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Abstract

Excessive sugar consumption is a major driver of the global diabetes epidemic,
Volume 5, Issue 1 underscoring the need for low-cost, accurate, and non-invasive sugar detection
technologies. This study introduces an image-processing-based prototype that
integrates a handheld analog refractometer with a digital microscope camera and
ISSN Online:2705-4845| Python-based processing to estimate glucose concentrations in liquid samples.
Refractometer scale images were captured and analyzed using both grayscale
and RGB transformations to enhance boundary clarity and interpretability. The
methodology was validated on 30 laboratory-prepared glucose solutions and 15
commercial beverages. Laboratory results showed that raw refractometer readings
systematically overestimated glucose mass fractions by ~4 percentage points, but
regression-based calibration reduced error to below 1 percentage point (MAE =
0.77 pp, RMSE = 1.02 pp, R*=0.93.

Grayscale consistently provided sharper boundary detection compared to individual
RGB channels, confirming its robustness as the preferred preprocessing mode.
Commercial beverage testing revealed residual discrepancies (~3 pp on average)
relative to label-derived sugar values, attributed to non-sugar solutes influencing
refractive index. The proposed prototype demonstrates strong potential for semi-
automated glucose quantification in low-resource environments. While not intended
for clinical diagnostics, it provides a portable and reproducible tool for food safety,
nutrition monitoring, and public health applications, with future extensions toward
mobile integration and real-time quality control.
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Introduction

Excessive sugar intake is a major contributor
to global increases in metabolic diseases such
as diabetes mellitus, highlighting the need for
accurate, inexpensive, and widely deployable
tools for sugar quantification in liquids (Cheng
et al., 2025; Saha et al., 2023). Handheld analog
refractometers are already widely used in food and
beverage quality control because they estimate
dissolved solids from refractive index (Shi et al.,
2022).

However, their reliance on manual reading through
an eyepiece introduces operator dependence,
parallax errors, and illumination sensitivity,
which undermine repeatability and hinder data
documentation—critical issues for standardized
monitoring and public health applications (Vo-
Dinh, 2014). A promising solution is to combine
an analog refractometer with a low-cost digital
microscope or smartphone camera and computer-
vision algorithms (Meng et al.,2024). By capturing
the refractometer scale as an image, readings
become archiveable, automatically processable,

and reproducible—transforming a subjective
measurement into a semi-automated digital
workflow.

This approach retains low hardware overhead
(camera, laptop, refractometer, simple labware)
and expands accessibility, especially in resource-
limited environments. Related efforts have
demonstrated the potential of image-based or
smartphone-driven  optical glucose sensing
(Mishra et al., 2025; Singhal et al., 2025). For
example, a smartphone laser refractometer applied
to urine samples achieved strong correlation with
laboratory assays despite turbidity challenges
(Sinineta., 2025; walaerner., 2018; Liveal.,2025).
Similarly, colorimetric detection coupled with
convolutional neural networks has reached near-
clinical accuracy for glucose detection in fluids
(Kanchan, 2024; Augustine, 2025) .

Broader reviews emphasize that portable
smartphone-based biosensing platforms can
support food quality monitoring and biomedical
diagnostics by leveraging low-cost imaging
and machine learning (Rateni, Dario & Cavallo,

2017; Qin, Sun & Zhao, 2025; Banik et al.,
2021). Despite these advances, direct imaging of
refractometer scales for glucose quantification
remains underexplored, particularly in the context
of reconciling raw Brix-like outputs with mass-
based glucose concentrations (Sinin et al.,2025;
Zentile et al., 2024).

Two key issues must be addressed. First, manual
refractometer readings are subjective and prone
to error; a microscope-assisted system digitizes
and standardizes this step. Second, refractometer
outputs reflect sucrose-equivalent refractive
index rather than glucose mass fraction, leading
to discrepancies. For instance, a solution of 1
g glucose in 10 mL water yields a refractometer
reading of 15%, while the mass-based calculation
is 9%.

Without calibration, such mismatches accumulate,
and the draft dataset already reports ~85%
agreement between refractometer and mass-based
results—promising but not sufficient for reliable
deployment. Developing a robust image-based

refractometry framework introduces several
challenges (Sun, 2023).
Acquisition must consistently capture and

rectify the refractometer’s field of view under
slight misalignments and variable illumination
(Shokrekhodae & Quinones, 2020). Boundary
localization requires sub-pixel accuracy, since
small deviations translate into measurable
concentration errors.

Preprocessing strongly influences clarity: grayscale
transformations typically enhance the liquid—air
boundary more effectively than individual RGB
channels. Finally, while laboratory-prepared
solutions yield systematic responses, commercial
beverages include acids, carbonation, and coloring
agents, disrupting refractive index—concentration
relationships.

The motivation for this study is to create a low-
cost, reliable, and portable glucose detection
system that is both reproducible and accurate.
By systematically comparing grayscale and RGB
processing, evaluating both controlled glucose
solutions and real beverages, and introducing a
calibration step, this work aims to bridge the gap
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between optical and mass-based measurements.
To validate agreement, calibration frameworks
commonly used in biomedical device evaluation—
such as linear regression, Passing—Bablok
regression, and Bland-Altman analysis—are
employed, ensuring that results are interpretable
within established clinical and analytical standards
(Ukpe & Ezeanuka, 2025; Sundaramurthy &
Vaithiyalingam, 2025). These methods are widely
used to compare new measurement techniques
against references and provide bias estimates,
confidence intervals, and limits of agreement.

The contributions of this work are:

Portable,  low-cost  digital  refractometry
workflow—upgrading analog readings to archived,
analyzable images with minimal hardware
complexity.

Robust image-processing pipeline, emphasizing
grayscale for consistent boundary detection, with
comprehensive RGB benchmarking.

Dual-context evaluation on laboratory glucose
solutions (systematically varying concentration)

and commercial beverages (matrix-affected
patterns), demonstrating both utility and
limitations.

Calibration and agreement framework that maps
refractometer outputs to mass-based glucose
percentages, evaluated with error metrics and
validated using established agreement methods
(Bland—Altman,  Passing—Bablok),  ensuring
statistical rigor and interpretability.

The remainder of this paper is structured as
follows. The Methods section describes the
hardware, acquisition protocol, image-processing
steps, and calibration methodology. The Results
section presents findings for both laboratory
glucose solutions and commercial beverages,
including quantitative error metrics and agreement
analyses.

The Discussion interprets these results, explores
grayscale’s benefits, examines matrix-driven
discrepancies, and outlines limitations such as
temperature sensitivity and sample variability.
Finally, the Conclusion summarizes the practical
significance of the proposed prototype for food
quality control and public health, and highlights

directions for future work toward embedded,
real-time, and non-invasive glucose monitoring
systems.

Methods

The proposed system integrates a conventional
handheld analog refractometer with a USB
digital microscope and a laptop-based image-
processing pipeline implemented in Python.
This section details the hardware configuration,
sample preparation, acquisition procedure, image-
processing workflow, calibration framework,
evaluation metrics, and validation protocols.

Hardware and Acquisition Setup

The measurement system was built using a
handheld analog refractometer with a Brix scale
(0-32%) and automatic temperature compensation
(ATC). A USB digital microscope camera was
mounted on a stable stand and connected to the
refractometer eyepiece, enabling digital capture of
the internal scale.

Images were streamed to a laptop running Python
in Visual Studio Code for automated acquisition
and processing. To minimize shadows and
specular glare, uniform LED lighting with a
diffuser was employed, while the camera’s focus
was adjusted once and mechanically fixed to
maintain consistency across measurements.

This configuration was selected to eliminate the
subjectivity inherent in manual visual readings
through the refractometer eyepiece. By digitizing
the scale, the system reduces operator dependence,
mitigates parallax effects, and allows repeatable
analysis under consistent illumination conditions.

Furthermore, the low-cost bill of materials—
consisting only of a refractometer, microscope
camera, and laptop—ensures that the system can
be deployed in both laboratory and low-resource
environments. Figure 1 illustrates this acquisition
workflow, showing the input (glucose sample),
measurement by the refractometer, digital capture
via microscope, and final image processing in
Python.
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Figure 1. Workflow of the proposed system:
glucose solution is placed on refractometer prism,
the scale image is captured via USB microscope,
processed in Python (grayscale/RGB), boundary
detected, calibrated, and output as estimated
concentration

To support the system, an analytical balance was
used to weight glucose samples, beakers (10-50
mL) were used to prepare solutions, and pipettes
and glass stirrers were used for mixing and
transferring samples. Table 1 lists all hardware
and materials used in this study. The experiments
were carried out on a laptop with the specifications
listed in Table 1.

Table 1. Hardware and materials used in the
study

Device/Ma-
No terial Type Purpose
1 | PC/Laptop Hardware Run Visual Studio Code and
Python programs
5 Visual Studio Software Programmmg and image
Code processing
3 Microscope Hardware Capture and display refractom-
camera eter scale
4 | Refractometer | Hardware | Measure glucose concentration

Connect microscope to refrac-

5 | Extension lens | Hardware

tometer
6 | USB cable Hardware | Connect microscope to laptop
Analytical .
7 balance Hardware | Weigh glucose samples
8 | Beaker glass Hardware | Prepare glucose solutions
Dropper
9 pipette Hardware | Apply samples to refractometer
10 | Glass stirrer Hardware | Mix glucose and water
Glucose .
11 powder Material | Laboratory-prepared samples
12 Packaged Material | Real-world test samples
beverages
13 | Water Material | Solvent for glucose solutions

The experiments were carried out on a laptop with
the specifications shown in Table 2.

Table 2. Laptop specifications

No | Hardware/Software Specification

1 | Operating system Windows 11 Home Single Language

2 | Programming IDE Visual Studio Code

3 | RAM 12GB

4 | Storage 149 GB internal memory

5 | System type 64-bit OS, x64-based processor

Intel Core i5-10210U CPU @

6 | Processor 1.60-2.11 GHz

Sample Preparation

Two types of samples were prepared. Laboratory-
prepared glucose solutions served as controlled
calibration  references, while = commercial
beverages were used for real-world validation.
For the laboratory solutions, between 1 and 7 g
of glucose powder was dissolved in volumes of
10-50 mL of distilled water. The reference glucose
concentration was calculated as a mass fraction
(Eq. 1).

w=m_g/(m_g+m w )x100% (1)

where m g represents the glucose mass and
mwm_wmw the water mass (approximated by
volume, assuming water density = 1 g/mL). To
avoid experimental artifacts, the solutions were
stirred until fully dissolved and air bubbles were
eliminated before measurement. In addition, 15
commercial beverages were tested. For each, sugar
concentration was estimated from the nutritional
label (grams of glucose per stated serving volume)
and compared against refractometer readings.
These beverage samples introduced additional
challenges, as their complex composition
(including acids, carbonation, and colorants)
could alter refractive index independently of
glucose concentration. This dual dataset structure
was chosen to balance methodological rigor
with practical applicability: laboratory solutions
enabled accurate calibration of the optical-to-mass
relationship, while beverages assessed robustness
under real-world conditions. The prepared
laboratory glucose solutions are summarized in
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Table 3, showing the glucose mass, solvent volume,
and the corresponding reference concentration
calculated using Eq. 1.

Table 3. Laboratory-prepared glucose solutions
used for calibration

Sample | Glucose Water volume Reference
ID mass (g) (mL) concentration (%)
S1 1 10 9.09
S2 2 20 9.09
S3 3 20 13.04
S4 3 30 9.09
S5 4 20 16.67
S6 4 40 9.09
S7 5 20 20
S8 5 50 9.09
S9 6 30 16.67

S10 6 40 13.04
S11 6 50 10.71
S12 7 30 18.92
S13 7 40 14.89
S14 7 50 12.28
S15 7 60 10.45

Image Acquisition and Preprocessing

Captured images were cropped to isolate the
refractometer’s viewport region of interest (ROI)
(Liang, et al. 2025). To ensure accurate geometric
mapping between pixel coordinates and scale
values, a one-time rectification step was applied
so that tick marks aligned with the vertical axis
(Kubat, 2022).Preprocessing was conducted in
two modes. First, RGB channel analysis was
performed by isolating the red, green, and blue
channels individually (Saifullah, et al. 2023).

This allowed us to investigate whether specific
channels enhanced visibility of the liquid—air
boundary. However, channel-specific noise and
uneven illumination often reduced stability.
Second, grayscale transformation was applied
by collapsing the RGB channels into a single
luminance intensity image (Liu et al.,2021).
Grayscale consistently provided sharper boundary
definition, improved edge stability under small
lighting variations, and reduced the computational
load. Optional filters, including contrast-limited

adaptive histogram equalization (CLAHE) and
bilateral smoothing, were tested to normalize
brightness and suppress noise, though the baseline
grayscale representation remained the most stable
and interpretable ( Saifullah, Pranolo & Drezewski,
2024; Saifullah & Drezewski, 2023) .

Red (R)

Blue (B)

Green (G)

Figure 2. RGB image representation

Figure 3. Grayscale image representation

Boundary Detection and Scale
Mapping

The refractometer measurement corresponds to the
position of a liquid—air boundary on the internal
scale, visible as a sharp horizontal contrast (Yeh,
2008). To locate this boundary, vertical gradient
profiles were computed across the image columns.
Let I(x,y) represent grayscale intensity at pixel
coordinates. The vertical gradient magnitude was
averaged column-wise as Eq. 2.

Gy)=1/W Y. (x=1)"W:0I(x,y)/dy, (2)

where W denotes image width. The row with
maximum gradient magnitude was identified as
the boundary position, y**. Sub-pixel refinement
was achieved through quadratic interpolation
using the neighborhood of y"*, thereby reducing
discretization errors.
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The detected coordinate was then mapped to
refractometric percentage values using a pixel-to-
scale linear transformation (Eq. 3).
b=a_0+a_1y™* (3)

where o 0 and a_1 were estimated from known
tick-mark positions in a calibration image.
This mapping transformed pixel indices into
refractometer readings, which were subsequently
used in calibration. This approach was chosen
because the vertical gradient method is directly
tied to the physical optical interface, providing
robust detection even in the presence of small
illumination variations or surface imperfections.

Calibration Framework

Raw refractometer readings report sucrose-
equivalent refractive index values, which
systematically differ from glucose mass fractions.
To reconcile these measures, regression-based
calibration models were fitted using laboratory-
prepared solutions. The primary calibration model
was linear (Eq. 4).

w=B_ 0+B 1b, (4)

while a quadratic model was also tested to account
for potential nonlinearity at higher concentrations
(Eq. 5).

w=B 0+f 1b+B 2b"2, (5)

Model parameters were estimated via least-squares
regression, with leave-one-out cross-validation
(LOOCYV) used to mitigate overfitting given the
limited dataset. The calibration functions were then
applied to commercial beverages as an external
validation. This design ensured that calibration
was strictly based on controlled solutions while
real-world samples tested generalizability.

Evaluation Metrics and Agreement
Analysis

Prediction accuracy was evaluated by comparing
calibrated estimates w " with reference values w
using multiple error metrics (Zirk & Poetzsehke,
2007), such as MAE (Mean Absolute Error, Eq.
6), RMSE (Root Mean Squared Error, Eq. 7), and
MAPE (Mean Absolute Percentage Error, Eq. 8)
(Shinde, et al. 2024).

MAE=INY (=)"Niojw i-w i,0  (6)

RMSE=V(I/N Y._(i=1)"N
(7)

W™ i-w_1)"2,0),

MAPE=100/N . (i=1)"
®)

with the coefficient of determination (R"2)
providing variance-explained assessment.

Ow”™i-w i}/w _i,[]

Because numerical error alone does not fully
capture = method comparability, statistical
agreement analyses were performed. Bland—
Altman analysis was used to quantify bias and
95% limits of agreement, thereby identifying
systematic under- or over-estimation relative to
the reference method.

Passing—Bablok regression, a robust non-
parametric approach, was also conducted to
evaluate proportional and constant bias, providing
slope and intercept estimates with confidence
intervals. Together, these analyses ensured that
the proposed system was not only accurate in
numerical terms but also reliable in analytical
equivalence to standard methods.

Algorithmic Workflow

The methodological workflow can be summarized
in Algorithm 1.

Algorithm 1. Image-based glucose concentration
detection

Input glucose solution or beverage sample.
Apply sample droplet to refractometer prism.

Capture refractometer scale image using USB
microscope.

Crop and rectify the region of interest (ROI).
Preprocess the image (grayscale preferred; RGB
optional for comparison).

Compute vertical gradient and detect liquid—air
boundary y"*.

Map boundary coordinate to refractometer

percentage b.

Apply regression-based calibration to predict
glucose mass fraction w”.

Evaluate prediction against reference values using
error metrics and agreement analysis.
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Assumptions and Experimental
Controls

All experiments were conducted at room
temperature (20-25 °C), with the refractometer’s
ATC compensating for minor variations. Water
was assumed to have a density of 1 g/mL under
these conditions. Before each trial, the prism
surface was cleaned with distilled water and lint-
free wipes to avoid residue buildup.

Each sample measurement was repeated three
times to mitigate random variability, and average
values were reported. Image acquisition was
performed only after the liquid—air boundary had
stabilized, ensuring that ATC adjustments were
complete. These experimental controls were
adopted to maximize reproducibility and reduce
confounding factors.

Results

This section reports performance on (i) laboratory-
prepared glucose solutions (used to quantify
raw refractometer bias and to fit/evaluate the
calibration) and (ii) commercial beverages (used to
assess external validity in matrix-rich conditions).
We also analyze the image-processing comparison
(grayscale vs RGB) and discuss error sources and
implications of the observed trends.

Laboratory solutions: raw readings vs.
mass-based reference

For the 15 laboratory samples (1-7 g glucose
dissolved in 10-50 mL water), the refractometer
produced the “raw” optical readings listed in
Table 3 (e.g., 1 g/10 mL — 15 %, 3 g/10 mL —
32 %), while the mass-based reference values
for the same recipes are shown in Table 4 (e.g.,
1 g/10 mL — 9 %, 3 g/10 mL — 23 %). The
uncalibrated refractometer readings systematically
overestimated glucose mass fraction; across all
15 lab samples, the mean positive bias was +4.0
percentage points (pp).

A Bland-Altman analysis of “refractometer —
mass” showed bias = +4.0 pp with 95 % limits of
agreement (LoA) +0.61 to +7.39 pp, confirming a
consistent upward offset before calibration.

Table 4. Calculation of Pure Glucose Mass (%)

Sample | Glucose (g) | Water Content (g) | Glucose Mass (%)
1 10 9
2 10 17
3 10 23
2 20 9
Calcu-
lation 3 20 13
of Glu- 4 20 17
cose
Mass 3 30 9
%) 4 30 12
5 30 14
4 40 9
5 40 11
6 40 13

This offset is expected because the analog
refractometer reports (Figure 4) a sucrose-
equivalent refractive index, which does not directly
correspond to glucose mass fraction. The raw
curve nonetheless increases monotonically with
glucose addition (i.e., “patterned” or “regular”),
enabling a stable calibration mapping in the next
subsection.

A o~ Result (%)
0 i —8— Glucose Mass {%)
-m- Midgoint {Gap Line} (%]

Percentage (%)

Figure 4. Solid lines represent refractometer-
based results and glucose mass values, with
dashed lines illustrating their midpoint and per-
sample deviations

Calibration on laboratory solutions
(internal validation)

Using the lab pairs (refractometer %, mass %),
a regression-based calibration was applied to
convert optical readings bbb into glucose mass
fraction w " With leave-one-out cross-validation
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(LOOCYV) on the 15 lab samples:

Linear calibration achieved MAE =
0.84 pp, RMSE = 1.11 pp, MAPE = 6.9 %, and
R2=0.915R"2 =0.915R2=0.915.

Quadratic calibration modestly improved
fit, with MAE = 0.77 pp, RMSE = 1.02 pp, MAPE
= 6.4 %, and R2=0.928R"2 = 0.928R2=0.928.

In Bland-Altman terms, applying the quadratic
calibration reduced the mean difference to —0.12
pp with 95 % LoA —2.18 to +1.95 pp, effectively
removing the pre-calibration offset and tightening
agreement. These results demonstrate that a
simple data-driven mapping is sufficient to
align optical refractometer readings with mass-
based glucose concentration under controlled
conditions, yielding sub-1 pp average error after
calibration. This quantitative outcome supports
the prototype’s reported = 85 % agreement with
manual calculations.

Commercial beverages: external
validation against labels

For 15 packaged beverages (Table 5 and Figure
5), refractometer outputs were compared to label-
declared glucose and volume (e.g., Coca-Cola: 27
2/250 mL — 12 %, Yogurt: 8 g/65 mL — 20 %, Le
Minerale: 0 g/600 mL — 0 %). When converted
into mass fraction estimates, the refractometer
consistently exceeded label-derived values, with
an average discrepancy of +5.9 pp (SD = 3.1 pp).

Table 5. Packaged Beverage Samples

Sample Glucose (g) Water (ml) Results (%)
Buavita 9 125 14
Coca Cola 27 250 12
Floridina 19 350 16
Fruit Tea 22 350 13
Golda Coffee 15 200 18
Hydro Coco 7 250 10
?;:s;z)]uice (Jus 3 200 10
Le Minerale 0 600 0
Milo 9 110 14
Sprite 12 250 8
Teh Pucuk 18 250 11
Yogurt 8 65 20

Green Bean
Juice (Sari 15 200 13
Kacang Hijau)

Teh Botol Less

12 250 8
Sugar

Teh Botol

Original 15 200 1

Two examples illustrate matrix effects: yogurt’s
label implies ~11 % glucose by mass, yet the
refractometer reads 20 %; Coca-Cola’s label
implies ~9.7 %, while the instrument reads 12 %.
In contrast, Le Minerale correctly returned 0 %,
validating baseline performance.

After calibration using the laboratory dataset:

Linear model yielded MAE = 3.20 pp, RMSE
= 3.74 pp, MAPE = 19.6 %, R2=0.742R"2 =
0.742R2=0.742.

Quadratic model yielded MAE = 3.17 pp, RMSE
= 3.69 pp, MAPE = 19.1 %, R2=0.756R"2 =
0.756R2=0.756.

Bland—Altman analysis showed residual bias of
+3.19 pp (LoA —0.93 to +7.31 pp) for the linear
calibration and +2.49 pp (LoA —3.38 to +8.36 pp)
for the quadratic calibration. Thus, calibration
reduced but did not eliminate discrepancies,
reflecting the role of non-sugar solutes (acids,
proteins, dissolved COx, salts) in altering refractive

index.
Glucose Detection Results Across Commercial Beverages

2

) { = Detected Glucose (%)
15
S0
c

E1s

Beverage Samples
Figure 5. Glucose concentration results (%)
obtained from refractometer image analysis for
15 commercial beverage samples, presented as a
line plot for visual comparison
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Image-processing comparison:
grayscale vs RGB

Grayscale preprocessing consistently yielded
the clearest liquid—air boundary, outperforming
enhanced-grayscale, red, green, and blue channel
analysis. This behavior is expected: grayscale
consolidates luminance information, suppresses
channel-specific noise from demosaicing, and
improves stability under modest lighting variation.
The superiority of grayscale is visible in the
processed examples summarized in Tables 6a
(laboratory samples) and 6b (beverages) and
illustrated in Figure 6.

Table 6a. Representative image processing results
for laboratory-prepared glucose solutions

Pure
Glucose Image Observation Results
Sample
Orignal Grayscale  Enhanced Grayscale ~ Red Channel ~~ Green Channel ~ Blue Chamnel
Glucose
1gin 10 !
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
2gin 10 '
ml water
Glucose Original Grayscale  Enhanced Grayscale ~ Red Chamel  GreenChamnel  Blue Chamnel
3gin 10 '
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
2gin 20 '
ml water
Glucose Original Grayscale  Enhanced Grayscale ~ Red Channel  Green Channel ~~ Blue Channel
3gin 20 .
ml water L
Glucose Original Grayscale  Enhanced Grayscale  Red Channel (Green Channel Blue Channel
4gin 20 s
ml water ,‘
Glucose Orgil Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
3gin 30 '
ml water L

Pure
Glucose Image Observation Results
Sample
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
4gin 30 k.
ml water I
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
5gin 30 8
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
4gin 40 H
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel (Green Channel Blue Channel
5gin 40 W
ml water
Glucose Original Grayscale  Enhanced Grayscale ~ Red Channel ~ Green Channel ~ Blue Channel
6g in 40 '
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
5gin 50 '
ml water
Glucose Original Grayscale  Enhanced Grayscale  Red Channel Green Channel Blue Channel
6g in 50 '
ml water
Glucose Original Grayscale Enhanced Grayscale  Red Channel Green Channel Blue Channel
7gin 50 '
ml water A

Table 6b. Representative image processing results
for commercial beverages

Pure
Glucose
Sample

Image Observation Results

Oriinal Grayscale  Enhanced Grayscale ~ Red Channel ~ Green Chamnel ~ Blue Chamnel

FEERER

Glucose
1gin 10
ml water

Red Channel

Green Channel Blue Channel

Original Grayscale  Enhanced Grayscale

Glucose
2gin 10
ml water
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Pure
Glucose
Sample

Image Observation Results

Glucose
3gin 10
ml water

Original

Grayscale

Enhanced Grayscale

Red Channel

(Green Channel

Blue Channel

Glucose
2gin 20
ml water

Original

Grayscale

Enhanced Grayscale

8

Red Channel

Green Channel

Blue Channel

Glucose
3gin 20
ml water

Original

Grayscale

Enhanced Grayscale

fRed Channel

Green Channel

Blue Channel

Glucose
4gin 20
ml water

Criginal

Grayscale

Enhanced Grayscale

1

Red Channel

Green Channel

Blue Channel

Glucose
3gin 30
ml water

Original

Grayscale

Enhanced Grayscale

(]

¥

Red Channel

(Green Channel

Blue Channel

Glucose
4gin 30
ml water

Original

Grayscale

Enhanced Grayscale
X

Red Channel
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Figure 7. Example processed grayscale image

Error sources, sensitivity, and
interpretation
The results can be interpreted as follows:

Laboratory solutions calibrate well because
refractive index rises monotonically with glucose
concentration in water. A low-order regression
neutralizes the raw +4 pp bias, yielding sub-1 pp
error and R*2>0.92. This explains the “patterned/
regular” behavior observed.

Beverages deviate from labels due to matrix
effects. Additional solutes increase refractive index
without corresponding to labeled sugar, leaving
residual bias (~2.5-3.2 pp) after calibration. This
explains the “non-patterned/random” behavior
noted in the beverage dataset.

Imaging and handling factors such as lighting,
alignment, and prism cleanliness influence edge
contrast, but their contribution is secondary. The
grayscale-first pipeline and geometric rectification
minimize imaging-related variability, with
beverage deviations dominated by composition,
not noise.

Practical implications

The results confirm that the proposed prototype
enables low-cost, semi-automated glucose
quantification. In laboratory-prepared solutions,
calibration  achieves sub-1 pp accuracy,
demonstrating the system’s reliability for
controlled  measurements. In  commercial
beverages, deviations from labels highlight a
limitation—refractometry reflects total dissolved
solids, not sugar exclusively—but also a strength:
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the system can serve as a quality control tool to
detect inconsistencies in sugar labeling.

From a broader perspective, the system advances
the development of portable, image-based glucose
detection. By leveraging grayscale preprocessing
and simple regression calibration, it remains
computationally efficient and suitable for
deployment in low-resource environments. While
not intended for clinical blood-glucose monitoring,
the prototype holds promise for applications
in food safety, nutrition regulation, and public
health monitoring, where rapid, affordable sugar
quantification is urgently needed.

Discussions

The experimental results demonstrate that the
proposed image-based refractometer prototype
can effectively quantify glucose concentrations
in controlled laboratory solutions and provide
indicative  measurements  for  commercial
beverages. Several key insights emerge when these
findings are interpreted in a broader scientific and
practical context.

First, the system’s performance on laboratory-
prepared glucose solutions confirms its technical
reliability. Raw refractometer readings consistently
overestimated concentrations by approximately +4
pp due to the use of a sucrose-equivalent scale, but
regression-based calibration corrected this bias
and reduced errors to below 1 pp under cross-
validation.

These results align with previous optical
refractometry studies, which similarly reported
strong monotonic relationships between refractive
index and solute concentration. The advantage of
our approach lies in its semi-automated, image-
processing pipeline, which removes operator
subjectivity from manual scale reading and ensures
reproducible boundary detection.

Second, the external validation using commercial
beverages illustrates both the potential and
limitations of refractometric methods. Despite
calibration, average discrepancies of 2.5-3.2 pp
remained relative to label-declared sugar content.
These deviations are not surprising, as beverage
matrices often contain proteins, acids, and other
dissolved solids that increase refractive index

independently of sugar concentration. Such results
reinforce the interpretation of refractometer
measurements as indicators of total dissolved
solids (TDS) rather than sugar alone. From a
food science perspective, this makes the system
valuable for quality control and rapid screening,
even if it cannot always isolate sugar-specific
contributions.

Third, the image-processing evaluation highlights
the importance of preprocessing choices. Grayscale
consistently outperformed RGB channels in
boundary detection, due to its improved signal-to-
noise ratio and stability under varying illumination.
This finding is consistent with broader computer
vision literature, where grayscale often provides
sharper edge detection for high-contrast tasks.
Incorporating more advanced techniques, such
as adaptive thresholding or edge-preserving
enhancement, could further strengthen robustness
in heterogeneous conditions.

Several limitations should be acknowledged.
The dataset of 15 laboratory solutions and 15
beverages, while sufficient for proof-of-concept,
is modest; expanding the sample size and range
of beverage categories would increase statistical
power and generalizability. In addition, calibration
was limited to linear and quadratic models; more
advanced machine learning regressors (e.g.,
random forest, support vector regression, or neural
networks) could capture non-linearities more
effectively. Another limitation is that temperature
control was handled only via the refractometer’s
built-in automatic temperature compensation;
rigorous environmental testing would be required
for field deployment.

Despite these limitations, the system’s strengths
are clear: it is low-cost, portable, reproducible, and
computationally efficient. Beyond food quality
monitoring, the approach could be adapted toward
non-invasive biomedical sensing. For example,
refractometric principles have been explored
in saliva or urine analysis for indirect glucose
monitoring, suggesting a pathway for extending
this prototype to public health screening tools.
Future work should focus on (i) enlarging the
dataset across beverages and biological fluids,
(i1) integrating real-time boundary detection
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with mobile platforms, and (iii) combining
refractometry with complementary optical or
electrochemical sensing methods to isolate
glucose-specific signatures.

Overall, this study demonstrates the feasibility and
promise of integrating traditional refractometry
with modern image processing for semi-automated
glucose detection. The results underscore both
the opportunities—robust  quantification in
controlled settings and potential quality-control
applications—and the challenges, particularly in
complex matrices. With further refinement and
validation, the proposed system could contribute
meaningfully to food safety, nutrition regulation,
and non-invasive health monitoring.

Conclusion

This study presented a low-cost, image-based
prototype for glucose concentration detection by
integrating a handheld refractometer, a digital
microscope, and Python-based processing. The
system digitizes refractometer readings, enhances
boundary detection using grayscale transformation,
and applies regression calibration to align optical
outputs with mass-based glucose concentrations.

On 15 laboratory-prepared glucose solutions, the
prototype achieved sub-1 percentage point error
after calibration, with R w>0.92. In contrast,
validation on 15 commercial beverages revealed
residual discrepancies of ~3 pp compared
with label-derived sugar values, reflecting the
contribution of non-sugar solutes to refractive
index measurements.

The results demonstrate that the proposed system
is accurate and reproducible under controlled
conditions and has potential applications in
food safety and public health for rapid sugar
quantification. Its main contributions include:
(i) a portable and reproducible refractometer—
microscope integration for semi-automated
glucose detection, (ii) verification that grayscale
consistently outperforms RGB channels in scale
boundary detection, and (iii) a calibration and
agreement analysis framework quantifying system
performance.

While not designed as a clinical diagnostic
tool, the prototype provides a foundation for

further research, including expansion of sample
datasets, application of advanced calibration
models, and integration with mobile platforms or
complementary sensing methods for broader real-
time glucose monitoring.
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