



## **Status of a Critically Endangered Medicinal and Aromatic Herbs**

### ***Nardostachys jatamansi* DC. in Alpine Meadows of Nepal**

**Nabin Raj Joshi**

Pragya Solution for Sustainable Development, Kathmandu, Nepal.

[nabin2001@gmail.com](mailto:nabin2001@gmail.com)

<https://orcid.org/0000-0001-8741-2531>

Type of Research: Original Research.

Received: November 16, 2025

Revised & Accepted: January 24, 2026

Copyright: Author(s) (2026)



This work is licensed under a [Creative Commons Attribution-Non Commercial 4.0 International License](https://creativecommons.org/licenses/by-nd/4.0/).

## **Abstract**

**Background:** The Himalayan endemic and critically endangered *Nardostachys jatamansi* DC (Jatamansi), a highly prized medicinal and aromatic plant, is of great ecological, cultural, and socioeconomic significance. However, overharvesting, habitat degradation, and climate-induced range shifts are rapidly threatening its wild populations, necessitating robust ecological and management evidence at community forest levels.

**Methods:** This study conducted a comprehensive ecological assessment across the high-altitude Community Forest User Groups in 5 districts. Data were collected from nested sample plots supported by participatory resource mapping. Growing stock, population density, regeneration status, and annual allowable harvest (AAH) were estimated. Trade trends and traditional uses were assessed through interviews and secondary data review.

**Results:** The average dry rhizome growing stock ranged from 39.9 to 295 kg ha<sup>-1</sup>, while mature plant density varied between 195 and 999 individuals ha<sup>-1</sup> and regeneration density between 139 and 1,066 individuals ha<sup>-1</sup>. Mugu district exhibited comparatively stronger populations. Despite frequent over extraction beyond sustainable levels, Higher production in terms of growing stock was associated with north-facing slopes, peak productivity occurred in 3,700–3,900 m as it represents a unique and significant productive niche. Ethnobotanical surveys documented 27 traditional uses, particularly for mental health, ritual purification, and cardiovascular ailments.

**Conclusion:** Findings of this study indicates the urgency of development of the species-specific sustainable harvesting guidelines, community-based monitoring & traceable system.



**Novelty:** This study integrates ecological inventory, ethnobotany, and harvest estimation at CFUG level, providing rare field-based evidence for sustainable management of *N. jatamansi* in Nepal's alpine ecosystems.

**Keywords:** Alpine Meadows, Community Forests, Medicinal Plant, Sustainable Harvesting

## Introduction

Nepal's Himalayan region is home to an immense diversity of medicinal and aromatic plants (MAPs), several of which function as both substantial sources of livelihoods for mountain communities and ecological indicators. One of the most important species for culture and commerce is *Nardostachys jatamansi* DC, also referred to as Jatamansi. A perennial herb native to the eastern Himalayas, *N. jatamansi* grows delicately and is cherished for its strong, fragrant rhizomes, which are used extensively in Tibetan, Chinese, Ayurvedic, and Unani medicine (Manandhar, 2002; Sharma, 2000; Chen & Mukherji, 2013; Bhattacharya & Dhiman, 2020). This species is found in the Caprifoliaceae (formerly Valerianaceae) family and grows between 3,000 and 5,000 meters above sea level. It is frequently found on damp rocky slopes, alpine meadows, and beneath juniper and rhododendron thickets (Bhat & Malik, 2020; Chauhan et al., 2021; Kaur et al., 2020).

*Nardostachys jatamansi* plays an important ecological role in stabilizing fragile alpine soil and contributing to habitat diversity. Its rhizomatous growth helps mitigate soil erosion while providing shelter to associated species in high-altitude ecosystems (Bhattacharya & Dhiman, 2020). Culturally and ethnobotanically, it has been a cornerstone of traditional healthcare in Nepal, commonly used to treat neurological, cardiovascular, and digestive ailments. Ethnobotanical surveys from districts such as Jumla, Humla, Bajhang, and Dolpa show that communities use dried rhizomes for treating epilepsy, mental unrest, high blood pressure, and gastrointestinal issues (Kunwar et al., 2006; Pandey et al., 2013; Subedi et al., 2014). The plant is also associated with spiritual purification rites and ritual incense, widely traded as "Spikenard" in international perfumery markets (Khakurel et al., 2024; Pathak & Godela, 2024).

In Ayurveda, Jatamansi is classified as a medhya rasayana, an herb that improves mental acuity and balances the nervous system (Panra et al., 2013). Its rhizomes yield essential oil rich in sesquiterpenes like nardol, jatamansone, and patchouli alcohol, which exhibit sedative, anti-inflammatory, and neuroprotective properties (Raina & Negi, 2015; Sharma et al., 2016; Panara et al., 2020; Pathak & Godela, 2024). According to Dhiman et al. (2020) refined oil is utilized in herbal remedies, fragrance blends, and high-end cosmetic formulations worldwide. With regard to its fixative properties and earthy-musky undertones, which prolong the olfactory life of blended oils, Jatamansi oil is prized in perfumery (Gurung, 2009). The raw dried rhizomes and their semi-processed form (marc) are exported mostly to China, India, and Europe, and are an essential part of Nepal's green commodity trade (Dhiman et al., 2020a).

Nevertheless, the growing commercial demand, combined with weak regulation and limited regeneration data, has put considerable pressure on wild populations of *N. jatamansi*. Due to



its wide range of uses in conventional medicine and extreme overexploitation, alongside a small reproductive phase and low germination rate (10–20%), as reported by Kaur et al. (2020), it is presently on the brink of extinction. Lately, the International Union of Conservation of Nature (IUCN) Red List of threatened species has listed *N. jatamansi* as a critically endangered (CR) medicinal plant (Ved et al., 2014). Due to illegal and over-harvesting, this species is also categorized in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (Nath Maurya et al., 2023) and designated as endangered in Nepal's Conservation Assessment and Management Plan (CAMP, 2001), the species' survival is imperiled by habitat loss and genetic erosion, which reduce genetic diversity, reproductive success, and long-term viability (Aguilar et al., 2019; Pflüger et al., 2019; Pinto et al., 2024). Overharvesting, without adherence to sustainable protocols, has resulted in fragmented populations, low reproductive output, and diminishing viable stock in community forests. A recent study by Rana et al. (2020) applying MaxEnt modeling to habitat prediction revealed that warming temperatures and human land-use patterns could drastically diminish suitable habitats for *N. jatamansi* over the next few decades.

This conservation crisis is exacerbated by the species' intrinsically slow growth rate and limited ecological niche. Although mature rhizome harvesting can take as long as three years from germination, collectors frequently uproot immature plants, further destabilizing population dynamics (ANSAB, 2010). The combination of climate stress, soil disruption from harvesting, and lack of cultivation protocols continues to imperil its survival in the wild. Despite a government ban on exporting raw Jatamansi in 1995 (MFSC, 2014), enforcement remains uneven, and cross-border informal trade persists in districts near India and China.

Even so, *N. jatamansi* continues to play a key role in the financial lives of people in rural areas, notably in Karnali and Sudurpaschim regions. These provinces have high levels of poverty and limited returns from farming. In districts such as Humla, Darchula, Mugu, Bajhang, and Dolpa, families get additional money by gathering MAPs. They commonly use Jatamansi as a means of exchange in local, unofficial markets, or sell it to buyers who are set up at collection spots along the roads. According to Subedi et al. (2017), over 25 tons of Jatamansi are traded annually across the country. However, this number may be much larger due to both underreporting and unregulated harvesting. The government believes that upwards of 200,000 Nepalese individuals depend on income from MAPs (Joshi, 2008).

### **Research objectives**

The core objectives are to accurately measure the existing stock levels, to scrutinize the patterns of regeneration, and to estimate the Annual Allowable Harvest (AAH) for *N. jatamansi*, considering variations based on elevation and aspect. While the specific objectives are:

1. To quantify the growing stock, density, and regeneration status of *N. jatamansi* in selected community forests.
2. To estimate the species-specific annual allowable harvest (AAH) and along the spatial variation across elevation and aspect gradients.
3. To identify threats to habitat and species sustainability and propose conservation actions rooted in community forestry frameworks.



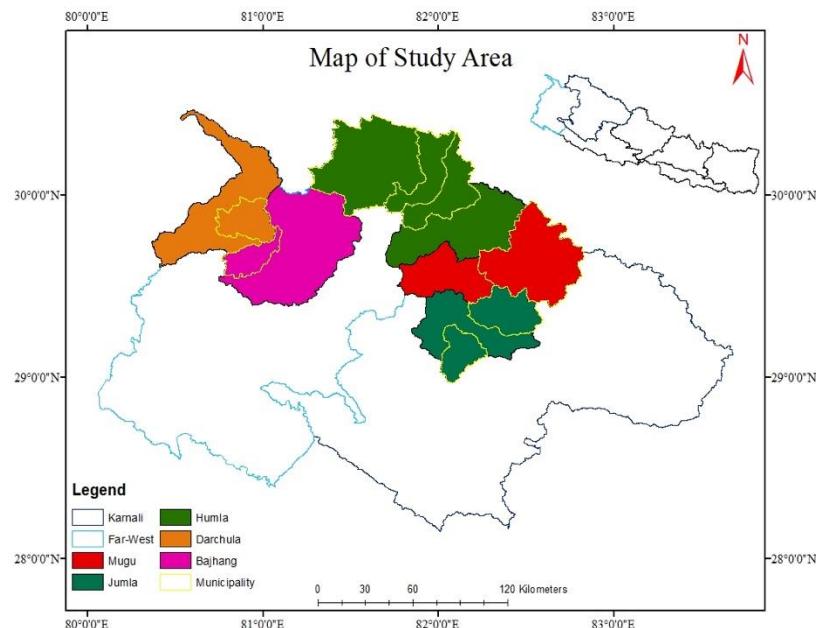
## Review of literature

The Himalayan region serves as a global repository of medicinal and aromatic plants (MAPs), many of which are under significant threat due to anthropogenic and climatic pressures (Khakurel et al., 2024). *Nardostachys jatamansi* DC., a critically endangered, endemic herb, epitomizes this conservation crisis, making it the focus of recent interdisciplinary research aimed at reconciling its ecological fragility with its immense socio-economic value. This review synthesizes the latest scientific literature (within the last five years) to contextualize the research problem by examining three interconnected themes: (1) ecological status and threats, (2) ethnobotanical significance and trade dynamics, and (3) conservation and sustainable management strategies.

Recent ecological assessments confirm the precarious status of *N. jatamansi* in its native habitat. Chauhan et al. (2021) provided a comprehensive review of its biology and conservation, classifying it as critically endangered and highlighting habitat fragmentation and overharvesting as primary drivers of decline. This aligns with global patterns of habitat loss reducing plant progeny quality, as synthesized by Aguilar et al. (2019). Species distribution modeling (SDM) has become a critical tool for predicting climate change impacts. Rana et al. (2020) used MaxEnt modeling to project significant reductions in climatically suitable habitats for high-value MAPs, including *N. jatamansi*, in Nepal under future warming scenarios, identifying a potential upward range shift and habitat contraction. This niche compression under changing thermal regimes is a documented threat to alpine specialists (Sigdel et al., 2020). Furthermore, genetic studies highlight cascading effects; Pflüger et al. (2019) demonstrated that habitat loss leads to non-linear genetic erosion in specialist species, eroding adaptive potential, a risk applicable to fragmented *N. jatamansi* populations. Pinto et al. (2024) further elaborated on the genomic erosion resulting from population fragmentation, underscoring the long-term viability threats beyond immediate population declines.

The cultural and economic embeddedness of *N. jatamansi* continues to be a focal point of ethnobotanical research, which now increasingly documents use trends and market links. Khakurel et al. (2024) conducted a comprehensive risk assessment for valuable Nepalese medicinal plants, identifying *N. jatamansi* as highly vulnerable due to high use values and commercial demand exceeding sustainable supply. Detailed phytochemical and pharmacological reviews, such as that by Pathak and Godela (2024), consolidate evidence for its neuroprotective, sedative, and anti-inflammatory properties, directly explaining its sustained demand in Ayurvedic, Tibetan, and global herbal markets. This demand fuels informal trade networks. Studies on trade governance, though fewer in the last five years, reference persistent issues identified earlier: Olsen and Helles (1997) outlined the "market and margins" dilemma where high value incentivizes overharvesting amidst weak enforcement, a paradox that recent policies have struggled to resolve. The species' listing in CITES Appendix II (as noted by Nath Maurya et al., 2023) is a direct policy response to unsustainable international trade, though implementation challenges remain. Research by Bhattarai et al. (2019) on forest certification




suggests that mechanisms like FairWild could bridge this governance gap, but uptake in community forestry contexts remains limited.

The search for viable conservation strategies has shifted towards integrating ecological baselines with community-based management. The concept of "dynamic conservation corridors" responsive to climate shifts is gaining traction (Sigdel et al., 2020). For in-situ management, precise ecological baselines are foundational. Studies like that of Kaur et al. (2020) not only reiterated the species' critical status but also detailed its low germination rates and specific habitat requirements, providing the biological justification for regulated harvesting. This aligns with the principles of the IUCN's conservation planning. The role of Community Forest User Groups (CFUGs) as key management entities is central in the Nepalese context. Research by Charmakar et al. (2021) on carbon and biodiversity in certified vs. non-certified community forests demonstrates that structured, incentivized community management can lead to better conservation outcomes. However, a significant research gap persists in developing and testing species-specific, spatially-explicit sustainable harvest protocols (like Annual Allowable Harvest - AAH) for alpine MAPs within CFUG operational plans. Most existing guidelines, including the Government of Nepal's NTFP inventory guidelines (2012), offer generalized frameworks but lack the ecological resolution needed for species as vulnerable as *N. jatamansi*.

## Methods

### Study Area

This study covers five ecologically diverse districts of western Nepal Jumla, Mugu, Humla, Bajhang, and Darchula spanning an altitudinal gradient from subtropical valleys (~500 m) to alpine and nival zones above 7,000 m. Jumla, located in the mid-western hills, has a subarctic climate with cold winters, mild summers, a mean annual temperature of about 7.2°C, and annual precipitation of approximately 1,256 mm, largely during the monsoon. Mugu, northeast of Jumla, exhibits similar thermal conditions (7.36°C) but receives considerably lower rainfall, concentrated in July–August (DHM, 2020). Humla, Nepal's northernmost district, ranges from 1,500 m to over 7,000 m and is dominated by alpine and subalpine zones, characterized by cold, dry winters and cool summers. Bajhang, in the far-western hills, has a cool summer–dry winter climate at a mean elevation of 2,927 m. Darchula, bordering India and Tibet, is influenced by the Mahankali River system and experiences a humid subtropical climate with monsoon-driven rainfall (Weather & Climate, 2025), Fig 1.



**Fig. 1:** Location of the study area

Vegetation transitions from temperate broadleaf forests at mid-elevations to subalpine coniferous stands and alpine shrublands at higher altitudes. In the temperate zone (2,000–3,000 m), forests are predominantly made up of species such as *Acer spp.*, *Juglans regia*, *Aesculus indica*, *Ulmus wallichiana*, and *Populus ciliata*, often interspersed with agricultural terraces and community-managed woodlots (Bhatta et al., 2021; Bhattacharjee et al., 2017). These forests are vital for providing critical ecosystem services and serve as habitats for a diverse range of fauna.

The subalpine zone (3,000–4,100 m) is characterized by dense stands of *Abies spectabilis* (silver fir), *Betula utilis* (Himalayan birch), and various species of Rhododendron, forming ecotonal belts that are ecologically sensitive and vulnerable to climatic changes (MoFE, 2018). In the alpine zones (4,100–5,500 m), vegetation is sparse and includes species such as *Juniperus indica*, *Rhododendron anthopogon*, and alpine meadows rich in herbaceous flora. These regions are particularly significant for high-value non-timber forest products (NTFPs) like *Nardostachys jatamansi*, *Valeriana jatamansi*, *Picrorhiza kurroa*, and *Rheum australe*, which are harvested for both traditional medicine and commercial trade (Kunwar et al., 2013). The study area has 201,958 hectares of forest cover, a critical natural resource of the region (MoFE, 2018). Forest land provides essential ecosystem services and tremendous potential for sustainable business expansion via NTFP and MAP harvesting (Bhatt et al., 2021; MoFE, 2021). (Table 1).

**Table 1: Presents the details of the selected local levels**

| SN | District | Municipality                       | Total area (ha) | Total forest area (ha) | Forest Percentage (%) |
|----|----------|------------------------------------|-----------------|------------------------|-----------------------|
| 1  | Humla    | Simikot Rural Municipality         | 78,246          | 9,834                  | 12.6                  |
|    |          | Kharpunath Rural Municipality      | 87,631          | 16,420                 | 18.7                  |
|    |          | Namkha Rural Municipality          | 240,805         | 30,705                 | 12.8                  |
| 2  | Mugu     | Mugum Karmarong Rural Municipality | 209,952         | 40,968                 | 19.5                  |
| 3  | Jumla    | Patarasi Rural Municipality        | 81,105          | 27,961                 | 34.5                  |
|    |          | Tatopani Rural Municipality        | 52,341          | 24,025                 | 45.9                  |
| 4  | Bajhang  | Bungal Municipality                | 44,502          | 24,985                 | 56.1                  |
| 5  | Darchula | Apimal Rural Municipality          | 61,041          | 27,060                 | 44.3                  |
|    |          |                                    | <b>855,623</b>  | <b>201,958</b>         |                       |

A total of 29 Community Forest User Groups (CFUGs) across five high-altitude districts-Humla, Mugu, Bajhang, Jumla, and Darchula- were selected based on prior occurrence records, ecological suitability, and community dependence on NTFPs. These CFUGs collectively steward over 10,307 hectares of forest and alpine meadow habitats, ranging between 2,500 m and 4,700 m above sea level, which represent the core altitude of *N. jatamansi* (Chauhan et al., 2021; Dhiman et al., 2020a). The study was conducted between April 2022 and October 2023, encompassing both the pre-monsoon and post-harvest seasons to capture phenological variations and harvesting practices.

### **Data Analysis**

The collected data underwent a dual analytical approach, encompassing both qualitative and quantitative methodologies. Information derived from focus group discussions and key informant surveys was subjected to qualitative analysis, employing a descriptive methodological framework. This analytical phase was specifically directed towards the precise calculation of pivotal parameters, including effective area, NTFP frequency and density, total fresh and dry growing stock, and annual allowable harvest (AAH) quantity.

#### **Effective area (ha):**

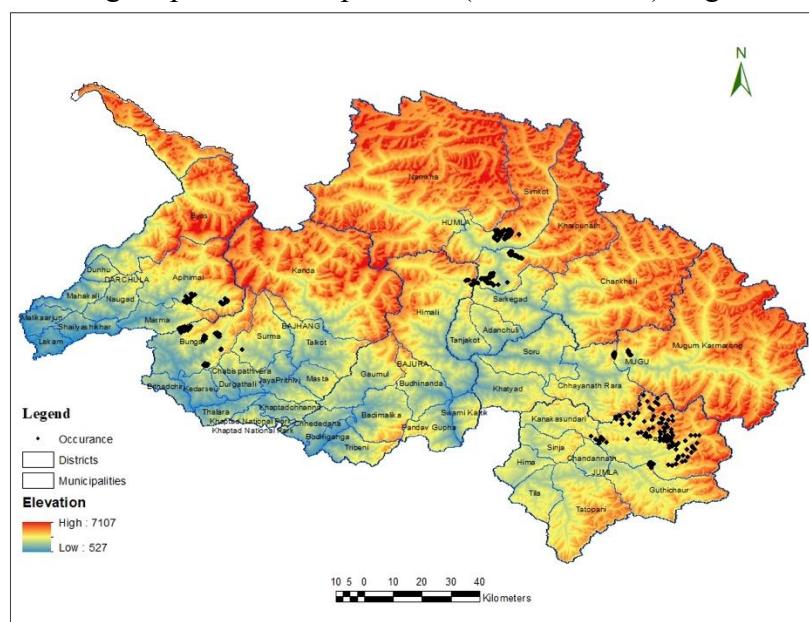
This metric denotes geographical areas where the targeted species is currently extant. The effective habitat (expressed in hectares) was estimated by integrating the potential habitat, as meticulously delineated from district and CFUG-level participatory resource mapping, with the species' frequency of occurrence (expressed as a percentage) obtained from plot-level inventory data.

Effective area (ha)=Potential habitat of species "A" (ha)×frequency of occurrence (%)

**Frequency of occurrence:** Frequency represents the proportion of sampling units in which a particular species is present, thereby reflecting its dispersion as a percentage of occurrence (Bonham, 1989; Raunkiaer, 1934)

$$\text{Frequency (F)} = \frac{\text{Total number of plots in which species "A" occurred}}{\text{Total number of plots sampled}} \times 100$$

**Density:** Density is rigorously defined as the total number of individuals of a given species per unit area, providing a quantitative measure of the species' numerical strength within a specific ecological community (McArdle, 2013).


$$\text{Density (plants/ha)} = \frac{\text{Total number of Individuals of species "A"}}{\text{Total number of quadrats sampled} \times \text{Area of quadrats (m}^2\text{)}} \times 10000$$

**Growing Stock:** Growing stock was estimated in terms of kilograms per hectare ( $\text{kg ha}^{-1}$ ) and subsequently converted to total metric tonnes across the entire forest area. During the field survey, the fresh weight of samples was precisely measured from the field plots through a process of destructive harvesting. The corresponding dry weight was then estimated utilizing a predefined conversion factor (cf). The dry weight of a species, when multiplied by the Annual Allowable Harvest (AAH) factor, yields the AAH amount. AAH factors were applied as recommended by the ANSAB's participatory NTFPs inventory toolkit (ANSAB, 2010) and the NTFP inventory guideline of the Department of Forests, Government of Nepal (2012).

## Results

### Distribution and Occurrence

Field assessments across five districts revealed that *Nardostachys jatamansi* was present in all sampled alpine forest and meadow habitats, ranging between elevations of 3,300 m and 4,800 m. The species was found growing predominantly on moist north-facing slopes, alpine scrub zones, and near Rhododendron and Juniper thickets. Of the 500 inventory plots surveyed, *N. jatamansi* occurred in 64.7% of plots, indicating moderate spatial prevalence. Humla and Darchula districts showed the highest frequency of occurrence (73% and 71%, respectively), whereas Jumla and Mugu reported lower presence (56% and 58%), Fig 2.



**Fig. 2:** Study area map showing occurrence points

### **Density, Growing Stock, and AAH**

The overall mean density of mature *N. jatamansi* plants was recorded at 331 individuals per hectare. District-wise variation was significant (ANOVA,  $p < 0.01$ ). Overall, dense forest areas consistently support higher regeneration and mature plant densities than sparse areas, highlighting the importance of canopy cover and favorable microclimatic conditions. The mean density of Jatamansi regeneration ( $\approx 678$  plants  $ha^{-1}$ ) being higher than that of mature plants ( $\approx 501$  plants  $ha^{-1}$ ) indicates active natural regeneration across the sites. This suggests that existing habitats remain ecologically suitable for species renewal. However, the lower density of mature plants may reflect past harvesting pressure, slow growth, or mortality before reaching maturity. The difference highlights the importance of regulating harvest intensity and protecting regenerating cohorts to ensure sustainable population structure. These findings are significant for community forest management, as they support the need for site-specific harvesting guidelines, regeneration monitoring, and conservation measures to maintain long-term productivity and ecological balance of Jatamansi populations.

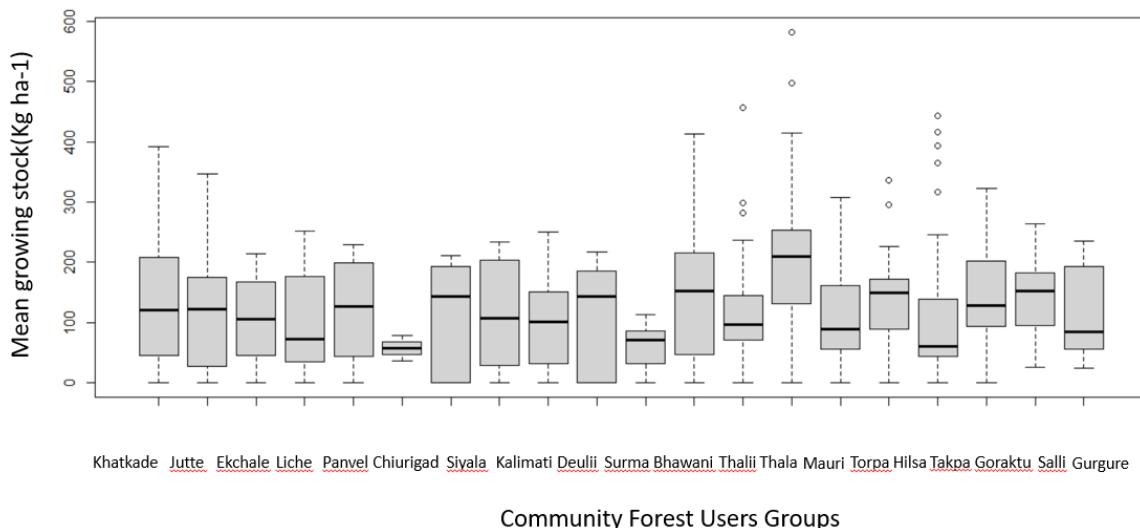
District wise, Humla district, regeneration density in dense forests ranges from 722 plants  $ha^{-1}$  (Goraktu) to as high as 3,055 plants  $ha^{-1}$  (Sallikhola), while mature plant density reaches up to 1,606 plants  $ha^{-1}$  in the same forest. Similarly, Mugu district shows strong populations, particularly in Pangsarin, where regeneration density in dense forest is 3,041 plants  $ha^{-1}$  and mature plant density is 2,814 plants  $ha^{-1}$ , the highest recorded among all sites.

In contrast, Jumla, Bajhang, and Darchula generally exhibit lower densities. For example, dense regeneration in Jumla ranges from 344 plants  $ha^{-1}$  (Churkoti) to 1,320 plants  $ha^{-1}$  (Maharudra), while in Darchula it remains below 351 plants  $ha^{-1}$  in most forests. Sparse forest areas across all districts show markedly reduced densities, often less than half of dense forest values. Regenerating individuals (juvenile plants  $< 2$  years) accounted for 22–30% of populations, depending on microclimate and slope stability.

Table 2: Density of *N. jatamansi* in Mountain CFUGs

| SN | District | Community Forest | Density of regeneration in Dense (ha) | Density of regeneration in Sparse (ha) | Density of mature plants in Dense (ha) | Density of mature plants in Sparse (ha) |
|----|----------|------------------|---------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|
| 1  | Humla    | Mauri            | 1200                                  | 467                                    | 758                                    | 327                                     |
| 2  | Humla    | Goraktu          | 722                                   | 235                                    | 376                                    | 149                                     |
| 3  | Humla    | Hilsa            | 1056                                  | 209                                    | 707                                    | 112                                     |
| 4  | Humla    | Thala            | 2196                                  | 698                                    | 1278                                   | 447                                     |
| 5  | Humla    | Thali            | 1570                                  | 1030                                   | 470                                    | 650                                     |
| 6  | Humla    | Takpafuk         | 2028                                  | 194                                    | 1188                                   | 123                                     |
| 7  | Humla    | Torpahutik       | 1553                                  | 596                                    | 562                                    | 443                                     |
| 8  | Humla    | Sallikhola       | 3055                                  | 376                                    | 1606                                   | 673                                     |
| 9  | Humla    | Gurgure          | 1304                                  | 411                                    | 707                                    | 559                                     |

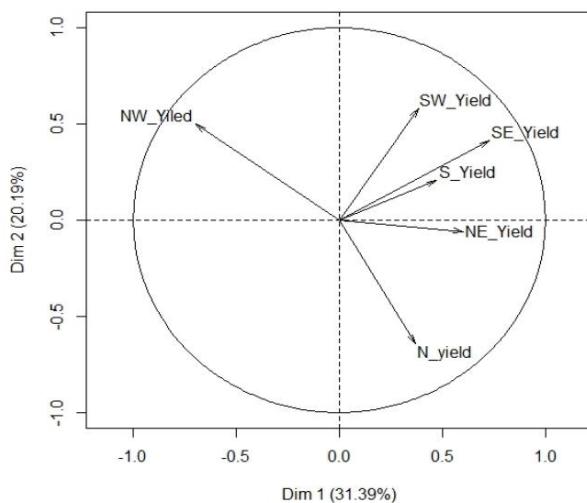
|    |          |                |      |     |      |     |
|----|----------|----------------|------|-----|------|-----|
| 10 | Mugu     | Chulya         | 124  | 222 | 1049 | 80  |
| 11 | Mugu     | Chuwathopka    | 488  | 288 | 781  | 419 |
| 12 | Mugu     | Ladegaad       | 2824 | 71  | 1341 | 612 |
| 13 | Mugu     | Pangsarin      | 3041 | 607 | 2814 | 910 |
| 14 | Mugu     | Sherok         | 2232 | 763 | 1505 | 484 |
| 15 | Jumla    | Maharudra      | 1320 | 152 | 320  | 104 |
| 16 | Jumla    | Deuramai       | 368  | 147 | 463  | 221 |
| 17 | Jumla    | Churkoti       | 344  | 63  | 750  | 275 |
| 18 | Jumla    | Nadai          | 1288 | 224 | 1541 | 429 |
| 19 | Bajhang  | Khatkatde      | 1307 | 440 | 347  | 310 |
| 20 | Bajhang  | Juttebhadmaya  | 177  | 177 | 172  | 172 |
| 21 | Bajhang  | Yekchale       | 212  | 141 | 118  | 235 |
| 22 | Bajhang  | Liche          | 259  | 216 | 222  | 232 |
| 23 | Bajhang  | Panbhelbira    | 167  | 183 | 111  | 156 |
| 24 | Bajhang  | Chiurigad      | 1102 | 78  | 156  | 117 |
| 25 | Darchula | Bhawanidhaura  | 221  | 28  | 290  | 97  |
| 26 | Darchula | Siyaladigarful | 141  | 54  | 173  | 65  |
| 27 | Darchula | Surmabhawani   | 76   | 65  | 141  | 97  |
| 28 | Darchula | Deulighat      | 195  | 156 | 68   | 146 |
| 29 | Darchula | Kalimati       | 351  | 107 | 320  | 62  |


The mean growing stock (GS) and Annual Allowable Harvest (AAH) of Jatamansi across selected community forests in Humla, Mugu, Jumla, Bajhang, and Darchula districts, based on effective dense and sparse habitat areas. Humla district contributes the highest GS, with Mauri CF alone producing about 28.48 tons, reflecting its large effective area and high mean GS ( $293 \text{ kg ha}^{-1}$ ). Similarly, Thali, Thala, and Hilsa CFs also show substantial stocks, indicating favorable ecological conditions and relatively intact populations. Across all districts, GS from dense areas is consistently higher than from sparse areas, justifying the classification and highlighting the importance of conserving dense habitats. Jumla and Bajhang show moderate but stable GS levels, while Mugu and Darchula contribute comparatively lower stocks due to smaller effective areas and lower mean GS. The total GS values are systematically converted into AAH, generally set at around 40% of total GS, ensuring sustainability. The significance of these values lies in its practical application for sustainable harvesting planning. It provides a science-based justification for setting harvest quotas, prioritizing high-potential community forests, and regulating extraction pressure. The results support adaptive management, balancing livelihood benefits with long-term conservation of Jatamansi populations (Table 3).

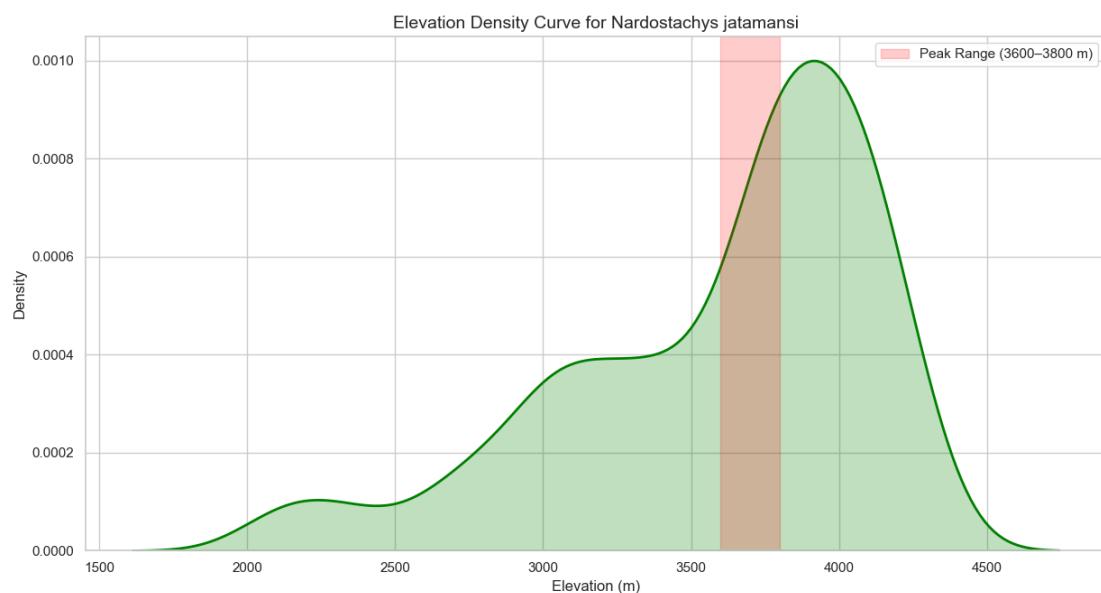
**Table 3: Mean and total growing stock with AAH of Jatamansi**

| District     | CF Name        | Effect<br>ive<br>area<br>in<br>dense<br>(ha) | Effective<br>area in<br>sparse<br>(ha) | Mean GS<br>(Kg ha <sup>-1</sup> ) | GS in<br>Dense<br>(Kg) | GS in<br>Sparse<br>(Kg) | Total GS<br>(Kg) | Total<br>GS<br>(Tonne<br>) | Total<br>AAH<br>(Tonne) |
|--------------|----------------|----------------------------------------------|----------------------------------------|-----------------------------------|------------------------|-------------------------|------------------|----------------------------|-------------------------|
| Humla        | Mauri          | 71.4                                         | 25.8                                   | 293.0                             | 20927.5                | 7557.15                 | 28484.65         | 28.48                      | 11.39                   |
|              | Goraktu        | 40.7                                         | 6.9                                    | 183.8                             | 7477.13                | 1268.85                 | 8745.98          | 8.75                       | 3.50                    |
|              | Hilsa          | 40.2                                         | 9.7                                    | 174.6                             | 7016.40                | 1700.95                 | 8717.35          | 8.72                       | 3.49                    |
|              | Thala          | 39.5                                         | 9.9                                    | 191.2                             | 7546.37                | 1886.59                 | 9432.96          | 9.43                       | 3.77                    |
|              | Thali          | 44.7                                         | 7.0                                    | 208.6                             | 9328.83                | 1451.15                 | 10779.98         | 10.78                      | 4.31                    |
|              | Takpafuk       | 28.3                                         | 6.5                                    | 133.0                             | 3763.57                | 870.91                  | 4634.48          | 4.63                       | 1.85                    |
|              | Torpahutik     | 9.9                                          | 1.0                                    | 131.6                             | 1303.55                | 133.32                  | 1436.87          | 1.44                       | 0.57                    |
|              | Sallikhola     | 21.9                                         | 9.7                                    | 112.32                            | 2464.82                | 1088.36                 | 3553.18          | 3.55                       | 1.42                    |
|              | Gurgure        | 32.2                                         | 9.8                                    | 104.18                            | 3355.45                | 1016.80                 | 4372.25          | 4.37                       | 1.75                    |
| Mugu         | Chuwathopka    | 40.1                                         | 6.0                                    | 117.02                            | 4695.91                | 704.39                  | 5400.30          | 5.40                       | 2.16                    |
|              | Sherok         | 24.5                                         | 5.3                                    | 94.02                             | 2302.23                | 500.03                  | 2802.26          | 2.80                       | 1.12                    |
|              | Ladegadh       | 12.2                                         | 1.4                                    | 109.01                            | 1334.28                | 147.16                  | 1481.45          | 1.48                       | 0.59                    |
|              | Chulya         | 22.8                                         | 3.9                                    | 106.24                            | 2423.83                | 414.33                  | 2838.16          | 2.84                       | 1.14                    |
|              | Pangstarin     | 18.0                                         | 4.9                                    | 60.08                             | 1083.47                | 294.16                  | 1377.63          | 1.38                       | 0.55                    |
| Jumla        | Maharudra      | 42.1                                         | 9.9                                    | 183.9                             | 7737.68                | 1820.63                 | 9558.31          | 9.56                       | 3.82                    |
|              | Deuramai       | 43.6                                         | 8.9                                    | 144.8                             | 6308.94                | 1290.46                 | 7599.40          | 7.60                       | 3.04                    |
|              | Churkoti       | 33.1                                         | 9.8                                    | 124.64                            | 4122.57                | 1221.50                 | 5344.08          | 5.34                       | 2.14                    |
|              | Nadai          | 21.8                                         | 5.5                                    | 74.77                             | 1633.05                | 408.26                  | 2041.31          | 2.04                       | 0.82                    |
| Bajhang      | Khatkatde      | 41.2                                         | 8.8                                    | 190.8                             | 7866.81                | 1685.75                 | 9552.56          | 9.55                       | 3.82                    |
|              | Juttebhadmaya  | 15.0                                         | 3.9                                    | 162.5                             | 2442.45                | 634.40                  | 3076.85          | 3.08                       | 1.23                    |
|              | Yekchale       | 3.0                                          | 1.0                                    | 127.6                             | 380.55                 | 130.24                  | 510.79           | 0.51                       | 0.20                    |
|              | Liche          | 11.1                                         | 1.8                                    | 120.0                             | 1331.04                | 218.02                  | 1549.06          | 1.55                       | 0.62                    |
|              | Panbhelbira    | 33.2                                         | 3.7                                    | 132.4                             | 4390.09                | 485.33                  | 4875.43          | 4.88                       | 1.95                    |
|              | Chiurigaad     | 16.3                                         | 3.5                                    | 39.97                             | 652.85                 | 140.28                  | 793.14           | 0.79                       | 0.32                    |
| Darchula     | Bhawanidhaura  | 20.9                                         | 2.4                                    | 72.4                              | 1511.32                | 172.27                  | 1683.58          | 1.68                       | 0.67                    |
|              | Siyaladigarful | 26.7                                         | 4.1                                    | 79.4                              | 2118.06                | 326.75                  | 2444.82          | 2.44                       | 0.98                    |
|              | Surmabhawani   | 15.5                                         | 2.9                                    | 137.2                             | 2129.50                | 402.67                  | 2532.17          | 2.53                       | 1.01                    |
|              | Deulighat      | 25.4                                         | 4.8                                    | 133.6                             | 3398.13                | 642.56                  | 4040.69          | 4.04                       | 1.62                    |
|              | Kalimati       | 22.3                                         | 4.9                                    | 146.9                             | 3272.26                | 713.95                  | 3986.21          | 3.99                       | 1.59                    |
| <b>Total</b> |                |                                              |                                        |                                   |                        |                         |                  | <b>153.6</b>               | <b>61.4</b>             |

The box and whisker plots were used to show the visual pattern of Jatamansi in the selected 29 CFUGs of Humla, Mugu, Jumla, Bajhang, and Darchula districts where the large data sets in terms of mean and median values have been presented. In addition, the extreme values were also plotted, which indicates the potential productivity of a particular species in the selected

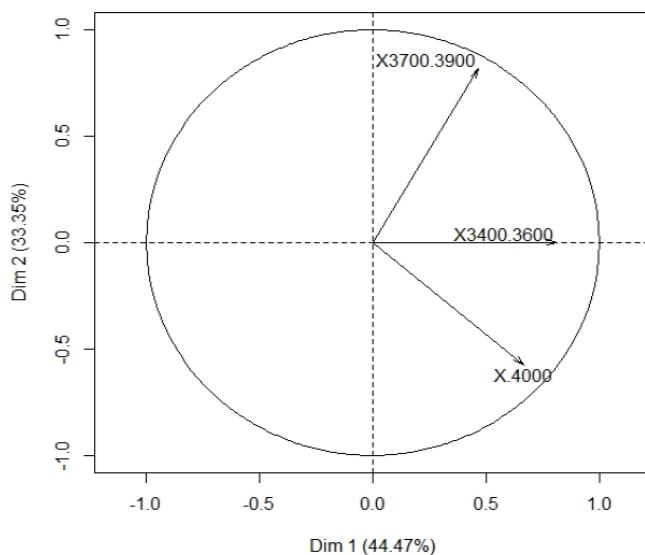

CFUGs of the study districts up to that optimum level if the forests and meadows are managed sustainably.




**Fig.1:** Box and whisker plot showing productivity and production potential of Jatamansi. Based on the above, Thali, Thala and Mauri, Takpafuk CFs of Humla has the highest spread of the Jatamansi production up to 600 kg per hectare, while that of minimum Jatamansi production was observed in lowest ( $<100 \text{ kg ha}^{-1}$ ) in Chiurigad CF of Bajnag followed by Surmabhawani CF of Darchula.

#### Aspect and Elevational Correlations

The principal component analysis (PCA) graph principal component circle illustrates the relationships between Jatamansi yield across slope aspects using the first two principal components. Dimension 1 (31.99%) explains the largest share of variance and is positively associated with NE, SE, S, and SW yields, indicating higher productivity on relatively warmer and moderately moist aspects. Dimension 2 (20.18%) separates NW and N yields, reflecting cooler, moisture-retentive conditions that influence biomass differently. The longer vectors for NE yield and SW yield indicate stronger contributions to overall variability, while their angular separation suggests contrasting ecological controls among slope aspects. Overall, the plot highlights aspect-driven microclimatic effects on Jatamansi yield (Fig 4 and Fig 5).




**Fig.4:** Aspect-wise principal component analysis for Jatamansi



**Fig.5:** Elevation-wise principal component analysis for Jatamansi

The PCA loading scores, the 4000m+ elevation zone (X4000) is the primary driver of the first and most important principal component (Dim 1, 44.47%), with a strong positive loading of 0.80. This suggests conditions above 4000m are a major source of variation in Jatamansi productivity. Conversely, the 3700-3900m zone (X3700-3900) dominantly defines the second component (Dim 2, 23.35%) with a very high loading of 0.95, indicating it represents a unique and significant productive niche. The 3400-3600m zone contributes moderately to Dim 1 but is less influential, showing it is not a primary driver of the observed production pattern in the Alpine Meadows (Fig 6).



**Fig.6:** Elevation-wise principal component analysis for Jatamansi

## Discussion

This study advances understanding of *Nardostachys jatamansi* DC by moving beyond simple documentation of distribution and use to reveal the demographic, ecological, and governance processes driving its continued decline in western Nepal. The findings collectively indicate that the species' Critically Endangered status is not an abstract classification, but the outcome of interacting biological constraints, climatic sensitivity, and institutional weaknesses.

### Interpreting Low AAH in a Critically Endangered Context

The estimated Annual Allowable Harvest (AAH) of approximately 0.20 tonne is strikingly low, yet ecologically justified when interpreted in light of the species' life-history traits. *N. jatamansi* is a slow-growing, perennial alpine herb with limited vegetative spread and delayed sexual maturity. These characteristics, combined with regeneration rates of only 22–30%, severely constrain its capacity to recover following extraction. For comparable rhizomatous MAPs such as *Valeriana jatamansi* sustainable harvest thresholds typically range between 0.3 and 0.8 kg ha<sup>-1</sup> under moderate regeneration conditions. The fact that *N. jatamansi* despite being Critically Endangered shows extraction levels exceeding 2.5 kg ha<sup>-1</sup> in some CFUGs underscores the magnitude of the sustainability crisis. Although national NTFP guidelines prescribe uniform harvest rates, these results demonstrate that such blanket prescriptions are ecologically inappropriate for highly sensitive alpine species. The low AAH should therefore be interpreted not as a conservative anomaly, but as an early warning signal that current harvesting regimes are fundamentally misaligned with biological reality.

### Regeneration Density Mismatch and Population Stability

Low regeneration rates gain deeper significance when synthesized with mature plant density data. The recorded mean density of 331 mature plants ha<sup>-1</sup> is notably lower than the ~500 plants ha<sup>-1</sup> reported by ANSAB (2014) from Dolpa, suggesting either regional depletion or a broader range-wide decline. More importantly, the weak representation of juveniles relative to mature individuals indicates a demographic imbalance characteristic of "senescent populations,"



where standing biomass masks imminent collapse. Under such conditions, even small increases in harvest intensity can trigger rapid population declines, particularly in alpine environments where recovery is slow and recruitment episodic.

### **Microclimatic Refugia and Climate Change Implications**

The higher biomass observed on north- and northeast-facing slopes highlights the role of microclimatic refugia in sustaining *N. jatamansi* populations. These aspects provide cooler temperatures, higher soil moisture, and reduced evaporative stress, buffering the species against regional warming trends. Himalayan biodiversity assessments increasingly recognize such microrefugia as critical for alpine species persistence under climate change. However, their spatial limitation also implies heightened vulnerability: as suitable habitats contract upslope, harvesting pressure may intensify within these refugia, accelerating degradation unless proactively managed.

### **Market Dynamics, Governance, and Trade Collapse**

The observed decline in trade volumes after 2016, despite rising prices, aligns with the “boom-and-bust” cycles described by Olsen and Helles (1997) for unregulated MAP markets. Rather than reflecting successful conservation, this downturn likely signals localized resource exhaustion combined with enforcement ambiguities. Continued informal trade, despite export bans, further erodes incentives for sustainable management, certification, or local processing. This governance paradox weakens both conservation outcomes and livelihood resilience.

### **Limitations, Enforcement Challenges, and Pathways Forward**

While the AAH derived in this study is scientifically robust, its practical enforcement remains constrained by poverty, weak monitoring, and informal market structures. This limitation is not unique to *N. jatamansi* but reflects systemic challenges in Himalayan NTFP governance. Nevertheless, evidence from Nepal suggests that community-based monitoring, participatory harvest planning, and certification schemes such as FairWild can improve compliance and ecological outcomes when coupled with market incentives and technical support.

The decline of *N. jatamansi* is best understood as a coupled socio-ecological failure rather than isolated overharvesting. Addressing this requires species-specific harvest limits grounded in regeneration dynamics, protection of climate refugia, revitalization of biocultural stewardship, and institutional mechanisms that translate ecological knowledge into enforceable and equitable practice. Without such integrated action, even well-intentioned conservation policies will remain insufficient to halt the erosion of this iconic Himalayan medicinal plant.

### **Conclusion and Recommendation**

*Nardostachys jatamansi* DC, is a high value and flagship medicinal and aromatic plant of the Nepal Himalayas, represents a complex nexus of ecological significance, fragility, cultural heritage, and livelihood opportunity. This study establishes a multidimensional baseline on its distribution, abundance, and socio-ecological importance, revealing both significant potential and serious conservation risks. Quantitative assessments across five high-altitude districts show that the species is ecologically restricted to narrow elevation bands (3,700–3,900 m), with



productivity strongly influenced by slope aspect and microclimatic conditions. Although moderate standing growing stock and harvest potential exist, regeneration levels are critically low, indicating recruitment bottlenecks that threaten long-term population viability. Species distribution modeling (MaxEnt) further predicts climate-driven shifts in suitable habitats, highlighting the need for adaptive, forward-looking conservation approaches. Ethnobotanical evidence confirms the species' deep integration into Himalayan medicinal systems, spiritual practices, and subsistence economies, particularly in Karnali and Sudurpaschim provinces. However, weak governance and market distortions persist, including informal trade despite regulatory bans and limited capacity of Community Forest User Groups to implement sustainable harvesting or certification. Securing the future of *N. jatamansi* requires species-specific harvest protocols, community-based monitoring, climate-resilient habitat management, value-chain strengthening through local processing and certification, and integration of biocultural knowledge into conservation training. Reframing *N. jatamansi* as a socio-ecological asset rather than a mere commodity is essential for sustainable stewardship in fragile mountain ecosystem products and services.

**Author Contribution**

**Nabin Raj Joshi:** Conceptualization, Methodology, Investigation, Formal Analysis, Writing Original Draft, Project Administration Data Curation, Validation, Writing, Review & Editing.

**Conflict of Interest**

The author declare no conflict of interest.



## Reference

Aguilar, R., Cristóbal-Pérez, E. J., Balvino-Olvera, F. J., de Jesús Aguilar-Aguilar, M., Aguirre-Acosta, N., Ashworth, L., Lobo, J. A., Martén-Rodríguez, S., Fuchs, E. J., Sanchez-Montoya, G., Bernardello, G., & Quesada, M. (2019). Habitat fragmentation reduces plant progeny quality: a global synthesis. *Ecology Letters*, 22(7), 1163–1173. <https://doi.org/10.1111/ele.13272>

Albuquerque, U. P., & Ferreira, J. (2017). *What is ethnobotany, and why does it matter?* In U. P. Albuquerque & R. J. N. Alves (Eds.), *Ethnobotany in the New World* (pp. 1–10). Springer.

ANSAB. (2005). *Commercially Important Non-Timber Forest Products (NTFPs) of Nepal*. Asia Network for Sustainable Agriculture and Bioresources.

ANSAB. (2010). *Participatory Inventory of Non-Timber Forest Products*. Asia Network for Sustainable Agriculture and Bioresources.

ANSAB. (2014). *NTFP Inventory in Selected VDCs of Humla and Mugu Districts*. ATIS Karnali Project.

Bhat, M. D. A., & Malik, S. A. (2020). Efficacy of Nardostachys jatamansi (D.Don) DC in essential hypertension: A randomized controlled study. *Complementary Therapies in Medicine*, 53, 102532. <https://doi.org/10.1016/j.ctim.2020.102532>

Bhatt, B. P., Singh, M. K., & Nepal, M. (2021). *Status of NTFPs in Nepal: Opportunities and challenges*.

Bhatta, K. P., Aryal, A., Baral, H., Khanal, S., Acharya, A. K., Phomphakdy, C., & Dorji, R. (2021). Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal. *Sustainability*, 13(13), 7510. <https://doi.org/10.3390/su13137510>

Bhattacharjee, A., Anadón, J., Lohman, D., Doleck, T., Lakhankar, T., Shrestha, B., Thapa, P., Devkota, D., Tiwari, S., Jha, A., Siwakoti, M., Devkota, N., Jha, P., & Krakauer, N. (2017). The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. *Climate*, 5(4), 80. <https://doi.org/10.3390/cli5040080>

Bhattacharya, A., & Dhiman, N. (2020). Nardostachys jatamansi (D.Don) DC.-Challenges and opportunities of harnessing the untapped medicinal plant from the Himalayas. *Journal of Ethnopharmacology*, 246. <https://doi.org/10.1016/j.jep.2019.112211>

Bhattarai, B. P., Kunwar, R. M., & Kc, R. (2019). Forest certification and FSC standard initiatives in collaborative forest management system in Nepal. *International Forestry Review*, 21(4), 416–424. <https://doi.org/10.1505/146554819827906852>

Bonham, C. D. (1989). *Measurements for terrestrial vegetation*. John Wiley Son.

Garibaldi, A., & Turner, N. (2004). Cultural keystone species: Implications for ecological conservation and restoration. *Ecology and Society*, 9(3), 1. <https://doi.org/10.5751/ES-00669-090301>

Charmakar, S., Oli, B. N., Joshi, N. R., Maraseni, T. N., & Atreya, K. (2021). Forest Carbon Storage and Species Richness in FSC Certified and Non-certified Community Forests in Nepal. *Small-Scale Forestry*, 20(2), 199–219. <https://doi.org/10.1007/s11842-020-09464-3>

Chauhan, H. K., Oli, S., Bisht, A. K., Meredith, C., & Leaman, D. (2021). Review of the biology, uses and conservation of the critically endangered endemic Himalayan species



Nardostachys jatamansi (Caprifoliaceae). *Biodiversity and Conservation*, 30(12), 3315–3333. <https://doi.org/10.1007/s10531-021-02269-6>

Chen, K. K., & Mukerji, B. (Eds.). (2016). *Pharmacology of Oriental Plants: Proceedings of the First International Pharmacological Meeting, Stockholm, 22–25 August, 1961*. Elsevier.

Convention on Biological Diversity. (2010). *Strategic plan for biodiversity 2011–2020*. Secretariat of the Convention on Biological Diversity.

Department of Hydrology and Meteorology (DHM). (2020). *Climatic data records of western Nepal*. Government of Nepal.

Dhiman, B., Sharma, P., Shivani, & Pal, P. K. (2020). Biology, chemical diversity, agronomy, conservation and industrial importance of Valeriana jatamansi: A natural sedative. *Journal of Applied Research on Medicinal and Aromatic Plants*, 16, 100243. <https://doi.org/10.1016/j.jarmap.2020.100243>

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37(12), 4302–4315. <https://doi.org/10.1002/joc.5086>

Ghimire, S. K., Awasthi, B., Rana, S., Rana, H. K., Bhattacharai, R. (2016). Export of medicinal and aromatic plant materials from Nepal. *Botanica Orientalis*, 10, 24–32.

Government of Nepal. (2012). *NTFP Inventory Guidelines*. Department of Forests, Ministry of Forest and Soil Conservation.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. *Ecology Letters*, 8(9), 993–1009. <https://doi.org/10.1111/j.1461-0248.2005.00792.x>

International Centre for Integrated Mountain Development (ICIMOD). (2017). *Karnali River Basin profile*. ICIMOD.

Joshi, A. R. (2008). *Medicinal and Aromatic Plants in Nepal: Strategies and Interventions*. GIZ/PSP-RUFIN

Kaur, H., Lekhak, M. M., Chahal, S., Goutam, U., Jha, P., Naidoo, D., Ochatt, S. J., & Kumar, V. (2020). Nardostachys jatamansi (D.Don) DC.: An invaluable and constantly dwindling resource of the Himalayas. *South African Journal of Botany*, 135, 252–267. <https://doi.org/10.1016/j.sajb.2020.08.010>

Khakurel, D., Upadhyay, Y., Karki, S., Khadka, B., Poudel, B. D., Ahn, G., Cha, J.-Y., Kim, W.-Y., Lee, S.-H., & Rajbhandary, S. (2024). Assessing the risks to valuable medicinal plants in Nepal from human activities and environmental factors. *Global Ecology and Conservation*, 51, e02860. <https://doi.org/10.1016/j.gecco.2024.e02860>

Khatiwada, K., Panthi, J., Shrestha, M., & Nepal, S. (2016). Hydro-Climatic Variability in the Karnali River Basin of Nepal Himalaya. *Climate*, 4(2), 17. <https://doi.org/10.3390/cli4020017>

Kunwar, R. M., Nepal, B. K., Kshhetri, H. B., Rai, S. K., & Bussmann, R. W. (2006). Ethnomedicine in Himalaya: a case study from Dolpa, Humla, Jumla and Mustang districts of Nepal. *Journal of Ethnobiology and Ethnomedicine*, 2(1), 27. <https://doi.org/10.1186/1746-4269-2-27>

Kunwar, R. M., Baral, K., Paudel, P., Acharya, R. P., Thapa-Magar, K. B., Cameron, M., & Bussmann, R. W. (2016). Land-use and socioeconomic change, medicinal plant selection



and biodiversity resilience in Far Western Nepal. *PLOS ONE*, 11(12), e0167812. <https://doi.org/10.1371/journal.pone.0167812>

Kunwar, R. M., Fadiman, M., Cameron, M., Bussmann, R. W., Thapa-Magar, K., Rimal, B., Sapkota, P. (2018). Cross-cultural comparison of plant use knowledge in Baitadi and Darchula districts, Nepal Himalaya. *Journal of Ethnobiology and Ethnomedicine*, 14, 40. <https://doi.org/10.1186/s13002-018-0242-7>

Kunwar, R. M., Rimal, B., Sharma, H. P., Poudel, R. C., Pyakurel, D., Tiwari, A., Magar, S. T., et al. (2021). Distribution and habitat modeling of *Dactylorhiza hatagirea*, *Paris polyphylla* and *Taxus* species in Nepal Himalaya. *Journal of Applied Research on Medicinal and Aromatic Plants*, 20, 100274. <https://doi.org/10.1016/j.jarmap.2020.100274>

Kunwar, R. M., Mahat, L., Acharya, R. P., & Bussmann, R. W. (2013). Medicinal plants, traditional medicine, markets and management in far-west Nepal. *Journal of Ethnobiology and Ethnomedicine*, 9(24), 1–10. <https://doi.org/10.1186/1746-4269-9-24>

Lenoir, J., & Svenning, J. C. (2015). Climate-related range shifts—A global multidimension synthesis and new research directions. *Ecography*, 38(1), 15–28. <https://doi.org/10.1111/ecog.00967>

Li, Z., Wu, N., Gao, X., Wu, Y., Oli, K. P. (2013). Species-level phenological responses to global warming evidenced by herbarium collections in Tibet. *Biodiversity and Conservation*, 22(7), 141–152. <https://doi.org/10.1007/s10531-012-0408-x>

Manandhar, N. P. (2002). *Plants and People of Nepal*. Timber Press.

McArdle, B. H. (2013). Population Density. In *Encyclopedia of Biodiversity* (pp. 157–167). Elsevier. <https://doi.org/10.1016/B978-0-12-384719-5.00113-1>

Ministry of Forests and Environment (MoFE). (2018). *National biodiversity strategy and action plan (2018–2025)*. Government of Nepal.

Ministry of Forests and Soil Conservation (MFSC). (2014). *Nepal Fifth National Report to the Convention on Biological Diversity*. Government of Nepal.

MoFE. (2021). *State of Nepal's Forests*.

Nardostachys jatamansi: Ved, D., Saha, D., Ravikumar, K. & Haridasan, K. (2014). In *IUCN Red List of Threatened Species*. <https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T50126627A50131395.en>

Nath Maurya, B., Kumar, S., Singh, J., Tiwari, R., Rana, D., Kumar, D., S, D. P., Tiwari, D., & Byadgi, P. S. (2023). Standardization & Identification of Jatamansi (Nardostachys Jatamansi DC.). *Korean Journal of Physiology and Pharmacology*, 27(3). <https://doi.org/10.25463/kjpp.27.3.2023.42>

Olsen, C. S., & Helles, F. (1997). Medicinal plants, markets, and margins in the Nepal Himalaya: Trouble in paradise. *Mountain Research and Development*, 17(4), 363–374. <http://dx.doi.org/10.2307/3674025>

Panara, K., Nariya, M., & Karra, N. (2020). Central nervous system depressant activity of Jatamansi (Nardostachys jatamansi DC.) rhizome. *AYU (An International Quarterly Journal of Research in Ayurveda)*, 41(4), 250. [https://doi.org/10.4103/ayu.AYU\\_251\\_20](https://doi.org/10.4103/ayu.AYU_251_20)

Pandey, M. M., Katara, A., Pandey, G., Rastogi, S., & Rawat, A. K. S. (2013). An Important Indian Traditional Drug of Ayurveda Jatamansi and Its Substitute Bhootkeshi: Chemical Profiling and Antioxidant Activity. *Evidence-Based Complementary and Alternative Medicine*, 2013, 1–5. <https://doi.org/10.1155/2013/142517>



Pathak, S., & Godela, R. (2024). Nardostachys jatamansi: Phytochemistry, ethnomedicinal uses, and pharmacological activities: A comprehensive review. *Fitoterapia*, 172. <https://doi.org/10.1016/j.fitote.2023.105764>

Paul, A., Gajurel, P. R., & Das, A. K. (2015). Threats and conservation of *Paris polyphylla*: An endangered, highly exploited medicinal plant in the Indian Himalayan Region. *Biodiversitas*, 16(3), 295–302. <https://doi.org/10.13057/biodiv/d160226>

Pflüger, F. J., Signer, J., & Balkenhol, N. (2019). Habitat loss causes non-linear genetic erosion in specialist species. *Global Ecology and Conservation*, 17, e00507. <https://doi.org/10.1016/j.gecco.2018.e00507>

Pinto, A. V., Hansson, B., Patramanis, I., Morales, H. E., & van Oosterhout, C. (2024). The impact of habitat loss and population fragmentation on genomic erosion. *Conservation Genetics*, 25(1), 49–57. <https://doi.org/10.1007/s10592-023-01548-9>

Raunkiaer, C. (1934). *The Life Forms of Plants and Statistical Plant Geography*. Oxford University Press.

Raina, A. P., & Negi, K. S. (2015). Essential oil composition of *Nardostachys jatamansi* from Himalayan regions of India. *Indian Journal of Pharmaceutical Sciences*, 77(2), 218–222.

Rana, S. K., Ghimire, S. K., Ranjitkar, S., O'Neill, A. R., Sun, H. (2020). Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. *Ecological Indicators*, 115, 106435. <https://doi.org/10.1016/j.ecolind.2020.106435>

Schickhoff, U., Bobrowski, M., Bürzle, B., et al. (2015). Do Himalayan treelines respond to recent climate change? Evaluation of sensitivity indicators. *Earth System Dynamics*, 6, 245–265. [10.5194/esd-6-245-2015](https://doi.org/10.5194/esd-6-245-2015)

Schippmann, U., Leaman, D. J., & Cunningham, A. B. (2006). A comparison of cultivation and wild collection of medicinal plants under sustainability aspects. In R. J. Bogers, L. E. Craker, & D. Lange (Eds.), *Medicinal and Aromatic Plants* (pp. 75–95). Springer. [10.1007/1-4020-5449-1\\_6](https://doi.org/10.1007/1-4020-5449-1_6)

Sharma, P. C., Yelne, M. B., Dennis, T. J., & Joshi, A. (2005). *Database on medicinal plants used in Ayurveda* (Vol. 3, pp. 130-131). New Delhi: CCRAS.

Sigdel, S. R., Zhang, H., Muhammad, S., Liang, E. (2020). Retreating glacier and advancing forest over the past 200 years in the Central Himalayas. *Journal of Geophysical Research: Biogeosciences*, 125(9), e2020JG005751. <https://doi.org/10.1029/2020JG005751>

Subedi, B. P., Charmakar, S., Joshi, N. R., et al. (2017). *Resources Inventory and Review of Operational Plans of Targeted Community Forests of IN-MAPs Working Districts*. GIZ IN-MAPs Project, Nepal.

Zomer, R. J., Trabucco, A., Metzger, M. J., Wang, M., Oli, K. P., Xu, J. (2014). Projected climate change impacts on bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India and Nepal. *Climatic Change*, 125(3–4), 445–460. [10.1007/s10584-014-1176-2](https://doi.org/10.1007/s10584-014-1176-2)

Views and opinions expressed in this article are the views and opinions of the author(s), *NPRC Journal of Multidisciplinary Research* shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.