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Abstract: Contraflow is one of the best and widely accepted techniques in evacuation planning problems,

where the reversal of arcs is made to increase the amount and decrease the time of flow transmission. At the

time of evacuation, if the flow value leaving the source node exceeds the bottleneck capacity of the network,

then the storage of excess flow at comparatively safer intermediate nodes can be a milestone to save the life

of evacuees. In this paper, we introduce the maximum dynamic contraflow problem in a general network and

earliest arrival contraflow problem in two-terminal series-parallel network with asymmetric transit times on

anti-parallel arcs. We present polynomial time solution strategie s with orientation dependent transit times

by allowing the storage of flow at intermediate nodes.
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metric transit times.
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1. Introduction

Network flow over time problems, also known as dynamic flow problems, deal with the transshipment

of flow from one point to other using running time i.e., traversal time. Ford and Fulkerson are the pioneers

of this problem which has been introduced more than sixty years ago, [9]. Maximum dynamic flow problem

concerns the shifting of maximum amount of flow from the origin node (source) to the destination node (sink)

in the given time horizon. Evacuation planning problems can be modeled as the maximum dynamic flow

problem, which is also applicable in transportation management, communication system and production

planning etc. Similarly, earliest arrival flow problem treats with the maximization of flow at each time

step, [11]. For the EAF problem, Minieka [21] and Wilkinson [29] provided the algorithms by adopting the

successive shortest path augmenting algorithm which needed exponential time. In a two-terminal general

network, Pyakurel and Dhamala [25] presented optimal solution to the earliest arrival flow problem for

discrete and continuous time settings. The detailed illustrations of maximum flow can be found in the books

[1, 10], book series of [20], survey papers [2, 19, 7, 14] and the references therein.

Existance of the excess flow occures if the amount of flow leaving the source node is greater than the

minimum cut capacity. In this case, the excess flow cannot reach the destination node and the storage

of such flow at appropriate intermediate nodes is an important issue. The maximum flow problem with

intermediate storage is a very relevant task in large scale disaster management problems. By introducing
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the concept of intermediate storage, Pyakurel and Dempe [23] provided the maximum static and maximum

dynamic flow problems and presented the polynomial time solution strategies to solve the problems. Not

only in disaster management and evacuation planning, transshipment of flow with intermediate storage is

highly applicable for different demand-supply chains like commodity supply, electricity distribution, water

supply and so on.

In a two-way network topology, contraflow (lane reversal) means the reversing of the direction of arcs

to increase the amount of flow transmission and reduce the total traversal time. Rebennack et al. [27]

presented a polynomial time algorithm to solve the maximum flow problem in two-terminal network by

reverting the direction of arcs at time zero and kept fixed afterwards. Various problems with contraflow can

be found in [3, 4, 17, 18]. The maximum dynamic contraflow (MDCF) problem with intermediate storage

and its polynomial solution can be found in Pyakurel and Dempe [23]. By reverting only necessary arcs,

Dhamala et al. [5] presented algorithms to solve the quickest multi-commodity contraflow problem, where

given amount of flow is to be transshipped in minimum possible time. The maximum multi-commodity flow

over time problem with partial contraflow is presented by Pyakurel et al. [26]. Similarly, in general as well

as two-terminal series-parallel networks, efficient algorithms for the universal maximum flow and contraflow

problems with intermediate storage can be found in Pyakurel and Dempe [24]. For these contraflow problems,

networks are considered with symmetric transit times in anti-parallel arcs.

For contraflow network with asymmetric transit times, if the transit time of reversal arc depends on

the orientation of arc, then it is known as orientation dependent transit times (ODTT). Different transit

times on anti-parallel arcs exist in the real network scenario of private as well as public transportation due

to the speed limits, time card system, condition of roads and government policies. To illustrate ODTT with

an example, consider a two-way dynamic network with asymmetric transit times on arcs as presented in

Figure 1(i). The numbers on each arc represent the capacity u and transit time τ , whereas numbers on

the nodes are storage capacities b. The other four figures are the possible auxiliary networks with ODTT.

Figure 1(ii) is formed by taking directions along (x, y) and (x, t), whereas Figure 1(iii) with directions along

(y, x) and (x, t). Similarly, Figure 1(iv) is formed by taking directions along (x, y) and (t, x), whereas

Figure 1(v) is with directions along (y, x) and (t, x). Nath et al. [22] presented the concept of contraflow

with orientation dependent transit times, where asymmetric transit times of reversed lanes in general form

is considered. They have presented strongly polynomial time algorithms to solve the maximum dynamic and

quickest contraflow problems in single source single sink network. Gupta et al. [12] extended the analytical

solution of generalized dynamic contraflow problem by considering the asymmetric transit times on arcs and

presented an efficient algorithm to solve the problem. The earliest arrival transshipment contraflow problem

in multi-source single sink network and the prioritized maximum dynamic partial contraflow problem in

single source multi-sink network by considering the non-symmetric transit times on the arcs can be found in

[13]. Similarly, for maximum multi-commodity contraflow problems with symmetric and asymmetric transit

times, Khanal et al. [16] presented the pseudo polynomial time algorithms to solve the problems.

In this paper, we present the models for static as well as dynamic flow by incorporating the intermediate

storage of the flow. We introduce the MDCF problem with ODTT by allowing the storage of excess flow

at intermediate nodes and present a polynomial time algorithm to solve it. We also introduce an earliest

arrival contraflow (EACF) problem with ODTT and propose a solution in polynomial time complexity by

allowing the intermediate storage.

The paper is organized as follows. In Section 2, we present a contraflow network and its auxiliary

network with symmetric as well as asymmetric transit times. We also formulate static and dynamic flow

models with intermediate storage. The MDCF with ODTT and EACF with ODTT are presented in Section 3

and Section 4, respectively, which permit the storage of flow at intermediate nodes. We conclude the paper

in Section 5.
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Figure 1. (i) represents a contraflow network with asymmetric transit times

and (ii)-(v) represent possible orientation dependent auxiliary networks of

(i). Numbers aside the nodes are the storage capacities.

2. Basic Terminologies and Flow Models

2.1. Contraflow Network. Consider a two-way network topology N = (V,A, u, b, τ, s, t, T ), where V rep-

resents the set of nodes and A ⊆ V × V represents the set of arcs. Let |V | = n and |A| = m. Here, s ∈ V
and t ∈ V are the source (origin) and sink (destination) nodes and I = V \ {s, t} represents the set of

intermediate nodes. Each arc a = (v, w) ∈ A with head(a) = w and tail(a) = v has a capacity function
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u : A→ R+ that limits the flow on arc and a non-negative transit time function τ : A→ R+ that measures

the transmission time from v to w. Similarly, ←−a = (w, v) is an oppositely directed arc of a = (v, w) with

capacity u←−a and transit time τ←−a . Let b : V →R+ represents the storage capacity function of the nodes. We

denote the set of outgoing arcs from node v and incoming arcs to node v by δout(v) and δin(v), respectively.

The time period T given in advanced is denoted by T = {0, 1, ..., T} in discrete time settings. In static flow,

the time parameters are absent.

Auxiliary Network with Symmetric Transit Times. Consider a dynamic network N having anti-

parallel arcs of symmetric transit times i.e., τa = τ←−a . The auxiliary network of given network N is denoted

by N = (V,A, u, b, τ , s, t, T ), containing undirected edges A = {(v, w) : (v, w) or (w, v) ∈ A}. The capacity

ua of an arc is the sum of capacities of anti-paralled arcs a and ←−a , i.e., ua = ua + u←−a , where ua = 0 if

a /∈ A. Similarly, the transit time of an arc in this network is obtained as

τa =

{
τa if a ∈ A
τ←−a otherwise.

All others parameters are as same in N .

Auxiliary Network with ODTT. In a two-way dynamic network, if the transit times on anti-parallel arcs

are not identical, then it is known as the network with asymmetric transit times. In contraflow configuration,

the flow on anti-parallel arcs traverses in one of the directions but not the both directions. In auxiliary

network, if we consider the transit time of the arc depending on its orientation, then it is defined as the

contraflow with orientation dependent transit times. For a two-way dynamic network N with asymmetric

transit time on arcs, an auxiliary network N = (V,A, u, b, τ , s, t, T ) is constructed in such a way that A

contains the undirected arcs obtained by reverting the direction of arcs ←−a at time zero. The arc capacity

ua and transit time τa are obtained by ua = ua + u←−a where ua = 0 if a /∈ A and

τa =

{
τa if the orientation of arc is along a

τ←−a if the orientation of arc is along ←−a or a /∈ A
It is to be noted that if there is no arc along the orientation of auxiliary network, then transit time of

auxiliary arc is taken as the symmetric reversal of the opposite arc. Throughout the paper, our assumption

is that the storage capacity of terminals are significant enough, i.e., bs = bt ≤ ∞ and the intermediate nodes

have finite storage capacity. The excess flow at intermediate nodes exists if and only if the sum of outgoing

arc capacities of an intermediate node v ∈ I is less than the sum of incoming arc capacities. Moreover, the

storage capacity bv of intermediate node v ∈ I should be at least the sum of incoming arc capacities of v for

unique solution. Otherwise, it provides an alternate optimal solution (see explanation of Figure 2).

2.2. Static Flow Model with Intermediate Storage. The static flow ψ with intermediate storage on a

given two-way networkN = (V,A, u, b, c, s, t) is the collection of non-negative arc flow functions ψa : A→R+

and the excess flow functions ψv : I →R+. The static flow model with intermediate storage is the network

flow satisfying the conditions (2.1 - 2.4). As in [23], the mathematical formulation of the maximum static

flow with intermediate storage, as a linear programming problem, is as follows.

max |ψ| =
∑

a∈δout(s)

ψa =
∑

a∈δin(t)

ψa +
∑

v∈I:bv≥0

ψv(2.1)

such that, ∑
a∈δin(v)

ψa −
∑

a∈δout(v)

ψa = ψv ∀v ∈ I(2.2)

0 ≤ ψa ≤ ua ∀a ∈ A(2.3)

0 ≤ ψv ≤ bv ∀v ∈ I(2.4)

Equation (2.1) is an objective function that is to maximize the total outflow from the source which

must be equal to the sum of inflow at sink and the total excess flow at intermediate nodes. Here, |ψ| denotes

the total value of the flow. The excess flow at intermediate nodes is represented by Equation (2.2) and
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Equation (2.3) represents the boundedness of the flow on each arc. The left inequality in constraint (2.4)

represents the non-conservation of flow where the right inequality shows the boundedness of the excess flow

by the storage capacity of the node. For existence of unique solution, the storage capacity of intermediate

node v ∈ I must be at least the sum of incoming arc capacities to v. Mathematically, it is represented as∑
a∈δin(v) ua ≤ bv ∀v ∈ I . We define the cost c of static flow ψ associated with arc a as

c(ψ) =
∑
a∈A

caψa.

At the time of an emergency, the general assumption is that the flow towards the danger zone is

almost empty and so we reverse the direction of arcs towards the safe zone (destination). After reversing

the direction of arcs using orientation dependent cost, the contraflow model can be obtained replacing a ∈ A
by a ∈ A and ua by ua. At last, the flow obtained in the auxiliary network is transformed to the original

network.

2.3. Dynamic Flow Model with Intermediate Storage. The flow over time function Φ defined on

a dynamic network N with arc traversal time τ is the collection of non-negative arc flow function Φa :

A × T → R+ and the excess flow function Φv : I × T → R+. The dynamic contraflow model with

ODTT τ in N allowing intermediate storage is a network flow satisfying the conditions (2.5 - 2.8). As in

[23], the mathematical model for the maximum dynamic flow allowing the intermediate storage, with linear

programming formulation, is as follows.

max |Φ| =
∑

a∈δout(s)

T∑
θ=0

Φa(θ) =
∑

a∈δin(t)

T∑
θ=τa

Φa(θ − τa) +
∑

v∈I:bv≥0

Φv(T )(2.5)

such that, ∑
a∈δin(v)

θ∑
β=τa

Φa(β − τa) −
∑

a∈δout(v)

θ∑
β=0

Φa(β) = Φv(θ) v ∈ I, θ ∈ T(2.6)

0 ≤ Φa(θ) ≤ ua ∀a ∈ A, θ ∈ T(2.7)

0 ≤ Φv(θ) ≤ bv ∀v ∈ I, θ ∈ T(2.8)

In given time horizon T , the objective function in Equation (2.5) refers to the maximization of the

total flow out from the source which must be equal to the sum of inflow at sink and the total excess flow

at intermediate nodes. The excess flow stored at intermediate nodes is represented by Equation (2.6).

Similarly, the constraint in (2.7) represents the boundedness of the arc flow by its capacity at each time

step θ. The left inequality of the constraint in (2.8) represents the non-conservation of flow and its right

inequality represents the boundedness of the excess flow at the intermediate node by its storage capacity.

The necessary (lower bound) and sufficient (upper bound) storage capacity of each intermediate node v ∈ I
is

∑
a∈δin(v) ua ≤ bv ≤ T

∑
a∈δin(v) ua ∀v ∈ I. The lower bound is essential for the existence of unique

solution. The cost c of discrete dynamic flow Φ is defined as

c(Φ) =
∑
a∈A

ca

T∑
θ=0

Φa(θ).

For EACF problem with ODTT by allowing intermediate storage, the linear programming formulation

is as follows.

max |Φ(θ)| =
∑

a∈δout(s)

θ∑
β=0

Φa(β) =
∑

a∈δin(t)

θ∑
β=τa

Φa(β − τa) +
∑

v∈I:bv≥0

Φv(θ)(2.9)

subject to the constraints (2.6 - 2.8).

As in static case, if we replace a ∈ A, τa and ua in above model by a ∈ A, τa and ua, respectively,

then the dynamic contraflow model can be obtained with orientation dependent transit times, where the

traversal time of the arcs in auxiliary network is depending on its orientation.
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While shifting the flow from the source, first priority is given to the sink because the assumption is that

the sink is most appropriate place with respect to location and infrastructure. The priority of intermediate

nodes is set with farther-in-distance-higher-in-priority. We fix the priority of nodes before the contraflow

configuration because the alternative lane reversals in the network grows exponentially with the number of

arc on the network which increases its computational complexity.

For the uniqueness of the solution, the minimum storage capacity of intermediate nodes should be at

least the sum of incoming arc capacities i.e., bv ≥
∑
a∈δin(v) ua. We now verify it by the following example.

Example 1. Consider the network presented in Figure 2 with unit cost/transit time on each arc except

(s, w). Let the cost of arc (s, w) be zero. The first priority is given to the sink node. Due to equal cost from

the source, second priority is given to v or y, the third priority is for u or x and fourth priority is given to

w. Firstly, we consider 2 units of storage capacity in each intermediate node. If the flow is sent to the sink

through paths s−u−v−w− t and s−w− t, then 7, 2, 2, 2, 0 and 1 units of flow can be stored at prioritized

nodes t, v, y, u, x and w, respectively. Again, by sending the flow to the sink through paths s−x−y−w− t
and s − w − t, the amount of flow stored at prioritized nodes t, v, y, u, x and w are 7, 2, 0, 2, 0 and 2

units, respectively. So, in previous pattern of flow, 7, 4, 2, and 1 units are stored at first, second third and

fourth prioritized nodes whereas 7, 2, 2, and 2 units are stored at respective prioritized nodes in case of later

pattern, respectively. Thus, instead of a unique optimal solution it provides an alternate optimal solution.

Secondly, if we consider the storage capacity of 10 units in each intermediate node, then 7, 5, 2 and 0 units

of flow can be stored at first, second, third and fourth prioritized nodes, respectively, in either of the flow

patterns.

s

u

x

v

y

w t

7,1

2,1

5,0

5,1

2,1

7,1

2,1

7,1

Figure 2. Network with capacity and unit cost/transit time on each arc.

3. MDCF with ODTT Allowing Intermediate Storage

In this section, we introduce the MDCF problem in which time to traverse through the arcs in auxiliary

network are orientation dependent and the storage of flow at intermediate nodes is allowed. We present a

polynomial time solution strategy to solve the problem.

Problem 1. For a given two-way dynamic network N = (V,A, u, b, τ, s, t, T ) with auxiliary network N , the

MDCF problem with ODTT by allowing the storage of flow at intermediate nodes is to maximize the flow out

from the source s which is to be transshipped to the sink t via s-t paths together with the storage of maximum

excess flow at the intermediate nodes with storage capacity
∑

a∈δin(v)

ua ≤ bv ≤ T
∑

a∈δin(v)

ua within the time

horizon T , where the reversal of the arcs are made at time zero and transit times on auxiliary network are

orientation dependent.

To solve the problem, the priority order of the nodes is fixed on the basis of farther-in-distance-higher-

in-priority order as described in Pyakurel and Dempe [23], where distance of each intermediate node from the

source is obtained by using Dijkstra’s algorithm ([8]) by considering transit time as cost. That is, ∀v1, v2 ∈ I
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if d(s,v1) > d(s,v2), then v1 is more relevant and highly prioritized than v2 and is denoted by v1 � v2. We then

transform the given network into an auxiliary network N with orientation dependent transit times. The flow

is send from the source with first priority to the sink and then successive order of prioritized intermediate

nodes.

For each prioritized node v ∈ I, we create the dummy port v′ with capacity u(v,v′) = bv = bv′ , where

u(v,v′) is the arc capacity of dummy arc (v, v′). The transit time of dummy arc is τ(v,v′) = 0. Every dummy

port v′ has the same priority order as v has. The modified auxiliary network N ′ = (V ′, A
′
, τ , u, b, s,D) is

constructed having single source s and multiple sink D = {t ∪ {v′}}, where {v′} is the collection of dummy

ports. Here, V ′ = V ∪ {v′}, and A
′

= A ∪ {(v, v′)}. For an instance, if t � v1 � · · · � vr be priority

order of intermediate nodes and sink, then D = {t = v′0, v
′
1, . . . , v

′
r}. We construct a new modified network

by introducing a super sink t∗ having sufficiently large (infinite) storage capacity and join each v′ ∈ D by

an arc with zero transit time and infinite capacity (See Figure 3). Using lexicographic maximum flow, the

maximum dynamic flow with intermediate storage in an auxiliary network is obtained as in [23], where the

reversal of arcs are orientation dependent. Finally, flow in the auxiliary network is transformed into the

original network.

We present a polynomial time algorithm to solve the problem as follows.

Algorithm 1: MDCF algorithm with ODTT allowing the intermediate storage
Input : Given two-terminal contraflow network N .

Output: MDCF with ODTT allowing intermediate storage.

(1) Fix the priority order of intermediate nodes using Dijkstra’s algorithm ([8]).

(2) Construct an auxiliary network N of N using orientation dependent transit times.

(3) Compute the maximum dynamic flow in N by allowing the storage of flow at intermediate nodes

using [23].

(4) Decompose the flow along s-t paths and cycles, and remove the flows in cycles.

(5) An arc ←−a is reversed with orientation dependent transit times if and only if the flow along arc a is

greater than its capacity or if there is a non-negative flow along arc a /∈ A.

(6) By removing the dummy ports and arcs, transform the solution to the original network.

Theorem 3.1. Algorithm 1 provides the feasible solution to MDCF problem with ODTT by allowing the

storage of flow at intermediate nodes optimally.

Proof. At first, we show the feasibility and then the optimality of Algorithm 1. Steps (1) and (2) are the

use of Dijkstra’s algorithm and the construction of an auxiliary network, respectively, which are feasible. In

Step 3, finding the maximum dynamic flow with intermediate storage is feasible by [23]. As steps (4), (5)

and (6) are construction of cycle free paths, condition of arc reversals and transformation of solution, which

are feasible. So, Algorithm 1 provides the feasible solution. Next, the optimality of algorithm is dominated

by the optimality of Step (3), which is optimal as proven by Pyakurel and Dempe [23]. So, Algorithm 1

solves the MDCF with ODTT by allowing the storage of flow at intermediate nodes optimally. �

Theorem 3.2. MDCF problem with ODTT can be solved by Algorithm 1 allowing the intermediate storage

in polynomial time complexity.

Proof. The time complexity of Dijkstra’s algorithm in Step 1 is O(m logn) and that of shorting algorithm

is O(n logn). Steps (2) and (4) of Algorithm 1 can be obtained in linear time. Step (3) calculates a priority

based maximum dynamic flow in s-D network in O(n ×MCF (n,m)) time, where MCF (n,m) represents

the time complexity of single source single sink minimum cost flow in original network, which can be solved

within O(m logn(m + n logn)) time. So, Algorithm 1 solves the MDCF problem with ODTT by allowing

the intermediate storage in polynomial time complexity. �
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Example 2. Consider the dynamic contraflow network given in Figure 1(i) with time horizon T = 4. Using

Dijkstra’s algorithm [8], the priority ordering is set as t � y � x. Four different auxiliary networks with

ODTT are presented in Figure 1[(ii)-(v)]. Figure 1(ii) represents an auxiliary network with orientation along

(x, y) and (x, t) which sends 19, 8 and 13 units of flow at t, y and x in T = 4, whereas Figure 1(iii) is with

orientation along (y, x) and (x, t) which sends 17, 4 and 19 units of flow at t, y and x in T = 4, respectively.

Similarly, Figure 1(iv) is obtained by taking orientation in auxiliary network along (x, y) and (t, x) which

sends 10, 8 and 22 units of flow at t, y and x in T = 4, whereas Figure 1(v) is with orientation along (y, x)

and (t, x) which sends 8, 4 and 28 units of flow at t, y and x in T = 4, respectively. In each orientation,

total 40 units of flow is pushed from source in given time horizon but Figure 1(ii) is only the network which

pushes maximum flow at sink and the prioritized farthest intermediate node. Thus, the best solution with

ODTT is obtained from Figure 1(ii), whose new modified network with super sink is presented in Figure 3.

The detailed illustration of flow in this network is given in Table 1 below.

s

x

y

t

x′

y′

t∗

7,1

4,2

3,1

5,1

2,1

28,0

20,0

∞,0

∞,0

∞,0

∞
∞

28

20

28

20

∞

Figure 3. New modified network of Figure 1(ii).

Table 1. MDCF with ODTT allowing intermediate storage at time θ.

Path Start time flow at Reaching time

at s x y t at last node

s-x-t θ = 0 2 × 3 θ =2 at t

θ =1 2 × 3 θ =3 at t

θ =2 2 × 3 θ =4 at t

θ =3 7 × × θ =4 at x

s-y-t θ =0 × 0 4 θ =3 at t

θ =1 × 0 4 θ =4 at t

θ =2 × 4 × θ =4 at y

s-x-y-t θ =0 0 1 1 θ =3 at t

θ =1 0 1 1 θ =4 at t

θ =2 0 2 × θ =4 at y

Total 13 8 19 Total=40

4. EACF with ODTT Allowing Intermediate Storage

We aim to introduce an EACF problem in a two-terminal series-parallel network by allowing the storage

of flow at intermediate nodes and adopting the orientation dependent transit times in auxiliary network. To

solve the problem, we present a polynomial time solution strategy.
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Problem 2. For a given two-terminal series-parallel network N = (V,A, u, b, τ, s, t, T ) with auxiliary net-

work N , an EACF problem with ODTT permitting the storage of flow at the intermediate nodes is to

maximize the flow leaving the source s at each time step θ, that is to be transshipped to the sink t via s-

t paths together with the storage of maximum excess flow at the intermediate nodes with storage capacity∑
a∈δin(v)

ua ≤ bv ≤ T
∑

a∈δin(v)

ua within time horizon T , where the reversal of the arcs are made at time zero

and transit times on auxiliary network are orientation dependent.

To solve the problem, we first transform the given s-t network into s-D network by creating dummy

ports as described in Section 3. Considering t∗ as the super sink and joining it to each node in D with

infinite capacity and zero transit time, it is reduced to the single source single sink s-t∗ network. As in

Pyakurel and Dempe [24], the minimum cost circulation flow with time bound of Ruzika et al. [28] provides

the solution of EACF problem with ODTT by allowing the intermediate storage of the flow in polynomial

time complexity, where transit times are orientation dependent. Hereafter, we present an algorithm which

provides the solution to an EAF Problem 2 with ODTT by allowing the intermediate storage.

Algorithm 2: EACF algorithm with ODTT allowing the intermediate storage
Input : Given two-terminal series-parallel contraflow network N .

Output: EACF with ODTT by allowing the intermediate storage.

(1) Fix the priority order of nodes and construct an auxiliary network N of N using orientation

dependent transit times.

(2) Compute earliest arrival flow with intermediate storage in N by using [24] within the time bound

of [28].

(3) Decompose the flow along s-t paths and cycles, and remove the flows in cycles.

(4) An arc ←−a is reversed with orientation dependent transit times if and only if the flow along arc a is

greater than its capacity or if there is a non-negative flow along arc a /∈ A.

(5) By removing the dummy ports and arcs, transform the solution to the original network.

Theorem 4.1. The optimal solution to the EACF problem with ODTT by allowing the intermediate storage

can be obtained by using Algorithm 2.

Proof. The feasibility and optimality of Steps (1), (3), (4) and (5) can be obtained as in Theorem 3.1.

In step (2), we compute the earliest arrival flow in auxiliary network with orientation dependent transit

times by using algorithm of Pyakurel and Dempe [24] with time bound of Ruzika et al. [28], each providing

optimal flow. So Algorithm 2 provides optimal solution to EACF with ODTT by allowing the intermediate

storage. �

The computational time bound of Step (2) determines the overall time complexity of Algorithm 2.

The minimum cost flow problem in series-parallel graph can be solved in O(nm + m logm) time for single

source sink network. So EACF problem with ODTT by allowing intermediate storage can be solved in

O(n× (nm+m logm)) time.

Theorem 4.2. Algorithm 2 solves the EACF problem with ODTT by allowing the intermediate storage in

polynomial time.

Example 3. Consider a two-terminal series-parallel contraflow network that is given in Figure 4(i), where

numbers aside the nodes represent the storage capacity of nodes. The priority ordering of nodes with respect

to the distance is t � z � y � x � w (as the shortest distance of z and y from s are same, priority of these

two nodes may interchange). The auxiliary network with orientation dependent transit times is constructed

in Figure 4(ii). Let the time horizon be T = 5. Then, the total amount of earliest arrival flow at t, z, y, x

and w in time horizon T = 5 are 30, 9, 2, 7 and 16 units, respectively.
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s w

x

y

z t

6,1

4,2

1,1
3,0

3,2

2,1

2,2

2,1

1,1

2,2

2,1

1,0
5,1

6,2

5,4

4,5

(i) Two-way series-parallel network with capacity, transit time on arc

∞ ∞
35

15
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s w

x

y

z t
10,1

4,1

5,2

4,2

3,1

3,1

11,1

5,4

4,5

(ii) Auxiliary network with capacity, transit time on arc

∞ ∞
35

15

20

25

Figure 4. (i) represents a two-terminal series-parallel contraflow network

and (ii) represents an auxiliary network of (i) with ODTT.

In series-parallel graph, every cycle in the residual network has a non-negative cycle length, which

is a main advantage of this graph structure. Because of this, the minimum cost circulation flow problem

introduced by Ford and Fulkerson [10] for the maximum dynamic flow problem can be solved in the auxiliary

network N . The temporally repeated s-t flow, thus obtained is an optimal solution to the EACF problem

on a two-terminal series-parallel graph in polynomial time. So, the polynomial solution of EACF problem

with ODTT by allowing the intermediate storage is possible by using Pyakurel and Dempe [24] and applying

the ODTT on N . Moreover, for general networks, pseudo-polynomial time solution strategy exists to solve

EACF problem by using time expanded network, [6, 25, 29] without permitting the intermediate storage.

The EACF problem with ODTT by allowing the storage of flow at intermediate nodes in general network

can be obtained by using algorithm of Hoppe and Tardos [15] in modified s−D network.
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5. Conclusion

At the time of evacuation, improvement of flow values and reduction of the time horizon by the reversal

of arcs is one of the best approaches. At the meantime, settlement of flow at intermediate nodes can be

a milestone to shift the maximum evacuees from the danger zone (source). In literature, the maximum

static and maximum dynamic contraflow problems with and without intermediate storage of flow have been

studied in two terminal general network. Similarly, earliest arrival contraflow problem with intermediate

storage has been studied in two-terminal series-parallel graph. All of these contraflow problems have been

acquired symmetric transit times on the anti-parallel arcs.

In this paper, we present the flow models with asymmetric transit times on anti-parallel arcs by allowing

the storage of flow at intermediate nodes. By adopting the orientation dependent transit times on the anti-

parallel arcs, we introduce the maximum dynamic contraflow and earliest arrival contraflow problems. We

also present the polynomial time algorithms to solve the problems. Though the priority order of the nodes

in our solution strategy is on the basis of distance before the contraflow configuration, our algorithms can

be used for any other priority order.
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