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Abstract: In this article, we present some results on the numerical solutions of the 2-D Surface Quasi

Geostrophic Equation (SQG) using pseudospectral method along with an exponential filter. The global

regularity of solution of inviscid SQG equation for general data remains an outstanding open problem. Our

computations mainly focus on the inviscid and supercritical cases. We monitored the regions where the

level curves come significantly close to one another, the L2 norm and the growth of |∇⊥θ| throughout our

computations. Our numerical findings show that there is no significance difference among the solutions of

the super critical, critical and subcritical cases as we vary the values of the parameter α in the interval (0, 1).
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1. Introduction

The two dimensional (2D) Surface Quasi Geostrophic (SQG) equation is given by

(1.1)

∂tθ + u.∇θ + κ (−∆)αθ = 0

∇.u = 0

θ(x, 0) = θ0(x)

where κ ≥ 0 and α > 0 are parameters, θ = θ(x1, x2, t) is a scalar representing the potential

temperature and u = (u1, u2) is the velocity field determined from θ by the stream function

ψ with the auxiliary relations

(u1, u2) = (−∂x2ψ, ∂x1ψ),

(−∆)1/2ψ = θ.

Assuming Λ = (−∆)1/2 and ∇⊥ = (−∂x2 , ∂x1), the above relation can be written as

u = ∇⊥Λ−1θ = (−R2θ,R1θ)

where R1 and R2 are the usual Riesz transforms. The periodic box T 2 or R2 is the domain

considered. Depending upon κ and α, the equation can be divided into the following

categories:

(1) When κ = 0, the equation (1.1) is called the inviscid SQG equation.

(2) When κ > 0, the equation (1.1) is called the dissipative SQG equation.
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(a) When α > 1
2 , the equation (1.1) is called the subcritical SQG equation.

(b) When α = 1
2 , the equation (1.1) is called the critical SQG equation.

(c) When α < 1
2 , the equation (1.1) is called the supercritical SQG equation.

J.G. Charney derived the general 3D quasi geostrophic equations in 1940’s. These equa-

tions are useful to describe major features of motions in the atmosphere and oceans in the

midlatitudes [10]. The SQG equation is the particular case of 3D geostrophic equations

with uniform vorticity. This SQG equation models the evolution of buoyancy or the po-

tential temperature on the 2D horizontal boundaries. The inviscid SQG equation is useful

in modeling the atmospheric phenomenon such as frontogenesis, the formation of strong

fronts between the masses of hot and cold air. Also, the inviscid SQG is an important

example of an active scalar and important testbed for turbulence theories due to some of

its distinctive features [8, 24]. In the geophysical studies of strongly rotating fluids [3, 10]

the SQG equation with α = 1
2 is arose.

The authors in [12, 17, 23] showed that L2- weak solutions are global in time and the

physically reasonable solution are at least local in time . Also, the classical solution exhibit

certain geometric configuration which do not develop the finite time singularities [4, 5, 6].

The global regularity for the general initial data is still open.

For the subcritical case α > 1
2 , the dissipation term is sufficient to control the nonlin-

earity and global regularity is a consequence of an a priori bound [18, 23]. For the critical

case α = 1
2 , the global regularity issue is more delicate. The authors established the global

regularity of the classical solutions together with L∞ data comparable to κ in [21]. The

global regularity for the general data was obtained in [2] for the periodic case while in

[15] for the whole space. Wu [13] established global regularity results for the regularized

models with critical or subcritical indices. He extended the notion of dissipative solution of

Duchon and Robert [9] to the weak solution of the quasi geostrophic equations[13] on the

basis of proof of Onsager’s conjecture [16] related with weak solutions of 3D Euler equations.

The information for the supercritical case α < 1
2 is partially known to the present

situation. The work in [7, 19, 20] imply that the solution of supercritical SQG equation

can develop a finite time singularity in the regularity window between L∞ and Cδ with

δ < 1 − 2α. By using maximum principle, the authors in [1] proved the local existence

and global results for small initial data for the supercritical case of dissipative 2D Quasi-

geostrophic equations.

Constantin, Majda and Tabak [17], in 1994, performed the numerical experiments on a

2π-periodic box and predicted strong front formation and potential singular behavior of the

solutions of the SQG equation in the inviscid case. They monitored two physical quantities,

kinetic energy and the pseudo energy. They used finer partitions ranging from 2562 to 5122

to 10242 with the following three types of initial data.
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(1) θ(x, 0) = sinx1 sinx2 + cosx2

(2) θ(x, 0) = −(cos 2x1 cosx2 + sinx1 sinx2)

(3) θ(x, 0) = cos 2x1 cosx2 + sinx1 sinx2 + cos 2x1 sin 3x2.

The first initial condition is the simplest smooth data showing the nonlinear behavior

and is the combination of two lowest eigenmodes.

The first data set involves a hyperbolic saddle in the initial level sets of temperature in

the regime of strong nonlinear behavior. The numerical solutions indicate strong nonlinear

front formation and potentially singular behavior. The second data set involves the elliptic

level sets in θ and the numerical solutions asserts that the solution behaves nonlinearly as

in the first set initially but self consistently saturates to exponential growths of gradients

without singular behavior. In the third data set, there is robust feature of strong front

formation. They concluded that

“if the geometry of level sets of the active scalar is simple and does not contain a hy-

perbolic saddle in the region of strongly nonlinear behavior, then no singular behavior is

possible”[17]. Figure 1 shows the evolution of level sets and 3D surface plot of the type (3)

data.

Figure 1. Contour plot and Nature of front

Based on the simple initial condition used in [17], the authors in [14] proposed that the

temperature gradient can be fitted equally well by a double-exponential function of time

rather than an algebraic blow up. Also for the viscous case, with series of computations

and different Reynolds numbers, they found that the critical time at which the temperature

gradient attains the first local maximum depends double logarithmically on the Reynolds

numbers, which suggests the global regularity of the inviscid flow.

Constantin, Sharma, Wu et. al in [22] used pseudospectral method with an improved

exponential filter to extend the computations in [17] using the same initial data sets. Their

computations revealed the nature of solutions for a longer time interval without noticing any

singularities in the solutions. To increase the speed and accuracy of the computations, the

pseudospectral algorithm was parallelized by the slab decomposition. About time t = 7.5,

strong hyperbolic saddle front was observed as in [17]. If further continued then there was
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steep antiparallel double front and maximum gradient continues to grow up about t = 13.5.

After that gradient starts to decay and there was absence of strong fronts. One of the

graphs for the gradient growth is presented in Figure 2.

Figure 2. Gradient growth

The issue of development of a finite time singularity in the solutions of the 2D SQG

equations in the supercritical and inviscid cases is still open. Motivated by the work in [17]

and [22], we performed a series of numerical simulations to compute the solutions to extend

the previous results for the longer time period by using the 2/3 dealiasing rule. Details of

the method are explained in Section 2. The numerical results are presented graphically and

explained in Section 3. Section 4 concludes the paper.

2. Numerical Method

The numerical method for the computation is described in the section. We use pseu-

dospectral method for this problem because of periodic boundary condition. θ̃ approximates

the solution θ which is given by the relation

θ̃(x, t) =

N
2
−1∑

k1,k2=−N
2

θ̂(k1, k2)e
ikx

where θ̂ denotes the Fourier transform of θ and is given by

θ̂(k1, k2) =
1

(2π)2

∫
T 2

θ(x1, x2)e
−i(k1x1+k2x2) dx1 dx2.

Here N is a fixed number. Also, taking the Fourier transform of the SQG equation, we

obtain

∂tθ̂(k) = −ik1(̂u1θ)(k)− ik2(̂u2θ)(k)− 2πκ|k|2αθ̂(k)

where k = (k1, k2) is the wave number and k1, k2 = −N
2 , · · · ,

N
2 − 1. The velocity field u

given by

û(k) = i
(−k2, k1)
|k|

θ̂(k)

which is computed in the Fourier space.
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Pseudospectral methods have the advantage of computing a nonlinear convection term

very efficiently using the Fast Fourier Transform. The product u1θ and u2θ are computed in

the physical space. The resulting equation becomes ∂tΘ̂ = AΘ̂ where Θ is the matrix with

the modes of θ as its entry and A is a N ×N matrix whose entries are obtained from the

Fourier transform. The time integration is carried out through fourth order Runge-Kutta

method.

To reduce the aliasing error, we used the exponential filter instead of the traditional

2/3 dealiasing rule. While using an exponential filter, the Fourier multiplier ikj for the

differential operator ∂
∂xj

is replaced by ikjφ(|kj |), where φ(k) = e−α(
k
N
)mf for |k| ≤ N .

Here N is the numerical cutoff for the Fourier modes, and mf is the order of the filter.

The value of α is chosen so that φ(N) = e−α = machine precision. For a smooth function

f(x), we have ||f(x) − DNf(x)|| = O(N−mf ) where DNf = F−1(ikφ(|k|) − F (f) is the

numerical approximation of f ′(x) and F denotes the Fourier transform operator. The

improved exponential filter used in our computation is shown in Figure 3.

Figure 3. Exponential filter

While in the case of 2/3 dealiasing rule, last 1/3 of the high frequency are set to zero

and the first 2/3 of the Fourier modes are unchanged. As a particular instance, the interval

[−N
2 ,

N
2 ] is considered in which [−N

3 ,
N
3 ] is taken and the two intervals [−N

2 ,−
N
3 ] and [N3 ,

N
2 ]

are avoided.

We investigated the existence of development of any finite time singularity and moni-

tored their large time behavior. To study this, we closely examined the evolution of the level

curves of θ and the growth of ∇θ at various times, and tried to identify the potential time at

which the most singular behavior could occur in the solutions. In this regard, mathematical

criterion given by [17] is used to characterize how the smooth solution of the equation

Dθ

Dt
=
∂θ

∂t
+ v.∇θ = 0(2.1)

can be singular. This is the simplest type which is analogous to characterize the singular

solution of 3D Euler equation [11], and can be stated as:
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”The time interval [0, T ∗] with T ∗ <∞ is a maximal interval of a smooth solution for

the 2D quasi geostrophic active scalar if and only if
∫ T
0 |∇θ|L∞(s)ds→∞ as T → T ∗ with

norm |f |L∞ = maxx∈R2 |f(x)|”[17].

It is a well known fact that the L2 norm of the solution of the inviscid case is preserved.

To establish the validity of our numerical solutions, we monitored the L2 norms throughout

of our computations.

3. Numerical Results

We performed our numerical experiment to reveal the behavior of the solution at critical

index for the dissipative and inviscid SQG equations using the same initial conditions as

given above. We investigated if the solutions could develop any finite time singularity and

examined their large time behavior. To study this, we closely examined the level curves

of θ at various times and tried to identify the time at which the most singular behavior

could occur in the solutions. To validate our numerical results, we continuously monitored

the value of L2-norm of θ throughout our computations and made sure that the norm is

conserved.

3.1. Inviscid SQG Equation. In our computations, we observed that the L2-norm con-

tinued to decrease with time, whereas the L∞-norm decreased up to t = 8 and, increased

until t = 10, and again decreased until t = 12. This rise and fall were observed up to t = 16.

Also, we monitored the growth of the L∞-norm of ∇θ. We observed that its value increased

continuously up to t = 10, decreased up to t = 12, and then continuously increased up to

t = 15. We also monitored the power spectra at various times to make sure that the larger

modes are well resolved as shown in the following Figures 4, 5, 6 7.

Figure 4. Plots at t= 7 and t= 8 for inviscid SQG equation

3.2. Dissipative SQG Equations. In the dissipative case, the analytical results for the

subcritical and critical cases have been already obtained [17]. So, we focused our compu-

tations to supercritical case as no analytical solutions have been obtained until now. We

also performed our computation using the same initial condition as with the inviscid case

above. Our computations showed the similar results for the L2 norm and L∞ norm as with

the inviscid case. We observed that the L2-norm continued to decrease throughout our
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Figure 5. Plots at t= 9 and t= 10 for inviscid SQG equation

Figure 6. Plots at t= 7 and t= 8 of Power Spectrum for inviscid SQG equation

Figure 7. Plots at t= 9 and t= 10 of Power Spectrum for inviscid SQG equation

computation, whereas the L∞-norm decreased up to t = 8, increased up to t = 10, and

again decreased up to t = 12. This rise and fall in the values were observed up to t = 16.

Similarly, the value of L∞-norm of ∇θ increased continuously up to t = 10, decreased up

to t = 12, and then continuously increased up to t = 15. We also noticed that this value

sharply increased at t = 10 and then sharply fell at t = 11 but the reason behind this is

not clear at this time and it needs further investigation. Our findings are presented in the

following Figures 8, 9, 10, 11.

Tables 1 and 2 show the values of L2-norm in the inviscid and dissipative cases.



78 PAWAN SHRESTHA, DURGA JANG KC, RAMJEE SHARMA

Figure 8. Plots at t= 11 and t= 12

Figure 9. Plots at t= 13 and t= 14

Figure 10. Power Spectrum at t = 11 and t = 12

t 1 2 3 4 5

L2-norm 110.851252 110.851252 110.850575 110.839593 110.797750

t 6 7 8 9 10

L2-norm 110.730007 110.651406 110.594932 110.510071 110.466472

Table 1. Value of L2-norm of Inviscid case

From the above tables, we see that the L2 norm is conserved in the inviscid case as

there is no viscosity. On the other hand, in the dissipative case the value of L2- norm

decreases constantly and and energy dissipates continuously which is due to the viscosity.
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Figure 11. Power Spectrum at t=13 and t=14

t 1 2 3 4 5

L2-norm 109.377354 107.916750 106.464917 105.009819 103.534279

t 6 7 8 9 10

L2-norm 102.039835 100.544520 99.060618 97.581038 96.097118

Table 2. Value of L2-norm of Dissipative case for kappa=0.01

4. Conclusion

We performed numerical computations to study the evolution of solutions of the SQG

equation for the inviscid and dissipative cases. We were able to pursue our computations

beyond the previously recorded time. For the inviscid case, our computational results

confirmed that the inviscid equation develops a strong hyperbolic saddle front at about t = 7

as previously observed in [17]. We further observed that the gradient of theta continues to

grow up and decay up to t = 15, and finally no regeneration of strong fronts occurs. In this

case, our computations show that the L2- norm is conserved. We performed our computation

for the dissipative case beyond the previously recorded time. The computations have been

carried out for the long time behavior in the neighborhood of α = 1
2 and no drastic change

in nature of the solution is noticed. Moreover, it is also observed that L2-norm vanishes at

a constant rate for the dissipative case.
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