α1
N1
Eα2
N2
...EαnNn

(4.7)
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For α1, α2, ..., αn > −1 and N1, N2, ..., Nn ≥ 1,

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in

N1, N2...NnE
α1
N1
Eα2
N2
...EαnNn

=
∞∑

N1=i1

Eα1−1
N1−i1

N1E
α1
N1

∞∑
N2=i2

Eα2−1
N2−i2

N2E
α2
N2

...
∞∑

Nn=in

Eαn−1Nn−in
NnE

αn
Nn

(4.8)

We obtain

∞∑
Nn=in

Eαn−1Nn−in
NnE

αn
Nn

=

∞∑
rn=0

Eαn−1rn

(in + rn)Eαnin+rn
=

∞∑
rn=0

Eαn−1rn B(in + rn, αn + 1)

=
∞∑

rn=0

Eαn−1rn

1∫
0

(1− x)αxin+rn−1dx =

1∫
0

(1− x)αxin−1
(
Eαn−1rn xrn

)
dx

=

1∫
0

xin−1dx =
1

in
(4.9)

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

Eα1−1
N1−i1E

α2−1
N2−i2 ...E

αn−1
Nn−in

N1, N2...NnE
α1
N1
Eα2
N2
...EαnNn

=
1

in

∞∑
N1=i1

Eα1−1
N1−i1

N1E
α1
N1

∞∑
N2=i2

Eα2−1
N2−i2

N2E
α2
N2

...

∞∑
Nn−1=in−1

E
αn−1−1
Nn−1−in−1

Nn−1E
αn−1

Nn−1

=
1

i1i2...in
= (i1i2...in)−1(4.10)

Thus,

∞∑
N1=1

∞∑
N2=1

...

∞∑
Nn=1

(N1, N2...Nn)δk−1|tα1,α2,...,αn
N1,N2,...,Nn

|k

= O(1)

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

(i1i2...in)δk+k |ai1i2...in |k
1

i1i2...in

= O(1)

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

(i1i2...in)δk+k−1 |ai1i2...in |k = O(1),

(4.11)

since sn ∈ (Ank , δ). Hence proof of the theorem is complete.
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5. Corollaries

Corollary 5.1. (C, 1, 1, ... n times; δ) ∈ B(Ank ; δ), with the condition

tN1,N2,...,Nn = (N1N2...Nn)δk−1
N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

si1,i2,...,in

= (C, 1, 1, ..., n times; δ)(sN1N2...Nn).

Corollary 5.2. (C, 1, 1, ... n times) ∈ B(Ank), with the condition

tN1,N2,...,Nn =
1

N1N2...Nn

N1∑
i1=1

N2∑
i2=1

...

Nn∑
in=1

si1,i2,...,in

= (C, 1, 1, ..., n times)(sN1N2...Nn).

Corollary 5.3. (C,α, 1, ...(n− 1) times) ∈ B(Ank) with the condition

∞∑
N1=1

∞∑
N2=1

...

∞∑
Nn=1

(N1)
k−α−1(N2N3...Nn)k−1 |aN1N2...Nn |

k = O(1).

Corollary 5.4. [9]. (C,α) ∈ B(Ak) with the condition
∞∑
n=1

nk−1|an|k = O(1).

6. Conclusion

The goal of this research is a theorem on Cesàro matrix of order α1, α2, ..., αn > −1.

Based on the derivation, it can be concluded that our result is a generalized which can be

reduced for several well known summabilities. Our theorem is validated by corollary 5.4,

which is a result of Savaş and Şevli [9].
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