Anion Exchange Membrane Functionalized by Phenol-formaldehyde Resins: Functional Group, Morphology, and Absorption Analysis

D. Parajuli1, *, N. Murali2, K. Samatha3, N. L. Sahu4 and B. R. Sharma5

1Research Center for Applied Science and Technology, Tribhuvan University, Nepal
2Department of Engineering Physics, AUCE (A), Andhra University, Visakhapatnam, India
3Department of Physics, AUCST, Andhra University, Visakhapatnam, India
4Department of Physics, Tri-Chandra Multiple Campus, Kathmandu, Nepal
5Department of Physics, Janapriya Multiple Campus, Pokhara, Kaski

* Email: deepenparaj@gmail.com

Abstract: We have developed a straightforward and uncomplicated technique for creating alkaline exchange membranes (AEMs) that possess both high alkaline durability and improved ionic conductivity. This method provides an appealing alternative to conventional approaches, notably by eliminating the need for the use of the carcinogenic reagent chloromethyl methyl ether, typically employed in AEM preparation. Examination of the membranes via scanning electron microscopy (SEM) reveals a consistently smooth surface. Augmenting the ion-exchange material’s weight percentage in the casting solution results in enhanced water retention. Membrane performance analysis, particularly with regard to water absorption, proton transport, selectivity, stability, cost-effectiveness, and enhanced ion-exchange capacity, is ongoing. We have conducted comprehensive testing for AEMs prepared using our method.

Keywords: AEM, Phenol-formaldehyde, FTIR, SEM, water absorption.

Introduction

Polymer electrolyte membrane fuel cells and rechargeable batteries (D. Parajuli, Murali, Samatha, & Veeraiah, 2022; D. Parajuli, Taddesse, Murali, Veeraiah, et al., 2022) are recognized as modern, environmentally friendly energy conversion and storage technologies due to their exceptional energy conversion efficiency (Gu et al., 2015; D. Parajuli, Bhandari, et al., 2023; D. Parajuli, Kc, et al., 2023; D. Parajuli, Gaudel, et al., 2023; D. Parajuli, Kumar Shah, Kc, Kumar, et al., 2022; Shah et al., 2022), minimal local pollution, low noise levels, and cost-effective maintenance. In recent years, considerable research has focused on anion-exchange membranes (AEMs) as separators in these devices. AEMs hold the potential to address the limitations of proton exchange membrane fuel cells based on Nafion, which include low tolerance to carbon monoxide, high electrokinetic overpotentials, significant fuel permeation, and elevated catalyst costs (Feng et al., 2016; X. Lin et al., 2012; L. Liu et al., 2015; Shim & Kim, 2010; Zheng et al., 2017). Among the various methods employed for AEM synthesis, a common approach involves modifying the base polymer matrix, such as polyethylene oxide, polyaryl ether sulfone ketones, and poly(ether ketone) (PEK) (Y. Liu et al., 2016; Tuan & Kim, 2016). Typically, ion-exchange groups are introduced into these membranes through a process involving chloromethylation of the polymers, followed by exposure to trimethylamine (TMA) to create the corresponding trimethyl-type quaternary ammonium (QA) head group (Tuan & Kim, 2016). However, QA groups are susceptible to Hoffmann degradation reactions in strong alkaline environments, compromising the durability of these membranes (Ran et al., 2017). Additionally, AEMs produced using these methods often exhibit inadequate ionic conductivity, rendering them unsuitable for practical applications (Merle et al., 2011). Consequently, significant research efforts have been directed toward developing membranes that combine excellent chemical stability, high ionic conductivity, and robust mechanical strength (Maurya et al., 2015). Researchers like X. Lin et al. and C. Qu et al. have successfully developed a series of AEMs featuring pendant guanidinium groups, which offer improved alkaline stability and enhanced ionic conductivity. These enhancements in the properties of guanidinium-functionalized AEMs stem from the high basicity and resonance-stabilized structure of the guanidinium functional groups (X. Lin et al., 2012; Qu et al., 2012). Notably, the pKa of guanidine in aqueous environments is 13.6, signifying its exceptional alkalinity and resulting in a higher concentration of mobile hydroxide ions compared to trimethylamine (Ishikawa, 2009; Zhang et al., 2010).

In 1872 Von Bayer reported the formation of the first synthetic resin by polycondensation of phenol and formaldehyde. In 1910 Baekeland made the first plastic by the polycondensation of phenol and formaldehyde (Brydson, 1999). The ion exchange property of PF resin was discovered by Adams and Holmes in 1935 (Inamuddin & Luqman, 2012). Around 1940, synthetic ion-exchange membranes based on phenol-formaldehyde condensation products were used in many industrial applications such as electrodialysis, electrodialytic concentration of seawater, and desalination of saline water (Alexandratos, 2008; Brydson, 1999; Sata, 2002; Y. Wang & Xu, 2013). Polycondensation of sodium phenol sulfonate, phenol, and formaldehyde was carried out in the presence of an alkali catalyst for the preparation of ion exchange resins. Low molecular weight prepolymer was coated on a reinforcing fabric such as glass fiber and cured to complete the condensation reaction. Anion-exchange membranes were also prepared by polycondensation of phenylenediamines, phenol, and formaldehyde. The durability of such membranes was not...
Sulfonated PVC membranes with high permeability and selectivity were developed as proton exchange membranes for fuel cells (Allan et al., 2015). PVC blend membranes with high antifouling properties are fabricated by incorporating a novel zwitter ionic polymer into the PVC matrix (Fang et al., 2017). Yongsheng Chen et al. fabricated PVC/Fe₃O₅ ultra filtration membranes with good performance (Demirel et al., 2017). Y. Jafarzadeh et al. developed PVC/PC blend membranes for ultrafiltration (Behboudi et al., 2017). Recently, we have studied some energy efficient devices made of ferrites and MXenes (D. Parajuli, Murali, & Samatha, 2022; D. Parajuli, Murali, K. C, Karki, et al., 2022; D. Parajuli, Murali, Rao, Ramakrishna, et al., 2022; D. Parajuli, Taddesse, Murali, & Samatha, 2022; D. Parajuli, Uppugalla, et al., 2023; D. Parajuli, Vagolu, Chandramoli, Murali, et al., 2022; D Parajuli, Murali, et al., 2021; D Parajuli, Vagolu, et al., 2021; Deependra Parajuli & Samatha, 2021, 2022).

The present work deals with the development of anion-exchange resins by chemical functionalization of phenol-formaldehyde resins with guanidine hydrochloride and ammonia solution were purchased from Merck. Commercial-grade PVC of high molecular weight was used.

Synthesis of anion–exchange material

Phenol and formaldehyde (40%) in the molar ratio of 1:2 were refluxed in a basic medium (pH 9) till a yellow resin was separated from the above reaction mixture. It was taken out, washed with D.I. water, and dried. The resin was finely powdered and dispersed in acetone and heated with 1-mole guanidine chloride solution for 2 h at 80°C. The final condensation product was separated from the reaction mixture, washed with water, filtered, and dried.

Preparation of anion–exchange membrane

A heterogeneous anion-exchange membrane was prepared by the solution casting method. Definite weight of anion–exchange material and PVC powder were stirred in an appropriate solvent such as tetrahydrofuran (THF) for about 8h at room temperature. The homogeneous suspension was cast onto a clean glass plate using a film applicator. Composite membranes were peeled from the glass plate after 48 h. The composite membranes were 80 μm thick. All the membranes were immersed in 2M NaOH solution for 24 h prior to testing. The compositions of the membranes were varied by using different amounts of guanidine functionalized anion-exchange material (10 wt%, 20 wt%, 30 wt%, and 40 wt %). The corresponding membranes are represented as P1, P2, P3 and P4.

Characterization Techniques

The membranes were characterized by FTIR spectroscopy using the Perkin-Elmer spectrum (Model L160000A) over a range of 4000 - 400 cm⁻¹. The surface morphologies of the composite membranes were examined by a scanning electron microscope (JSM-5600, JEOL Co., Japan) as in our previous works (D. Parajuli, Taddesse, Murali, & Samatha, 2022a)(D. Parajuli, Raghavendra, et al., 2021)(D. Parajuli, Devendra, et al., 2021)(D. Parajuli, Taddesse, Murali, & Samatha, 2022b)(Deependra Parajuli & Samatha, 2022)(D. Parajuli, Murali, Raghavendra, et al., 2023)(D. Parajuli, Dangi, Sharma, et al., 2023). The samples were coated with a thin layer of gold by ion sputtering prior to microscopic examination. The SEM images of the anion-exchange membranes were transformed into a computer and evaluated with an image analysis system. In these experiments, we analyzed thin films with an average mass of 15 mg. The procedure involved heating the samples from room temperature to 850°C while maintaining a nitrogen atmosphere, with a heating rate of 10°C per minute (Di Vona et al., 2014). For assessing the water uptake of these composite membranes, we employed the following methodology. First, the membranes were soaked in distilled water at room temperature for a duration of 24 hours to ensure they reached a state of equilibrium with the surrounding moisture. Subsequently, we meticulously removed any excess surface water from the membranes by gently wiping them with filter paper, immediately followed by recording their weight. To obtain accurate measurements, the samples were then subjected to vacuum drying for a period of two days and subsequently weighed once more.

The water uptake was calculated as follows.

\[
\text{Water intake (} \% \text{)} = \frac{W_{\text{wet}} - W_{\text{dry}}}{W_{\text{dry}}} \times 100\% \quad (3)
\]

The ion exchange capacities (IECs) of the composite membranes were assessed using the double titration method. To calculate IECs, the following procedure was followed: Accurately weigh the samples, denoting the mass of the water-swollen membrane as Wwet and the mass of the dry membrane as Wdry. Immerse these weighed samples in 25 ml of a 0.05 M HCl solution for a duration of 48 hours. Back-titrated the HCl solution with a 0.05 M NaOH solution while employing phenolphthalein as an indicator. The IECs of the samples can then be calculated using the appropriate equation.
IEC = \(\frac{n_2 - n_1}{M_{\text{dry}}} \)

(2)

The ion exchange capacity (IEC) calculation process involves the following steps: \(n_1 \) and \(n_2 \) are determined, which represent the quantities of hydrochloric acid (in millimoles, mmol) required before and after reaching equilibrium, respectively. Measure the mass of the dried sample (\(M_{\text{dry}} \), in grams). Apply the provided equation to compute the IEC value for each sample. Repeat these calculations for all three samples, and then derive the average value from these outcomes to establish the membrane's IEC value. To assess the ionic conductivity of the membranes, electrochemical impedance spectroscopy (EIS) techniques were utilized. These assessments were carried out using the AUTOLAB 50519 PGSTAT instrument.

To perform these measurements, fully hydrated membranes were positioned in the conductivity cell, which was subsequently filled with a 1M NaOH solution. The total resistance of the system, including both the membrane and the solution, was recorded (\(R_{\text{total}} \)). The resistance of the solution alone was measured separately, excluding the presence of the membrane (referred to as \(R_{\text{solution}} \)). The membrane's resistance (\(R_{\text{mem}} \)) was then determined by subtracting \(R_{\text{solution}} \) from \(R_{\text{total}} \). For accurate measurements, the thickness of the membrane was gauged using a digital micrometer. This measurement was carried out by placing the membrane between two glass slides, ensuring a flat surface and minimal compression. Subsequently, the hydroxide conductivity (\(\sigma \)) of the membrane was calculated using the following formula:

\[
\sigma = \frac{L}{RA} \quad \text{(in mS cm}^{-1}\text{)}
\]

where \(\sigma \) represents the hydroxide conductivity, \(R \) is the ohmic resistance of the membrane (in ohms, \(\Omega \)), \(L \) is the thickness of the membrane (in centimeters, cm), and \(A \) is the cross-sectional area of the membrane sample (in square centimeters, \(\text{cm}^2 \)).

Methanol permeability through the membrane was determined using a custom-made apparatus, employing the Gasa method (Gasa et al., 2007), which is based on a permeation cell design adapted from Walker et al. (Walker et al., 1999). The procedure involved sealing a precise amount of methanol within a permeation cell and allowing it to diffuse through a hole with an area of 4 cm², covered by the membrane. These measurements were carried out at room temperature. Essentially, the permeation process entails the dissolution and diffusion of methanol molecules within the membrane material. The mass of methanol contained in the vial was monitored over time, and the membrane's permeability (\(P \)) was calculated using the following equation:

\[
P = \frac{N \times l}{V \times P \times A \times t}
\]

Here, \(N \): The number of moles of methanol lost (in moles), \(l \): The thickness of the membrane, \(V \): The saturated vapor pressure of methanol at 25°C, \(A \): The membrane area available for methanol permeation (in square centimeters, \(\text{cm}^2 \)), \(t \): The time during which the measurement was conducted (in days).

To assess the alkaline stability, a 2M aqueous sodium hydroxide (NaOH) solution at room temperature was used. In this test, the composite membrane sample was submerged in the 2M NaOH solution for a duration of 2 weeks. Afterward, the membranes were removed, rinsed with deionized (D.I.) water, wiped with tissue paper, and then subjected to FTIR analysis to detect any degradation or alterations in chemical structure. Additionally, the loss of weight of the membrane was measured (X. Lin et al., 2012)(B. Lin et al., 2010)[4, 28]. For evaluating oxidative stability, the samples, each measuring 3cm x 3cm, were immersed in Fenton's reagent, which consists of 30 ppm FeSO₄ in 30% H₂O₂. This immersion took place for 24 hours at 25°C, and the weight loss of the membrane was monitored over time (T. Wang et al., 2012).

All-iron flow battery experiments

The experiments involving the all-iron flow battery were conducted within a flow cell hardware configuration, where electrolytes flowed between two electrodes, separated by the previously prepared membrane (Manohar et al., 2016). All experiments were consistently performed with electrolyte flow rates set at 25 milliliters per minute (ml min⁻¹). The electrolytes used for both the positive and negative electrodes consisted of 1M FeCl₂ and 1.5M NH₄Cl. The electrodes themselves were constructed from graphite plates, each having a cross-sectional area of 16 square centimeters (cm²). To determine the charging efficiency of the all-iron redox flow cell, a specific procedure was followed. The cell was initially charged at a rate of 100 milliamperes per square centimeter (mA cm⁻²) for a duration of 100 seconds. Subsequently, it was discharged at a rate of 50 mA cm⁻², with these operations being performed using the AUTOLAB 50519 PGSTAT instrument. The performance of the cell was assessed based on its columbic efficiency (CE), which is calculated as the ratio of the cell's discharge capacity (Qdis) to its charge capacity (Qch).

Results and Discussion

Functional group analysis

Fig. 1(a-e) shows the FT-IR spectra of (a) Guanidinium chloride (b) Anion-exchange material (c) PVC membrane (d) Membrane P2 (e) MembraneP4 respectively. The spectrum (a) of Guanidinium chloride shows broadband in the region 3100-3400 cm⁻¹, due to the stretching vibration of N-H bonds of guanidinium (Sajjad et al., 2015). The peak at 1654 cm⁻¹ is attributed to the coupled vibrations of N-H in-plane bending vibrations and asymmetric stretching vibrations of the C-N group of the guanidinium group. The peak at 1198 cm⁻¹ is assigned to the N-H bending vibration of the guanidinium group (Antony et al., 2009; Braiman et al., 1999).

The spectrum (b) of anion-exchange material shows the band in the region 3100-3400 cm⁻¹ attributed to the stretching vibrations of N-H groups and O-H stretching vibrations. The absorption peak in the region of 3100-3400 cm⁻¹ of the anion-exchange material is weaker, which indicates that the majority of functional groups such as –NH₂ offered by guanidine and –OH group of phenol were subjected to condensation reaction with formaldehyde. The peak at 1654 cm⁻¹ is a coupled vibration having contributions from both N-H in-plane bending vibrations and asymmetric stretching vibrations of C-N groups of guanidinium ion. The absorption peaks at 1504 cm⁻¹ are attributed to the vibration of the aromatic ring of benzene in phenol. The peak at 1078 cm⁻¹ is assigned to C-O-C ether links formed during condensation reactions with formaldehyde. The spectrum (c) of PVC membrane shows strong signals at 1425 cm⁻¹, 1340 cm⁻¹, 1200 cm⁻¹, 1050 cm⁻¹, 950 cm⁻¹.
1 and at 690 cm\(^{-1}\). These correspond to the C-C, C-H, and C-Cl vibrations found within the PVC polymer. The peak at 1600 cm\(^{-1}\), and 1505 cm\(^{-1}\) is due to C-C aromatic stretching vibrations of the phenyl group (Poljanšek & Krajnc, 2005; Yanshan et al., 2014). The spectra (d), and (e) correspond to that of the membranes (P2 and P4) with increasing amounts of anion-exchange material. The spectra (d,e) of the membranes show peaks in the region of 3000-3400 cm\(^{-1}\) corresponding to the stretching vibrations of N-H groups of guanidine and stretching vibrations of O-H groups. The band at 2917 cm\(^{-1}\) could be assigned to stretching vibrations of C-H group groups of the polymer backbone and the band at 1450 cm\(^{-1}\) is attributed to bending vibrations of the -CH2 group (Yanshan et al., 2014). The peaks at 1600 cm\(^{-1}\) and 1505 cm\(^{-1}\) correspond to the C-C aromatic stretching vibrations of the phenyl group. The above spectral observations suggest the successful incorporation of anion-exchange material into the polymer matrix (Ma et al., 2012; Yanshan et al., 2014).

SEM analysis

Scanning electron microscopy (SEM) is used to investigate the microstructures of the membranes. Fig. 3 (smooth and defect-free surface of the membrane without any cracks or pinholes, indicating the fine quality of the membrane, of composite membrane P4 using 40% anion exchange magnifications and a) shows the SEM image of PVC membrane which presents a Fig. 3 (b-c) shows the surface morphology using 40% anion exchange material at different anion-exchange material. However, Fig. 3(d) shows the cross membrane P4 found to be flexible as shown in the photograph (a) PVC membrane (b & c) composite material at different magnifications (d) cross-sectional image of membrane P4. However, Fig. 3(d) shows the cross membrane P4 found to be flexible as shown in the photograph (a) PVC membrane (b & c) composite material at different magnifications (d) cross-sectional image of membrane P4.

Fig. 1 FT-IR spectrum of (a) Guanidinium chloride (b) anion-exchange material (c) PVC polymer (d) Ion-exchange membrane P2 (e) Ion-exchange membrane P4

Fig. 2 Photograph of the prepared Ion-exchange membrane P4
Water uptake

The water uptake values of the membranes with different contents of anion-exchange material are shown in Fig. 4. Water uptake of AEM is a key factor that determines the performance of electrochemical devices. Higher water uptake values will facilitate hydroxide transport by generating solvated ionic species and broadening ion transport channels, to maintain the high ionic conductivity of the materials (Merle et al., 2011). Water uptake primarily depends on the microstructure of the membrane and functional groups of ion exchange groups attached to the polymer chains. The water uptake of these membranes increased moderately with an increase in the content of ion exchange material. This indicates that the water uptake strongly depends on the amount of ion-exchange material. However, excessive water uptake may lead to the deterioration of the AEM's mechanical properties. An ideal AEM should exhibit proper water uptake, high conductivity, and excellent mechanical properties. In these membranes, the guanidinium ion exchange group is also thought to participate in absorbing water due to hydrogen bonding capacity.

Conclusions

We developed a simple and facile method to prepare AEMs with high alkaline stability and enhanced ionic conductivity. The facile nature of the technique offers an attractive alternative to traditional approaches. This method avoids the use of chloromethyl methyl ether, the carcinogenic reagent generally used for AEM preparation. SEM images of membranes showed a relatively uniform surface for the membranes. The increase of ion-exchange material wt% in the casting solution led to an improvement in water content, ion exchange capacity, and electrical conductivity. This method completely avoids carcinogenic and toxic reagent chloromethyl methyl ether commonly used for AEM preparation. The results of this study offer an attractive alternative to the traditional approaches for the synthesis of AEMs.

References:

https://doi.org/10.1016/J.MEMSCI.2017.01.051

Parajuli, D., Murali, N., Samatha, K., & Veeraiah, V. (2022). Thermal, structural, morphological, functional group and first cycle charge/discharge study of Cu substituted LiNi1−x–0.02Mg0.02CoxO2 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) cathode material for LIBs. *AIP Advances*, 12(8), 085010. https://doi.org/10.1063/5.0096297

Parajuli, D., Taddesse, P., Murali, N., Veeraiah, V., & Samatha, K. (2022). Effect of Zn2+ doping on thermal, structural, morphological, functional group, and electrochemical properties of layered LiNi0.8Co0.1Mn0.1O2 cathode material. *AIP Advances*, 12(12), 125012. https://doi.org/10.1063/5.0122976

