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1. Introduction

In the paper [12], we compared some basic structure and properties of Fatou, Julia, and

escaping sets in classical holomorphic dynamics and holomorphic semigroup dynamics. We

found that most of the properties in classical cases were preserved and generalized in case of

semigroups. However, there are few results in classical cases, which were not preserved and

generalized in case of semigroups. For example, an escaping set in holomorphic semigroup

dynamics may be empty but it is non-empty in classical case, and Julia set may not be

the whole complex plane or the Riemann sphere when it has interior points. For an entire

semigroup S, V − f(U), where V be a Fatou component containing f(U) for some f ∈ S
may be unbounded but in classical case, V − f(U) contains at most one point, and hence

bounded if f is an entire function. In this paper, we continue our study of comparing

properties and structure of these sets in both classical and semigroup cases. Basically, we

concentrate more on the invariant features of these sets.

Dynamical study of holomorphic semigroups were first studied by Hinkannen and Mar-

tin [4] in the case of rational semigroups, and by Poon [9] in the case of transcendental

semigroups. We follow their concepts and definitions as usual. In this paper, we set up
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these concepts and definitions as follows. Let A be a set of holomorphic functions on C (or

on C∞ or on certain subsets thereof). Then we can construct a semigroup S consisting of

all elements that can be expressed as a finite composition of the elements in A. We call

such a semigroup S is a holomorphic semigroup generated by the set A. For simplicity, we

denote the class of all rational functions on C∞ by R and the class of all entire functions

(polynomials and transcendental entire) on C by E . Let F = {fα}α∈∆ ⊆ R or E . The

holomorphic semigroup generated by F is denoted by

S = 〈fα〉.

The index set ∆ is allowed to be infinite in general unless otherwise stated. It is easy to see

that S is a collection of holomorphic functions, and is closed under functional compositions.

That is,

f = fα1 ◦ fα2 ◦ fα3 ◦ · · · ◦ fαm
for every f ∈ S, where αi ∈ {α : α ∈ ∆}. S is called a rational semigroup or an entire

semigroup depending on whether F ⊆ R or F ⊆ E . In particular, if F = 〈fα〉α∈∆ is a

collection of transcendental entire functions, then S is said to be a transcendental semigroup.

The holomorphic semigroup S is abelian if

fα ◦ fβ = fβ ◦ fα

for all α and β such that α, β ∈ ∆. A semigroup generated by finitely many holomorphic

functions fi, (i = 1, 2, . . . , n) is called finitely generated holomorphic semigroup, and we

write

S = 〈f1, f2, . . . , fn〉.

If S is generated by only one holomorphic function f , then S is called a cyclic semigroup,

and we write

S = 〈f〉.

In this case, each g ∈ S can be written as g = fn, where fn is the nth iterates of f with

itself. It is clear that S = 〈f〉 is a trivial semigroup. The following are some algebraically

sound subsets of a holomorphic semigroup.

Definition 1.1 (Subsemigroup, left ideal, right ideal and ideal). A non-empty subset

T of a holomorphic semigroup S is called a subsemigroup of S if f ◦ g ∈ T for all f, g ∈ T .

A non-empty subset I of S is called a left (or right) ideal of S if f ◦ g ∈ I (or g ◦ f ∈ I) for

all f ∈ S and g ∈ I. I is called an ideal of S if it is both left and right ideal of S.

Every (left or right) ideal is a subsemigroup but converse may not hold. The left

ideal (right ideal and an ideal) of a semigroup S can be constructed easily as shown in the

following assertion.

Proposition 1.1. Let S be a holomorphic semigroup. For any f ∈ S, the set S ◦ f =

{g ◦ f : g ∈ S} is a left ideal of S, the set f ◦ S = {f ◦ g : g ∈ S} is an right ideal of S and

the set S ◦ f ◦ S = {h ◦ f ◦ g : h, g ∈ S} is an ideal of S. For any left ideal S ◦ f , there is

h ∈ S such that (g ◦ f)n = h ◦ f for all n ∈ N, and for an ideal S ◦ f ◦ S, there are some

p, q ∈ S such that (h ◦ f ◦ g)n = p ◦ f ◦ q for all n ∈ N.
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2. Fatou, Julia, and Escaping sets

Definitions of the Fatou, Julia, and escaping sets of classical holomorphic dynamics can

be naturally extended in the settings of holomorphic semigroups. Note that a holomorphic

semigroup S forms a normal family in a domain D if every sequence (fα) ⊆ S has a

subsequence (fαk) which is uniformly convergent or divergent on all compact subsets of D.

If there is a neighborhood U of a point z ∈ C such that S is a normal family in U , then we

say that S is normal at z. We say that a function f ∈ S is iteratively divergent at z ∈ C
if fn(z) → ∞ as n → ∞. A semigroup S is iteratively divergent at z if every f ∈ S is

iteratively divergent at z. A semigroup S is said to be iteratively bounded at z if there is

an element f ∈ S which is not iteratively divergent at z.

Definition 2.1 (Fatou, Julia, and escaping sets). Fatou set of the holomorphic semi-

group S is defined by

F (S) = {z ∈ C : S is normal at z}

and the Julia set J(S) of S is the compliment of F (S). The escaping set of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}

We call each point of the set I(S) by an escaping point.

If S = 〈f〉, then the Fatou, Julia, and escaping sets are respectively denoted by

F (f), J(f) and I(f). It is obvious that F (S) is the largest open subset of C (or C∞) on

which S is normal. And its complement J(S) is a closed set for any holomorphic semigroup

S. Any maximally connected subset U of the Fatou set F (S) is called a Fatou component.

In [12], we prove the following two assertions as Theorems 3.1, and 3.2, which are

immediate from Definition 2.1.

Theorem 2.1. Let S be a holomorphic semigroup, and let z ∈ C is an escaping point under

S. Then every sequence (gk)k∈N in S is iteratively divergent at z.

Theorem 2.2. Let z ∈ C is an escaping point of a holomorphic semigroup S. Then every

non-convergent sequence in S has a subsequence which diverges to ∞ at z.

Note that Theorem 2.2 can be taken as an alternative definition of an escaping set, and

it is also appeared in [13, Lemma 3.3].

3. Invariant features of Fatou, Julia, and escaping sets

The fundamental contrasts between classical holomorphic dynamics and holomorphic

semigroup dynamics are appeared as different algebraic structure of corresponding semi-

groups. In fact, non-trivial holomorphic semigroups may not be abelian. However, a trivial

semigroup is cyclic, and therefore, abelian. Note that the classical holomorphic dynamics

is a dynamical study of a trivial semigroups, whereas the holomorphic semigroup dynamics

is a dynamical study of a non-trivial holomorphic semigroups. The main contrast between

classical complex dynamics and semigroup dynamics will appear in the invariant features of
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the Fatou, Julia, and escaping sets. Note that invariant feature is considered a very basic

and fundamental structure of these sets.

Definition 3.1 (Forward, backward and completely invariant set). Let S be a

holomorphic semigroup. A set U ⊂ C is said to be S-forward invariant if f(U) ⊂ U for

all f ∈ S. It is said to be S-backward invariant if f−1(U) = {z ∈ C : f(z) ∈ U} ⊂ U

for all f ∈ S, and is called S-completely invariant if it is both S-forward and S-backward

invariant.

Proposition 3.1. Let S be a holomorphic semigroup. Then the Fatou set F (S) is S-forward

invariant whereas the Julia set J(S) is S-backward invariant.

This Proposition 3.1 was proved by Hinkkanen and Martin [4, Theorem 2.1] if S is a

rational semigroup, and it was proved by Poon [9, Theorem 2.1] if S is a transcendental

semigroup.

Kumar and Kumar [7, Theorem 4.1] proved the following result that shows escaping set

I(S) is also a S-forward invariant. Here, we provide another proof based on our Definition

2.1 of escaping set.

Theorem 3.1. The escaping set I(S) of a transcendental semigroup S is S-forward invari-

ant.

Proof. Let z ∈ I(S). Then by Definition 2.1, semigroup S is iteratively divergent at z, and

for all g ∈ S, the subsemigroup S ◦ g = {f ◦ g : f ∈ S} is also iteratively divergent at z.

That is, (f ◦ g)n(z) → ∞ as n → ∞ for all f ∈ S. By Proposition 1.1, for all n ∈ N, we

have

(f ◦ g)n = hni ◦ g

for some hni ∈ S where ni depends on n. Therefore, (f ◦ g)n(z) → ∞ as n → ∞ ⇒
(hni ◦ g)(z) → ∞. Then by Theorem 2.2, there exists a subsequence (hnij ◦ g)nij∈N of the

sequence ((hni ◦ g) such that (hnij ◦ g)(z) = hnij (g(z))→∞ as nij →∞. This proves that

S diverges at g(z), so g(z) ∈ I(S) for all g ∈ S. Hence I(S) is a S-forward invariant. �

The following example of Hinkkanen and Martin [4, Example 1] shows that the Fatou

set F (S) need not be a S-backward invariant, and the Julia set J(S) too need not be a

S-forward invariant.

Example 3.1. For a rational semigroup S = 〈z2, z2/a〉, where a ∈ C, |a| > 1, the Fatou set

F (S) = {z : |z| < 1 or |z| > |a|}

is not a S-backward invariant and also Julia set

J(S) = {z : 1 ≤ |z| ≤ |a|}

too is not a S-forward invariant.
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Fatou [2] and Julia [5] independently proved that the Fatou and Julia sets of a rational

function are completely invariant. Note that all the three sets F (f), J(f) and I(f) of a

transcendental entire function are also completely invariant. This is a fundamental contrast

between classical holomorphic dynamics and the holomorphic semigroup dynamics.

We prove, under certain conditions, the Fatou set of a holomorphic semigroup is S-

backward invariant, whereas the Julia set is S-forward invariant.

Theorem 3.2. Let S be an abelian holomorphic semigroup. Then the Fatou set F (S) is

S-backward invariant, and the Julia set J(S) is S-forward invariant.

Proof. We prove that if g(z) ∈ F (S), then z ∈ F (S) for all g ∈ S. This follows that

g−1(F (S)) ⊂ F (S) for all g ∈ S. Suppose g(z) ∈ F (S). Let U be a neighborhood of g(z)

such that U ⊂ F (S). Then there is a subsequence (fnj ) such that fnj (g(z)) → f(g(z))

uniformly on U , where f is a holomorphic function or constant ∞. Since S is abelian, so

we have g(fnj (z)) → g(f(z)) uniformly on U . This shows that g ◦ fnj → g ◦ f uniformly

on U . This proves that z ∈ F (S) for all g ∈ S. �

From Theorems 3.1 and 3.2, we can say that the Fatou set F (S) and the Julia set J(S)

are S-completely invariant if S is an abelian holomorphic semigroup. The following example

of Hinkkanen and Martin [4, Example 2] is based on Theorem 3.2.

Example 3.2. The semigroup S = 〈Tn(z) : n = 0, 1, 2, . . .〉 generated by Tchebyshev

polynomials Tn(z) defined by T0(z) = 1, T1(z) = z and Tn+1(z) = 2zTn(z) − Tn−1(z) is

abelian. Therefore, by Theorem 3.2, Fatou set F (S) is S-forward invariant and Julia set

J(S) is S-backward invariant.

Kumar and Kumar [8, Theorem 2.1] proved the following assertion for backward in-

variance of I(S). Here, we give another proof based on Definition 2.1 of an escaping set.

Theorem 3.3. The escaping set I(S) of a transcendental semigroup S is S-backward in-

variant if S is an abelian transcendental semigroup.

Proof. We prove that if g(z) ∈ I(S), then z ∈ I(S) for all g ∈ S. This follows that

g−1(I(S)) ⊂ I(S) for all g ∈ S. This will be proved if we are able to prove its contrapositive

statement: if z /∈ I(S), then g(z) /∈ I(S) for all g ∈ S. Let z /∈ I(S). Then there is some

f ∈ S which is iteratively bounded at z. That is, fn(z) 9 ∞ as n → ∞. In this case,

there exists a sequence (fk)k∈N in S containing f which is iteratively bounded at z, and all

subsequences of this sequence containing f are also iteratively bounded at z. Now, for any

g ∈ S, (fk ◦ g)k∈N is a sequence in S. Since S is abelian and g is a transcendental entire

function, so by the continuity of g at z ∈ C, we can write that

(3.1) (fk ◦ g)(z) = (g ◦ fk)(z)

for all k ∈ N. From which it follows that the sequence (fk ◦ g)k∈N is iteratively bounded at

z. Therefore, all subsequences of this sequences are iteratively bounded at z. From 3.1, we

can say that all subsequences of the sequence (fk ◦ g)k∈N are iteratively bounded at g(z).
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That is, g(z) /∈ I(S) for all g ∈ S. Therefore, g−1(I(S)) ⊂ I(S) for all g ∈ S. This proves

that I(S) is a S-backward invariant. �

From the above results (Theorems 3.1 and 3.3), we can conclude that the sets F (S),

J(S), and I(S) are S-completely invariant if S is an abelian transcendental semigroup. For

example, the following semigroups

(1) 〈z + γ sin z, z + γ sin z + 2kπ〉,
(2) 〈z + γ sin z, −z − γ sin z + 2kπ〉,
(3) 〈z + γez, z + γez + 2kπi〉,
(4) 〈z − sin z, z − sin z + 2π〉,
(5) 〈eγz, eγz+

2πi
γ 〉, where 0 < γ < e−1,

are all abelian transcendental semigroups, so their Fatou, Julia, and escaping sets are all

S-completely invariant.

Theorems 3.2 and 3.3 give a kind of connection between classical holomorphic dynamics

and holomorphic semigroup dynamics. We got a completely invariant structure of the Fatou,

Julia, and escaping sets in both classical holomorphic dynamics and semigroup dynamics

because of their associated abelian semigroups. This was our expectation that an abelian

semigroup (rational and transcendental) must exhibit similar dynamical features just like

the classical holomorphic dynamics. Note that it can not be concluded that the Fatou,

Julia, and escaping sets can not be completely invariant unless the semigroup is abelian.

If S is a finitely generated rational semigroup, then Sumi [14, Lemma 1.1.4 (2)] proved

the following result.

Proposition 3.2. If S = 〈f1, f2, . . . , fn〉 is a finitely generated rational semigroup, then

F (S) =
⋂n
i=1 f

−1
i (F (S)), and J(S) =

⋃n
i=1 f

−1
i (J(S)).

In the case of finitely generated transcendental semigroup, we prove following result

which is an analogous to Proposition 3.2.

Theorem 3.4. If S = 〈f1, f2, . . . , fn〉 is a finitely generated transcendental semigroup, then

F (S) =
⋂n
i=1 f

−1
i (F (S)) and J(S) =

⋃n
i=1 f

−1
i (J(S)).

Proof. The Fatou set F (S) is S-forward invariant in general (Theorem 3.2). Hence, fi(F (S)) ⊂
F (S), and it follows that F (S) ⊂

⋂n
i=1 f

−1
i (F (S)) for all i.

Next, let z0 ∈
⋂n
i=1 f

−1
i (F (S)). Then (say) wi = fi(z0) ∈ F (S) for all i. The semigroup

S is normal at wi for all i. In other words, every g ∈ S is equicontinuous at wi for all i.

That is, for any ε > 0, there is δ > 0 such that d(g(w), g(wi)) < ε, whenever d(w,wi) <

δ for all w ∈ F (S) and i = 1, 2, 3, . . . , n, where d represents the Euclidean metric on

C. For such δ, there is η > 0 such that d(fi(z), fi(z0)) < δ, whenever d(z, z0) < η

for all z ∈
⋂n
i=1 f

−1
i (F (S)) and i = 1, 2, 3, . . . , n. Thus, ultimately, we conclude that

d(g(fi(z)), g(fi(z0))) < ε whenever d(z, z0) < η for all z ∈
⋂n
i=1 f

−1
i (F (S)) and i =

1, 2, 3, . . . , n. We can also write S =
⋃n
i=1(S ◦ fi). So, S is equicontinuous at z0. That is,
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z0 ∈ F (S). Hence, F (S) =
⋂n
i=1 f

−1
i (F (S)). The second part of this theorem easily follows

easily since

J(S) = C− F (S) = C−
n⋂
i=1

f−1
i (F (S)) =

n⋃
i=1

(C− f−1
i (F (S)) =

n⋃
i=1

f−1
i (J(S)).

�

The relation J(S) =
⋃n
i=1 f

−1
i (J(S)) for the Julia set is called a backward self similar-

ity. With this property, dynamics of a holomorphic semigroup can be regarded as backward

iterated function system-BIFS associated to the set {f1, f2, . . . , fn} of generators of semi-

group S. The Julia set J(S) is considered as an attractor or invariant for BIFS. Indeed,

J(S) is a unique attractor, which is usually a fractal.

Theorems 3.1 and 3.3 can be used directly to express the escaping set I(S) as a finite

intersection of all pre-images of itself under the generators of the semigroup S if it is finitely

generated. The following result is due to Kumar and Kumar [8, Theorem 2.6]. Here, we

give an alternative proof.

Theorem 3.5. If S = 〈f1, f2, . . . , fn〉 is a finitely generated abelian transcendental semi-

group, then I(S) =
⋂n
i=1 f

−1
i (I(S)) if S is an abelian semigroup.

Proof. I(S) is completely invariant under the assumption of the theorem (see for instance

Theorems 3.1, 3.3). So, we have fi(I(S)) ⊂ I(S) and f−1
i (I(S)) ⊂ I(S) for all 1 ≤ i ≤ n.

From which we get respectively

I(S) ⊂
n⋂
i=1

f−1
i (I(S)) and I(S) ⊃

n⋂
i=1

f−1
i (I(S))

for all 1 ≤ i ≤ n. Thus, we get I(S) =
⋂n
i=1 f

−1
i (I(S)). �

4. Further comparison of classical dynamics and semigroup dynamics

There are certain holomorphic semigroups where semigroup dynamics behave in the

same way as in classical holomorphic dynamics. That is, there are certain holomorphic

semigroups whose Fatou, Julia, and escaping sets are same as Fatou, Julia, and escaping

sets of each of its generators. From the following result of Kumar and Kumar [7, Theorem

3.4], we get such a conclusion.

Proposition 4.1. Let S = 〈f, g〉 be a transcendental semigroup generated by periodic

function f with period p and another function g defined by g = fn + p, n ∈ N. Then

F (S) = F (f), J(S) = J(f) and I(S) = I(f).

Note that in case of a semigroup stated in Proposition 4.1, each of the Fatou, Julia,

and escaping set is a S-completely invariant. We prove the following Theorem which gives

similar result in case of rational semigroup.

Theorem 4.1. Let S be an abelian rational semigroup. Then J(S) = J(f) and F (S) =

F (f) for all f ∈ S of degree at least two.
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We recall the following results of Fatou [3] and Julia [6] concerning commuting rational

functions, and Hinkkanen and Martin ([4, Lemma 3.1 and Corollary 3.1]) concerning the

rational semigroups.

Proposition 4.2. Let f and g be two rational functions of degree at least two such that

f ◦ g = g ◦ f . Then J(f) = J(g).

Proposition 4.3. Let S be a rational semigroup. Then Julia set J(S) is perfect and J(S) =⋃
f∈S J(f).

These results will be used in the proof of Theorem 4.1.

Proof of Theorem 4.1. Since semigroup S is abelian, so we have fi ◦ fj = fj ◦ fi for all

generators fi and fj with i 6= j. Then by Proposition 4.2, J(fi) = J(fj) for all i and j with

i 6= j. Also, every f ∈ S permutes with each generator fi for all i, so again by the same

Proposition 4.2, J(f) = J(fi) for all i. This fact, together with Proposition 4.3, we can

conclude that J(S) = J(f) for all f ∈ S. �

The analogous result in a transcendental semigroup may not hold, in general, because

Proposition 4.2 is still unanswered in case of permutable transcendental entire functions.

Julia sets for two permutable entire functions were studied in [10, 11, 15], where under

certain conditions we can get results similar to Proposition 4.2. If we impose extra conditions

in Theorem 4.1, then the result analogous to the Theorem 4.1 holds in case of transcendental

semigroups. One of the analogous result of Theorem 4.1 was proved by Poon [9, Theorem

5.1]. Here, we only give sketch of the proof similar to the proof of Theorem 4.1.

Recall that

CV (f) = {w ∈ C : w = f(z) for some z such that f ′(z) = 0}

is the set of critical values. The set AV (f) consisting of all w ∈ C such that there exists a

curve Γ : [0,∞)→ C so that Γ(t)→∞ and f(Γ(t))→ w as t→∞ is the set of asymptotic

values of f and

SV (f) = (CV (f) ∪AV (f))

is the set of singular values of f . If SV (f) finite, then f is said to be of finite type. If SV (f)

bounded, then f is said to be of bounded type. The sets

S = {f : f is of finite type} and B = {f : f is of bounded type}

are respectively called Speiser class and Eremenko-Lyubich class.

We recall the following three results of Poon [9, Theorems 4.1, 4.2 and Lemmas 5.1,

5.2] for our reference.

Proposition 4.4. Let S be a transcendental semigroup. Then Julia set J(S) is perfect and

J(S) =
⋃
f∈S J(f).

Proposition 4.5. Let f and g be two transcendental entire functions of finite type. Then

f ◦ g is of finite type. Moreover, if f and g are permutable, then J(f) = J(g).
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Proposition 4.6. Let S be an abelian transcendental semigroup in which each generator is

of finite type. Then J(S) = J(f) for all f ∈ S.

Proof of Proposition 4.6. We have given that semigroup S is abelian. Then by Proposition

4.5, J(fi) = J(fj) for all generators fi and fj with i 6= j. Each

f = fi1 ◦ fi2 ◦ . . . fim

is of finite type and J(f) = J(fi) for all i. This fact together with Proposition 4.4, we can

conclude that J(S) = J(f) for all f ∈ S. �

We prove the following assertion that the condition mentioned in the Proposition 4.6

is sufficient to show I(S) = I(f) for all f ∈ S.

Theorem 4.2. Let S is an abelian transcendental semigroup in which each generator is of

finite type. Then I(S) = I(f) for all f ∈ S.

Lemma 4.1. If f and g are permutable transcendental entire functions of finite type, then

I(f) = I(g).

Proof. As given in the statement, Poon [9, Lemma 5.2] showed that F (f) = F (g) (Propo-

sition 4.6). Eremenko and Lyubich [1] proved that if transcendental function f ∈ S , then

I(f) ⊂ J(f), and J(f) = I(f). For any function of finite type, we must have I(f) = I(g).

This Lemma will be proved if we show J(f) − I(f) = J(g) − I(g). Let z ∈ J(f) − I(f).

Then z is a non-escaping point of J(f) and so the sequence (fn) has a bounded subsequence

at z. J(f) = J(g) implies that the sequence (gn) has also a bounded subsequence at z. So

z ∈ J(g)− I(g). Therefore, J(f)− I(f) ⊂ J(g)− I(g). By similar argument, we can show

that J(g)− I(g) ⊂ J(f)− I(g). Hence, our claim is established.

�

Proof of Theorem 4.2. The semigroup S is abelian, so we have fi ◦ fj = fj ◦ fi for all

generator fi and fj with i 6= j. By Lemma 4.1, we have I(fi) = I(fj). Any f ∈ S can be

written as

f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim
By permutability of each fi, we can rearrange fij and ultimately represented by

f = f t11 ◦ f
t2
2 ◦ . . . ◦ f

tn
n

where each tk ≥ 0 is an integer for k = 1, 2, . . . , n. Lemma 4.5 can be applied repeatably

to show that each of f t11 , f
t2
2 , . . . , f

tn
n is of finite type, and so f is itself finite type. Since

each fi permutes with f , and hence by Lemma 4.1, I(fi) = I(f) for all f ∈ S. Therefore,

I(S) = I(f) for each f ∈ S. �
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