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Abstract

This paper deals with linearised and normalized differential equations of relative motion
of the system under the influence of magnetic force air resistance and oblateness of the
earth in Nechvill's co-ordinate system. We have linearised the problem keeping in view
that the length of the string connecting the two satellites is infinitesimally small in
comparison to the distance of centre of mass of the system from the centre of attracting
force and introduction of rotating frame of reference eliminates the product terms as
usual. We have obtained a system of six orders non-autonomous, non-linear equations of
motion describe the motion of one of two satellites and the motion of satellite relative to

the first may easily be obtained by m1/;; + mZE =0

Keywords: differential equations of motion, frame of reference, linearized, normalized,
oblateness

Introduction

A light, flexible, and extensible wire is placed in the center of the earth's
gravitational field to connect the effects of air resistance, magnetic force,
and the earth's oblateness on the motion of the satellites.The system's
motion is investigated in relation to its center of mass, which is thought to
be travelling along a Keplerian orbit.The differential equations of motion of
the system under the effect of air resistance, magnetic force, and earth's
oblateness have been determined using the first kind of Lagrange's
equations of motion.The normalized and linearized differential equations
for the mass of the system's particle m, were developed under the



54 Orchid Academia Siraha Vol. 1, Issue 1, Dec. 2022 ISSN: 2976-1379 (Print)
ISSN: 2976-1387 (Online)

presumption that the connecting cable's length is very little in comparison
to the satellites' distance from the planet's center Flectcher (1965). Then
differential equations of motion in rotating frame of reference obtained.
After using Nechvill's co-ordinate system, a set of non-autonomous, non-
homogeneous differential equations of the particle of mass m, of the system

derived (Elsgotts, 1973).
Equations of Motion of the centre of mass

Let's think about how a system of particles with masses m, andm,,
respectively, would move in the earth's gravitational field if they were

connected by a thin, flexible, and extensible string. Let r1and r.be their
radius vectors with respect to the centre of the earth (Etkin, 1964).

Then, using the first type of Lagrange's equations for motion, we
formulate the differential equations for the motion of the particles with
masses m, and m, as.
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Where Aiis the Hook's modulus of elasticity and gis the product of

gravitational constant with the mass of attracting center.

The condition of constraint is given by
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where /, is the string's natural length between the two satellites with

masses m, and m,

If the equality signs in (2) holds; then 4 = 0and the motion takes place
with tight string and consequently tension in the string comes into play.
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Motion of the System Relative to their Centre of Mass

In order to study the relative motion of the system, we must predict
about the motion of the centre of mass in the beginning itself (Chernouske,
1963, 1964).

Let R be the radius vector of the centre of mass of the system w.r.to the
attracting center (Earth). Then we have
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= L+ myr
R=—"+—-%= 3)

m, + m,

Adding the two equations of (1) we get
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j’2 7

MR+ p{ mn o ZzJ =0 (4)
Where M =m, +m,

Now we shall make use of the assumption that the maximum extended
length /, of the string is infinitesimally small compared to the distances

and r, of the particles from the centre of force.

i.e. ]i <<land ]i <<1 (5)

4 f)

Let 51 and ;2 denote the radius vector of the particles of mass m, and m,

respectively with origin at the centre of mass of the system (Sharma, 1974).
Then, ;'1 R+ ;1
=R+ p, (6)
Then clearly p <l
Py <y
Thus P <<

and P, << 1
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But nLe1 =R
Hence P ccland 22 <<l (7)
R R

Eliminating rand r:from (4) with the help of (6) and then expanding in
ascending particles of small equalities.

£ and £2 we get
R R

—
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(3) stands for third and higher order terms in infinitesimals % and %

Equations of Motion of the System under the Influence of AIR Resistance
Magnet

Force. In the Central Gravitational of Oblate Earth

Let's imagine that the two satellites of the system are particles with
masses ofm, and m, and their radius vectors ~ and r. respectively, in
relation to the attractive center (Beletaky & Novicova, 1969). The length of
the string connecting the two particles of mass m, and m, be denoted by/,.

Suppose that '1' be the string length at any time (Karn, 2002).

Then the constraint of system is given by
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Under the inspiration of air resistance, magnetic force, and earth's
oblateness, the equation of motion of two particles of mass m, and m,

associated by an extendable string of natural length /, can be stated using
Lagrange's equation of motion of first kind as follows:
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Where Fa (i=1,2,...) is the aerodynamic force

k,=eR’/3
R —-R
=—¢ __” —Earth's of oblateness
We have
;1 - ;1 _;2)
ml + m2
and (11)
py=—0(ra—7)
om+m,

multiplying first equation of (11) say m, and equation by m, and adding
we get.

ml;;l""mz;;zzo (12)

Hence Flgiven in (9) vanishes identically on using (12). Therefore,
neglecting the 2™ and higher order agitation relations in (9), the centre of
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mass of the system’s equation given by (8) takes the system (Chetayev,
1966).

: R
MR (13)
R
Clearly (13) demonstrate that the system's center of mass can be
anticipated to move with more precision up to and including order-

infinitesimal along a Keplerian elliptical orbit (Dubeshin, 1952) i.e. % and

p:
R

The center of mass of the system of two satellites connected by an
extendable string in the center of the gravitational field of attraction has
thus been demonstrated to travel along a specific Keplerian elliptical orbit
Q'R

&

(Singh, 1971, 1973). €=a, — %Where m=

O =Rotational angular velocity of the earth.

R, = Earth's equatorial radius.

R, = Earth's polar radius.

g, = Earth's gravitational field as a function.

_charge gq, onthe i" particle.

. (=12
o Velocity of light C ( )

F = The earth's magnetic field intensity for equatorial satellites

V)

3
7

m =Earth’s magnetic moment.
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Since it is expected that air drag in this situation varies as the square of
the speed of the moving particles (Solue, 1960), it can be expressed as
follows:

Fﬂ}, = —pﬁ,(—;

|7 (14)

i

Where p,is the density of the air, which will be assumed constant

throughout the study.

C, = Ballistic Coeff"

Now the equations of motion (2) can be written in the form
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Linearised and Normalized Differential Equations of Relative motion of the
system. We divide the two equations of (4) by m, and m, respectively and

then on subtraction; we get
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using (6) and ignoring minuscules of 2nd and higher order we get
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dividing throughout by —/—= I F
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Using (25) in (22) we obtain the linearized vector equation of motion for
the particle of mass m, comparative to the centre of mass of the structure in

62

the procedure.

5. 3uR(R.p .
up,  3HR(R.p) +aR+a,
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The condition of constraint given by (1) reduces to
(27)

— |2

‘:01‘ <o

If in (27) the system will be moving with moveable string if the inequality
In this case, the motion is free from constraint

sign is true (Thakur, 1959).
and henceA, =0. If the equality signs in (27) holds then the motion is
constrained motion and hence 4, # 0. (Etkin, 1964)

Let us stabilize the vector p, by familiarizing.

L _up*
P I,

(28)
Then the vector equation (26) of the particle of mass m, takes the form
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The system's mass center and the stabilized vector equation of the
relative motion of the particle of mass m, (Hagihara, 1957).

Now the condition of constraint given by (28) takes the from

_x)?

P

2

< 3D

Again, let us write

&F —unit vector along the axes of the magnetic dipole of the earth

u, =The volume of the magnetic moment of the earth dipole M

<

=

P, =unit vector along the radius vector R

- ﬁ where R is the radius vector of the centre of mass of the system with
R
respect to the appealing center of force.

Hence, equation of motion given by (29) takes the form
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Our consideration of equation (32) leads us to the conclusion that there
are two terms that make up atmospheric drag: one with coefficient as and
the other with coefficienta, (Leipholz, 1980). The dissipative force, which is

a component of atmospheric drag resulting from air friction, is shown by the
phrase with coefficient a, with g, as a factor. We may disregard these terms
as the coefficient a, a parameter of the aerodynamic force, is a small
quantity that is multiplied by a small quantity p° since we are just
examining first-order turbulence. Furthermore, if we continue using this

dissipatine phrase, it will be hard to solve this topic analyically

Thus, the equation of motion (32) with only non-dissipative part of the
aerodynamic force (Austin, 1965) takes the form

S M s 3#_,_,% . 3‘[_”(' s ]5#1{' o s ) / %
A Eﬂ —ER(R.pl)+a1R+ Rszpl R : (R‘pl )+j'af l_ﬁ P
R am
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Conclusion

This equation (33) is the basic equation of motion of the particle of mass
m, of the system. The motion of the other particle of mass m, can be easily

obtained with the help of

mllal + mzﬁz =0
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