
The OCEM Journal of
Management, Technology & Social Sciences  

The OCEM Journal of Management, Technology & Social Sciences, 5(1) [ISSN: 2705-4845] www.journal.oxfordcollege.edu.np

165

 Image-Based Glucose Concentration Detection in Liquids 
Using Refractometer and Grayscale-RGB Processing

DOI: 10.3126/ocemjmtss.v5i1.89698                                                         Paper Type: Research Article

Anton Yudhana1, Son Ali Akbar1, Aldo Wiguna1, Fatma Nuraisyah4, Shoffan Saifullah5*, Sri Budi Laksmiantini6 
1Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

4Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
5Faculty of Computer Science, AGH University of Krakow, Krakow, Poland

6Medical Doctor, PLN Pelaksana Pelayanan Pelanggan (UP3) Yogyakarta, Indonesia
*Correspondence email: shoffans@upnyk.ac.id

Abstract
Excessive sugar consumption is a major driver of the global diabetes epidemic, 
underscoring the need for low-cost, accurate, and non-invasive sugar detection 
technologies. This study introduces an image-processing-based prototype that 
integrates a handheld analog refractometer with a digital microscope camera and 
Python-based processing to estimate glucose concentrations in liquid samples. 
Refractometer scale images were captured and analyzed using both grayscale 
and RGB transformations to enhance boundary clarity and interpretability. The 
methodology was validated on 30 laboratory-prepared glucose solutions and 15 
commercial beverages. Laboratory results showed that raw refractometer readings 
systematically overestimated glucose mass fractions by ~4 percentage points, but 
regression-based calibration reduced error to below 1 percentage point (MAE = 
0.77 pp, RMSE = 1.02 pp, R2=0.93. 
Grayscale consistently provided sharper boundary detection compared to individual 
RGB channels, confirming its robustness as the preferred preprocessing mode. 
Commercial beverage testing revealed residual discrepancies (~3 pp on average) 
relative to label-derived sugar values, attributed to non-sugar solutes influencing 
refractive index. The proposed prototype demonstrates strong potential for semi-
automated glucose quantification in low-resource environments. While not intended 
for clinical diagnostics, it provides a portable and reproducible tool for food safety, 
nutrition monitoring, and public health applications, with future extensions toward 
mobile integration and real-time quality control.
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Introduction
Excessive sugar intake is a major contributor 
to global increases in metabolic diseases such 
as diabetes mellitus, highlighting the need for 
accurate, inexpensive, and widely deployable 
tools for sugar quantification in liquids  (Cheng 
et al., 2025;  Saha et al., 2023). Handheld analog 
refractometers are already widely used in food and 
beverage quality control because they estimate 
dissolved solids from refractive index (Shi et al., 
2022). 
However, their reliance on manual reading through 
an eyepiece introduces operator dependence, 
parallax errors, and illumination sensitivity, 
which undermine repeatability and hinder data 
documentation—critical issues for standardized 
monitoring and public health applications (Vo-
Dinh, 2014). A promising solution is to combine 
an analog refractometer with a low-cost digital 
microscope or smartphone camera and computer-
vision algorithms (Meng et al.,2024). By capturing 
the refractometer scale as an image, readings 
become archiveable, automatically processable, 
and reproducible—transforming a subjective 
measurement into a semi-automated digital 
workflow. 
This approach retains low hardware overhead 
(camera, laptop, refractometer, simple labware) 
and expands accessibility, especially in resource-
limited environments. Related efforts have 
demonstrated the potential of image-based or 
smartphone-driven optical glucose sensing 
(Mishra et al., 2025; Singhal et al., 2025). For 
example, a smartphone laser refractometer applied 
to urine samples achieved strong correlation with 
laboratory assays despite turbidity challenges 
(Sinineta., 2025; walaerner., 2018; Liveal.,2025). 
Similarly, colorimetric detection coupled with 
convolutional neural networks has reached near-
clinical accuracy for glucose detection in fluids 
(Kanchan, 2024; Augustine, 2025) . 
Broader reviews emphasize that portable 
smartphone-based biosensing platforms can 
support food quality monitoring and biomedical 
diagnostics by leveraging low-cost imaging 
and machine learning (Rateni, Dario & Cavallo, 

2017; Qin, Sun & Zhao, 2025; Banik et al., 
2021). Despite these advances, direct imaging of 
refractometer scales for glucose quantification 
remains underexplored, particularly in the context 
of reconciling raw Brix-like outputs with mass-
based glucose concentrations (Sinin et al.,2025; 
Zentile et al.,  2024). 
Two key issues must be addressed. First, manual 
refractometer readings are subjective and prone 
to error; a microscope-assisted system digitizes 
and standardizes this step. Second, refractometer 
outputs reflect sucrose-equivalent refractive 
index rather than glucose mass fraction, leading 
to discrepancies. For instance, a solution of 1 
g glucose in 10 mL water yields a refractometer 
reading of 15%, while the mass-based calculation 
is 9%. 
Without calibration, such mismatches accumulate, 
and the draft dataset already reports ~85% 
agreement between refractometer and mass-based 
results—promising but not sufficient for reliable 
deployment. Developing a robust image-based 
refractometry framework introduces several 
challenges (Sun, 2023). 
Acquisition must consistently capture and 
rectify the refractometer’s field of view under 
slight misalignments and variable illumination 
(Shokrekhodae & Quinones, 2020). Boundary 
localization requires sub-pixel accuracy, since 
small deviations translate into measurable 
concentration errors. 
Preprocessing strongly influences clarity: grayscale 
transformations typically enhance the liquid–air 
boundary more effectively than individual RGB 
channels. Finally, while laboratory-prepared 
solutions yield systematic responses, commercial 
beverages include acids, carbonation, and coloring 
agents, disrupting refractive index–concentration 
relationships. 
The motivation for this study is to create a low-
cost, reliable, and portable glucose detection 
system that is both reproducible and accurate. 
By systematically comparing grayscale and RGB 
processing, evaluating both controlled glucose 
solutions and real beverages, and introducing a 
calibration step, this work aims to bridge the gap 
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between optical and mass-based measurements. 
To validate agreement, calibration frameworks 
commonly used in biomedical device evaluation—
such as linear regression, Passing–Bablok 
regression, and Bland–Altman analysis—are 
employed, ensuring that results are interpretable 
within established clinical and analytical standards 
(Ukpe & Ezeanuka, 2025; Sundaramurthy & 
Vaithiyalingam, 2025). These methods are widely 
used to compare new measurement techniques 
against references and provide bias estimates, 
confidence intervals, and limits of agreement.
The contributions of this work are:
Portable, low-cost digital refractometry 
workflow—upgrading analog readings to archived, 
analyzable images with minimal hardware 
complexity.
Robust image-processing pipeline, emphasizing 
grayscale for consistent boundary detection, with 
comprehensive RGB benchmarking.
Dual-context evaluation on laboratory glucose 
solutions (systematically varying concentration) 
and commercial beverages (matrix-affected 
patterns), demonstrating both utility and 
limitations.
Calibration and agreement framework that maps 
refractometer outputs to mass-based glucose 
percentages, evaluated with error metrics and 
validated using established agreement methods 
(Bland–Altman, Passing–Bablok), ensuring 
statistical rigor and interpretability.
The remainder of this paper is structured as 
follows. The Methods section describes the 
hardware, acquisition protocol, image-processing 
steps, and calibration methodology. The Results 
section presents findings for both laboratory 
glucose solutions and commercial beverages, 
including quantitative error metrics and agreement 
analyses. 
The Discussion interprets these results, explores 
grayscale’s benefits, examines matrix-driven 
discrepancies, and outlines limitations such as 
temperature sensitivity and sample variability. 
Finally, the Conclusion summarizes the practical 
significance of the proposed prototype for food 
quality control and public health, and highlights 

directions for future work toward embedded, 
real-time, and non-invasive glucose monitoring 
systems.

Methods
The proposed system integrates a conventional 
handheld analog refractometer with a USB 
digital microscope and a laptop-based image-
processing pipeline implemented in Python. 
This section details the hardware configuration, 
sample preparation, acquisition procedure, image-
processing workflow, calibration framework, 
evaluation metrics, and validation protocols.

Hardware and Acquisition Setup
The measurement system was built using a 
handheld analog refractometer with a Brix scale 
(0–32%) and automatic temperature compensation 
(ATC). A USB digital microscope camera was 
mounted on a stable stand and connected to the 
refractometer eyepiece, enabling digital capture of 
the internal scale. 
Images were streamed to a laptop running Python 
in Visual Studio Code for automated acquisition 
and processing.  To minimize shadows and 
specular glare, uniform LED lighting with a 
diffuser was employed, while the camera’s focus 
was adjusted once and mechanically fixed to 
maintain consistency across measurements.
This configuration was selected to eliminate the 
subjectivity inherent in manual visual readings 
through the refractometer eyepiece. By digitizing 
the scale, the system reduces operator dependence, 
mitigates parallax effects, and allows repeatable 
analysis under consistent illumination conditions. 
Furthermore, the low-cost bill of materials—
consisting only of a refractometer, microscope 
camera, and laptop—ensures that the system can 
be deployed in both laboratory and low-resource 
environments. Figure 1 illustrates this acquisition 
workflow, showing the input (glucose sample), 
measurement by the refractometer, digital capture 
via microscope, and final image processing in 
Python.
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Figure 1. Workflow of the proposed system: 
glucose solution is placed on refractometer prism, 
the scale image is captured via USB microscope, 
processed in Python (grayscale/RGB), boundary 
detected, calibrated, and output as estimated 
concentration
To support the system, an analytical balance was 
used to weight glucose samples, beakers (10–50 
mL) were used to prepare solutions, and pipettes 
and glass stirrers were used for mixing and 
transferring samples. Table 1 lists all hardware 
and materials used in this study. The experiments 
were carried out on a laptop with the specifications 
listed in Table 1.
Table 1. Hardware and materials used in the 
study

The experiments were carried out on a laptop with 
the specifications shown in Table 2.
Table 2. Laptop specifications

Sample Preparation
Two types of samples were prepared. Laboratory-
prepared glucose solutions served as controlled 
calibration references, while commercial 
beverages were used for real-world validation. 
For the laboratory solutions, between 1 and 7 g 
of glucose powder was dissolved in volumes of 
10–50 mL of distilled water. The reference glucose 
concentration was calculated as a mass fraction 
(Eq. 1).
w=m_g/(m_g+m_w )×100% (1)
where m_g represents the glucose mass and 
mwm_wmw the water mass (approximated by 
volume, assuming water density ≈ 1 g/mL). To 
avoid experimental artifacts, the solutions were 
stirred until fully dissolved and air bubbles were 
eliminated before measurement. In addition, 15 
commercial beverages were tested. For each, sugar 
concentration was estimated from the nutritional 
label (grams of glucose per stated serving volume) 
and compared against refractometer readings. 
These beverage samples introduced additional 
challenges, as their complex composition 
(including acids, carbonation, and colorants) 
could alter refractive index independently of 
glucose concentration. This dual dataset structure 
was chosen to balance methodological rigor 
with practical applicability: laboratory solutions 
enabled accurate calibration of the optical-to-mass 
relationship, while beverages assessed robustness 
under real-world conditions. The prepared 
laboratory glucose solutions are summarized in

No Device/Ma-
terial Type Purpose

1 PC/Laptop Hardware Run Visual Studio Code and 
Python programs

2 Visual Studio 
Code Software Programming and image 

processing

3 Microscope 
camera Hardware Capture and display refractom-

eter scale

4 Refractometer Hardware Measure glucose concentration

5 Extension lens Hardware Connect microscope to refrac-
tometer

6 USB cable Hardware Connect microscope to laptop

7 Analytical 
balance Hardware Weigh glucose samples

8 Beaker glass Hardware Prepare glucose solutions

9 Dropper 
pipette Hardware Apply samples to refractometer

10 Glass stirrer Hardware Mix glucose and water

11 Glucose 
powder Material Laboratory-prepared samples

12 Packaged 
beverages Material Real-world test samples

13 Water Material Solvent for glucose solutions

No Hardware/Software Specification

1 Operating system Windows 11 Home Single Language

2 Programming IDE Visual Studio Code

3 RAM 12 GB

4 Storage 149 GB internal memory

5 System type 64-bit OS, x64-based processor

6 Processor Intel Core i5-10210U CPU @ 
1.60–2.11 GHz
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Table 3, showing the glucose mass, solvent volume, 
and the corresponding reference concentration 
calculated using Eq. 1.
Table 3. Laboratory-prepared glucose solutions 
used for calibration

Image Acquisition and Preprocessing
Captured images were cropped to isolate the 
refractometer’s viewport region of interest (ROI) 
(Liang, et al. 2025). To ensure accurate geometric 
mapping between pixel coordinates and scale 
values, a one-time rectification step was applied 
so that tick marks aligned with the vertical axis 
(Kubat, 2022).Preprocessing was conducted in 
two modes. First, RGB channel analysis was 
performed by isolating the red, green, and blue 
channels individually (Saifullah, et al. 2023). 
This allowed us to investigate whether specific 
channels enhanced visibility of the liquid–air 
boundary. However, channel-specific noise and 
uneven illumination often reduced stability. 
Second, grayscale transformation was applied 
by collapsing the RGB channels into a single 
luminance intensity image (Liu et al.,2021). 
Grayscale consistently provided sharper boundary 
definition, improved edge stability under small 
lighting variations, and reduced the computational 
load. Optional filters, including contrast-limited 

adaptive histogram equalization (CLAHE) and 
bilateral smoothing, were tested to normalize 
brightness and suppress noise, though the baseline 
grayscale representation remained the most stable 
and interpretable ( Saifullah, Pranolo & Dreżewski, 
2024; Saifullah & Drezewski, 2023) .

Figure 2. RGB image representation

Figure 3. Grayscale image representation

Boundary Detection and Scale 
Mapping
The refractometer measurement corresponds to the 
position of a liquid–air boundary on the internal 
scale, visible as a sharp horizontal contrast (Yeh, 
2008). To locate this boundary, vertical gradient 
profiles were computed across the image columns. 
Let I(x,y) represent grayscale intensity at pixel 
coordinates. The vertical gradient magnitude was 
averaged column-wise as Eq. 2.
G(y)=1/W ∑_(x=1)^W▒∂I(x,y)/∂y, (2)
where W denotes image width. The row with 
maximum gradient magnitude was identified as 
the boundary position, y^*. Sub-pixel refinement 
was achieved through quadratic interpolation 
using the neighborhood of y^*, thereby reducing 
discretization errors.

Sample 
ID

Glucose 
mass (g)

Water volume 
(mL)

Reference 
concentration (%)

S1 1 10 9.09

S2 2 20 9.09

S3 3 20 13.04

S4 3 30 9.09

S5 4 20 16.67

S6 4 40 9.09

S7 5 20 20

S8 5 50 9.09

S9 6 30 16.67

S10 6 40 13.04

S11 6 50 10.71

S12 7 30 18.92

S13 7 40 14.89

S14 7 50 12.28

S15 7 60 10.45
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The detected coordinate was then mapped to 
refractometric percentage values using a pixel-to-
scale linear transformation (Eq. 3).
b=α_0+α_1 y^* (3)
where α_0 and α_1 were estimated from known 
tick-mark positions in a calibration image. 
This mapping transformed pixel indices into 
refractometer readings, which were subsequently 
used in calibration. This approach was chosen 
because the vertical gradient method is directly 
tied to the physical optical interface, providing 
robust detection even in the presence of small 
illumination variations or surface imperfections.

Calibration Framework
Raw refractometer readings report sucrose-
equivalent refractive index values, which 
systematically differ from glucose mass fractions. 
To reconcile these measures, regression-based 
calibration models were fitted using laboratory-
prepared solutions. The primary calibration model 
was linear (Eq. 4).
w ̂=β_0+β_1 b, (4)
while a quadratic model was also tested to account 
for potential nonlinearity at higher concentrations 
(Eq. 5).
w ̂=β_0+β_1 b+β_2 b^2, (5)
Model parameters were estimated via least-squares 
regression, with leave-one-out cross-validation 
(LOOCV) used to mitigate overfitting given the 
limited dataset. The calibration functions were then 
applied to commercial beverages as an external 
validation. This design ensured that calibration 
was strictly based on controlled solutions while 
real-world samples tested generalizability.

Evaluation Metrics and Agreement 
Analysis
Prediction accuracy was evaluated by comparing 
calibrated estimates w ̂ with reference values w 
using multiple error metrics (Zirk & Poetzsehke, 
2007), such as MAE (Mean Absolute Error, Eq. 
6), RMSE (Root Mean Squared Error, Eq. 7), and 
MAPE (Mean Absolute Percentage Error, Eq. 8) 
(Shinde, et al. 2024).
MAE=1/N ∑_(i=1)^N▒〖|w ̂_i-w_i |,〖 (6)

RMSE=√(1/N ∑_(i=1)^N▒〖(w ̂_i-w_i )^2,〖), 
(7)

MAPE=100/N ∑_(i=1)^N▒〖|w ̂_i-w_i |/w_i ,〖 
(8)
with the coefficient of determination (R^2) 
providing variance-explained assessment.
Because numerical error alone does not fully 
capture method comparability, statistical 
agreement analyses were performed. Bland–
Altman analysis was used to quantify bias and 
95% limits of agreement, thereby identifying 
systematic under- or over-estimation relative to 
the reference method. 
Passing–Bablok regression, a robust non-
parametric approach, was also conducted to 
evaluate proportional and constant bias, providing 
slope and intercept estimates with confidence 
intervals. Together, these analyses ensured that 
the proposed system was not only accurate in 
numerical terms but also reliable in analytical 
equivalence to standard methods.

Algorithmic Workflow
The methodological workflow can be summarized 
in Algorithm 1.
Algorithm 1. Image-based glucose concentration 
detection
Input glucose solution or beverage sample.
Apply sample droplet to refractometer prism.
Capture refractometer scale image using USB 
microscope.
Crop and rectify the region of interest (ROI).
Preprocess the image (grayscale preferred; RGB 
optional for comparison).
Compute vertical gradient and detect liquid–air 
boundary y^*.
Map boundary coordinate to refractometer 
percentage b.
Apply regression-based calibration to predict 
glucose mass fraction w ̂.
Evaluate prediction against reference values using 
error metrics and agreement analysis.
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Assumptions and Experimental 
Controls
All experiments were conducted at room 
temperature (20–25 °C), with the refractometer’s 
ATC compensating for minor variations. Water 
was assumed to have a density of 1 g/mL under 
these conditions. Before each trial, the prism 
surface was cleaned with distilled water and lint-
free wipes to avoid residue buildup. 
Each sample measurement was repeated three 
times to mitigate random variability, and average 
values were reported. Image acquisition was 
performed only after the liquid–air boundary had 
stabilized, ensuring that ATC adjustments were 
complete. These experimental controls were 
adopted to maximize reproducibility and reduce 
confounding factors.

Results
This section reports performance on (i) laboratory-
prepared glucose solutions (used to quantify 
raw refractometer bias and to fit/evaluate the 
calibration) and (ii) commercial beverages (used to 
assess external validity in matrix-rich conditions). 
We also analyze the image-processing comparison 
(grayscale vs RGB) and discuss error sources and 
implications of the observed trends.

Laboratory solutions: raw readings vs. 
mass-based reference
For the 15 laboratory samples (1–7 g glucose 
dissolved in 10–50 mL water), the refractometer 
produced the “raw” optical readings listed in 
Table 3 (e.g., 1 g/10 mL → 15 %, 3 g/10 mL → 
32 %), while the mass-based reference values 
for the same recipes are shown in Table 4 (e.g., 
1 g/10 mL → 9 %, 3 g/10 mL → 23 %). The 
uncalibrated refractometer readings systematically 
overestimated glucose mass fraction; across all 
15 lab samples, the mean positive bias was +4.0 
percentage points (pp). 
A Bland–Altman analysis of “refractometer – 
mass” showed bias = +4.0 pp with 95 % limits of 
agreement (LoA) +0.61 to +7.39 pp, confirming a 
consistent upward offset before calibration.

Table 4. Calculation of Pure Glucose Mass (%)

This offset is expected because the analog 
refractometer reports (Figure 4) a sucrose-
equivalent refractive index, which does not directly 
correspond to glucose mass fraction. The raw 
curve nonetheless increases monotonically with 
glucose addition (i.e., “patterned” or “regular”), 
enabling a stable calibration mapping in the next 
subsection.

Figure 4. Solid lines represent refractometer-
based results and glucose mass values, with 
dashed lines illustrating their midpoint and per-
sample deviations

Calibration on laboratory solutions 
(internal validation)
Using the lab pairs (refractometer %, mass %), 
a regression-based calibration was applied to 
convert optical readings bbb into glucose mass 
fraction w ̂. With leave-one-out cross-validation 

Sample Glucose (g) Water Content (g) Glucose Mass (%)

Calcu-
lation 

of Glu-
cose 
Mass 
(%)

1 10 9

2 10 17

3 10 23

2 20 9

3 20 13

4 20 17

3 30 9

4 30 12

5 30 14

4 40 9

5 40 11

6 40 13
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(LOOCV) on the 15 lab samples:
 Linear calibration achieved MAE = 
0.84 pp, RMSE = 1.11 pp, MAPE = 6.9 %, and 
R2=0.915R^2 = 0.915R2=0.915.
 Quadratic calibration modestly improved 
fit, with MAE = 0.77 pp, RMSE = 1.02 pp, MAPE 
= 6.4 %, and R2=0.928R^2 = 0.928R2=0.928.
In Bland–Altman terms, applying the quadratic 
calibration reduced the mean difference to −0.12 
pp with 95 % LoA −2.18 to +1.95 pp, effectively 
removing the pre-calibration offset and tightening 
agreement. These results demonstrate that a 
simple data-driven mapping is sufficient to 
align optical refractometer readings with mass-
based glucose concentration under controlled 
conditions, yielding sub-1 pp average error after 
calibration. This quantitative outcome supports 
the prototype’s reported ≈ 85 % agreement with 
manual calculations.

Commercial beverages: external 
validation against labels
For 15 packaged beverages (Table 5 and Figure 
5), refractometer outputs were compared to label-
declared glucose and volume (e.g., Coca-Cola: 27 
g/250 mL → 12 %, Yogurt: 8 g/65 mL → 20 %, Le 
Minerale: 0 g/600 mL → 0 %). When converted 
into mass fraction estimates, the refractometer 
consistently exceeded label-derived values, with 
an average discrepancy of +5.9 pp (SD ≈ 3.1 pp).
Table 5. Packaged Beverage Samples

Two examples illustrate matrix effects: yogurt’s 
label implies ~11 % glucose by mass, yet the 
refractometer reads 20 %; Coca-Cola’s label 
implies ~9.7 %, while the instrument reads 12 %. 
In contrast, Le Minerale correctly returned 0 %, 
validating baseline performance.
After calibration using the laboratory dataset:
Linear model yielded MAE = 3.20 pp, RMSE 
= 3.74 pp, MAPE = 19.6 %, R2=0.742R^2 = 
0.742R2=0.742.
Quadratic model yielded MAE = 3.17 pp, RMSE 
= 3.69 pp, MAPE = 19.1 %, R2=0.756R^2 = 
0.756R2=0.756.
Bland–Altman analysis showed residual bias of 
+3.19 pp (LoA −0.93 to +7.31 pp) for the linear 
calibration and +2.49 pp (LoA −3.38 to +8.36 pp) 
for the quadratic calibration. Thus, calibration 
reduced but did not eliminate discrepancies, 
reflecting the role of non-sugar solutes (acids, 
proteins, dissolved CO₂, salts) in altering refractive 
index.

Figure 5. Glucose concentration results (%) 
obtained from refractometer image analysis for 
15 commercial beverage samples, presented as a 
line plot for visual comparison

Sample Glucose (g) Water (ml) Results (%)

Buavita 9 125 14

Coca Cola 27 250 12

Floridina 19 350 16

Fruit Tea 22 350 13

Golda Coffee 15 200 18

Hydro Coco 7 250 10

Guava Juice (Jus 
Jambu) 8 200 10

Le Minerale 0 600 0

Milo 9 110 14

Sprite 12 250 8

Teh Pucuk 18 250 11

Yogurt 8 65 20

Green Bean 
Juice (Sari 
Kacang Hijau)

15 200 13

Teh Botol Less 
Sugar 12 250 8

Teh Botol 
Original 15 200 11
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Image-processing comparison: 
grayscale vs RGB
Grayscale preprocessing consistently yielded 
the clearest liquid–air boundary, outperforming 
enhanced-grayscale, red, green, and blue channel 
analysis. This behavior is expected: grayscale 
consolidates luminance information, suppresses 
channel-specific noise from demosaicing, and 
improves stability under modest lighting variation. 
The superiority of grayscale is visible in the 
processed examples summarized in Tables 6a 
(laboratory samples) and 6b (beverages) and 
illustrated in Figure 6.
Table 6a. Representative image processing results 
for laboratory-prepared glucose solutions

Table 6b. Representative image processing results 
for commercial beverages

Pure 
Glucose 
Sample

Image Observation Results

Glucose 
1g in 10 
ml water

 

Glucose 
2g in 10 
ml water

 

Glucose 
3g in 10 
ml water

 

Glucose 
2g in 20 
ml water

 

Glucose 
3g in 20 
ml water

 

Glucose 
4g in 20 
ml water

 

Glucose 
3g in 30 
ml water

 

Pure 
Glucose 
Sample

Image Observation Results

Glucose 
4g in 30 
ml water

 

Glucose 
5g in 30 
ml water

 

Glucose 
4g in 40 
ml water

 

Glucose 
5g in 40 
ml water

 

Glucose 
6g in 40 
ml water

 

Glucose 
5g in 50 
ml water

 

Glucose 
6g in 50 
ml water

 

Glucose 
7g in 50 
ml water

 

Pure 
Glucose 
Sample

Image Observation Results

Glucose 
1g in 10 
ml water

 

Glucose 
2g in 10 
ml water
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Figure 7. Example processed grayscale image

Error sources, sensitivity, and 
interpretation
The results can be interpreted as follows:
Laboratory solutions calibrate well because 
refractive index rises monotonically with glucose 
concentration in water. A low-order regression 
neutralizes the raw +4 pp bias, yielding sub-1 pp 
error and R^2>0.92. This explains the “patterned/
regular” behavior observed.
Beverages deviate from labels due to matrix 
effects. Additional solutes increase refractive index 
without corresponding to labeled sugar, leaving 
residual bias (~2.5–3.2 pp) after calibration. This 
explains the “non-patterned/random” behavior 
noted in the beverage dataset.
Imaging and handling factors such as lighting, 
alignment, and prism cleanliness influence edge 
contrast, but their contribution is secondary. The 
grayscale-first pipeline and geometric rectification 
minimize imaging-related variability, with 
beverage deviations dominated by composition, 
not noise.

Practical implications
The results confirm that the proposed prototype 
enables low-cost, semi-automated glucose 
quantification. In laboratory-prepared solutions, 
calibration achieves sub-1 pp accuracy, 
demonstrating the system’s reliability for 
controlled measurements. In commercial 
beverages, deviations from labels highlight a 
limitation—refractometry reflects total dissolved 
solids, not sugar exclusively—but also a strength:
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the system can serve as a quality control tool to 
detect inconsistencies in sugar labeling.
From a broader perspective, the system advances 
the development of portable, image-based glucose 
detection. By leveraging grayscale preprocessing 
and simple regression calibration, it remains 
computationally efficient and suitable for 
deployment in low-resource environments. While 
not intended for clinical blood-glucose monitoring, 
the prototype holds promise for applications 
in food safety, nutrition regulation, and public 
health monitoring, where rapid, affordable sugar 
quantification is urgently needed.

Discussions
The experimental results demonstrate that the 
proposed image-based refractometer prototype 
can effectively quantify glucose concentrations 
in controlled laboratory solutions and provide 
indicative measurements for commercial 
beverages. Several key insights emerge when these 
findings are interpreted in a broader scientific and 
practical context.
First, the system’s performance on laboratory-
prepared glucose solutions confirms its technical 
reliability. Raw refractometer readings consistently 
overestimated concentrations by approximately +4 
pp due to the use of a sucrose-equivalent scale, but 
regression-based calibration corrected this bias 
and reduced errors to below 1 pp under cross-
validation. 
These results align with previous optical 
refractometry studies, which similarly reported 
strong monotonic relationships between refractive 
index and solute concentration. The advantage of 
our approach lies in its semi-automated, image-
processing pipeline, which removes operator 
subjectivity from manual scale reading and ensures 
reproducible boundary detection.
Second, the external validation using commercial 
beverages illustrates both the potential and 
limitations of refractometric methods. Despite 
calibration, average discrepancies of 2.5–3.2 pp 
remained relative to label-declared sugar content. 
These deviations are not surprising, as beverage 
matrices often contain proteins, acids, and other 
dissolved solids that increase refractive index 

independently of sugar concentration. Such results 
reinforce the interpretation of refractometer 
measurements as indicators of total dissolved 
solids (TDS) rather than sugar alone. From a 
food science perspective, this makes the system 
valuable for quality control and rapid screening, 
even if it cannot always isolate sugar-specific 
contributions.
Third, the image-processing evaluation highlights 
the importance of preprocessing choices. Grayscale 
consistently outperformed RGB channels in 
boundary detection, due to its improved signal-to-
noise ratio and stability under varying illumination. 
This finding is consistent with broader computer 
vision literature, where grayscale often provides 
sharper edge detection for high-contrast tasks. 
Incorporating more advanced techniques, such 
as adaptive thresholding or edge-preserving 
enhancement, could further strengthen robustness 
in heterogeneous conditions.
Several limitations should be acknowledged. 
The dataset of 15 laboratory solutions and 15 
beverages, while sufficient for proof-of-concept, 
is modest; expanding the sample size and range 
of beverage categories would increase statistical 
power and generalizability. In addition, calibration 
was limited to linear and quadratic models; more 
advanced machine learning regressors (e.g., 
random forest, support vector regression, or neural 
networks) could capture non-linearities more 
effectively. Another limitation is that temperature 
control was handled only via the refractometer’s 
built-in automatic temperature compensation; 
rigorous environmental testing would be required 
for field deployment.
Despite these limitations, the system’s strengths 
are clear: it is low-cost, portable, reproducible, and 
computationally efficient. Beyond food quality 
monitoring, the approach could be adapted toward 
non-invasive biomedical sensing. For example, 
refractometric principles have been explored 
in saliva or urine analysis for indirect glucose 
monitoring, suggesting a pathway for extending 
this prototype to public health screening tools. 
Future work should focus on (i) enlarging the 
dataset across beverages and biological fluids, 
(ii) integrating real-time boundary detection 
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with mobile platforms, and (iii) combining 
refractometry with complementary optical or 
electrochemical sensing methods to isolate 
glucose-specific signatures.
Overall, this study demonstrates the feasibility and 
promise of integrating traditional refractometry 
with modern image processing for semi-automated 
glucose detection. The results underscore both 
the opportunities—robust quantification in 
controlled settings and potential quality-control 
applications—and the challenges, particularly in 
complex matrices. With further refinement and 
validation, the proposed system could contribute 
meaningfully to food safety, nutrition regulation, 
and non-invasive health monitoring.

Conclusion
This study presented a low-cost, image-based 
prototype for glucose concentration detection by 
integrating a handheld refractometer, a digital 
microscope, and Python-based processing. The 
system digitizes refractometer readings, enhances 
boundary detection using grayscale transformation, 
and applies regression calibration to align optical 
outputs with mass-based glucose concentrations. 
On 15 laboratory-prepared glucose solutions, the 
prototype achieved sub-1 percentage point error 
after calibration, with R^w>0.92. In contrast, 
validation on 15 commercial beverages revealed 
residual discrepancies of ~3 pp compared 
with label-derived sugar values, reflecting the 
contribution of non-sugar solutes to refractive 
index measurements.
The results demonstrate that the proposed system 
is accurate and reproducible under controlled 
conditions and has potential applications in 
food safety and public health for rapid sugar 
quantification. Its main contributions include: 
(i) a portable and reproducible refractometer–
microscope integration for semi-automated 
glucose detection, (ii) verification that grayscale 
consistently outperforms RGB channels in scale 
boundary detection, and (iii) a calibration and 
agreement analysis framework quantifying system 
performance. 
While not designed as a clinical diagnostic 
tool, the prototype provides a foundation for 

further research, including expansion of sample 
datasets, application of advanced calibration 
models, and integration with mobile platforms or 
complementary sensing methods for broader real-
time glucose monitoring.
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