Received Date: April 2022

Revised: June 2022

Accepted: July 2022

New Concepts of **T**_o Separation Axioms in Fuzzy Topology

Kamalesh Kumar Lal Karn

Patan Multiple Campus, Patan Dhoka, Lalitpur Email : kkamalesh349@gmail.com

Abstract

Fuzzy set was introduced by Zadeh in his classical paper of 1965. Three years later, Chang gave the definition of fuzzy topology, which is a family of fuzzy set satisfying the three classical axioms. In this paper, we have introduced and studied some new notions of T_o separation axioms in fuzzy topological spaces by using quasi-coincident relation for fuzzy set. Every ordinary (crisp) topological space vacuously satisfies condition of being quasi-To. In this paper concept of quasi coincident relation used to introduce and investigate some quasi separation axioms such as T_{σ} T_1 , & T_2 . Concerning quasi- T_{σ} space in the general frame work of fuzzy topological spaces.

Keywords : Fuzzy topological space, quasi - coincidence, Fuzzy quasi- T_{o} , T_{1} and T_{2} space.

Introduction

The fundamental concept of Fuzzy set was introduced by L.A. Zadeh in 1965.[1] In 1968, C.L. Chang [2] introduced fuzzy topological space. In Chang's fuzzy topological space each fuzzy set is either open or not. Later, on Chang's idea was developed by Goguen [3]. He replaced the close interval I = (0, 1). In 1991, Ying [4] studied Hohles topology and called fuzzifying topology. This fuzzification opened for research, Zhang and Xu [5] established the neighborhood structure in fuzzifying topological spaces.

Separation is an essential part of fuzzy topology. In the framework of fuzzifying topology, Shen [6], Yue and Fang [7], Li & Shi [8] and Khedr et all [9] introduced some separation axioms and seprahen axioms are discussed on crisp points not on fuzzy points.

The present paper is organized in three sections. After introduction, section 2 is consisting to some preliminaries. In section 3, we introduce the notions of separation axioms such as To, T_1 , & T_2 axiom with some properties and the relation between them in general framework of fuzzy topological space.

1. Preliminaries

Definition 2.1: (X, T) is called a fuzzy quasi- T_o space iff for every $\mathbf{x} \in \mathbf{X}$, and $\lambda \neq \mu_i \lambda, \mu \in [0, 1]$,

either, $\underline{X}_{\lambda} \notin \underline{X}_{\mu}$ or, $\underline{X}_{\mu} \notin X_{\lambda}$.

Definition 2.2: (X, T) is called a fuzzy T_o - space iff, for any two fuzzy points e and d such that $e \neq d$, either, $e \notin d$, or, $d \notin e$

Definition 2.3: (X, T) is called a fuzzy T_1 - space iff every fuzzy point is a closed set. The following implication are obvious:

 $T_1 \Longrightarrow T_0 \Rightarrow quasi - T_0$

Every ordinary (crisp) topological space vacuously satisfies condition of being quasi- To and hence the quasi- T_0 separation is a particularity in a fuzzy topology.

Let (X, T) be a quasi- T_0 space, Let, $x \in X$, and $\Lambda = (p_1, p_2) (0 \le p_1 \le p_2 \le 1)$;

then there exists $\mathbf{B} \in \mathbf{T}$ such that $\mathbf{B}(\mathbf{x}) \in \mathbf{\Delta}$

In fact,

Let $\lambda = 1 - p_1$, $\mu = 1 - p_2$

Then,

 $\lambda > p > 0$

Since (X, T) is a quasi- T_o space,

 $X_{\lambda} \notin \underline{X}_{u}$

Hence there exists some open Q-neighborhood;

 $\mathbf{b}(\mathbf{B}(\mathbf{x}) > 1 - \lambda = \mathbf{p}_1)$

Which is not a quasi-coincident with \mathbf{x}_{μ} ,

i.e. $(B(x) \le 1 - \mu = p_2)$

Hence

B(x)6∆

The following property concerning quasi- T_o space can be sharpened in the form of theorem as follows:

Theorem 1

(X, T) is called a fuzzy quasi- T_0 space iff for every $x \in X$, and $p \in [0,1]$, there exist a $B \in T$ such that

 $\mathbf{B}(\mathbf{x}) = \mathbf{p}$ Proof Necessity. When $\mathbf{p} = \mathbf{Q}_{\mathbf{r}}$ It suffices to take $\mathbf{B} = \mathbf{\Phi}$ When 0 , take a strictly monotonic increasing sequence of positive real numberconverging to **p**. Let $\Delta_n = (p_{n'}p_{n+1})(n = 1, 2, ...);$ From the property just proved above there exist $B_n \in T$ such that $B^{(x)}_{n} \in \Delta_{n}$ for each n. Therefore $B = \bigcup_{n=1}^{\infty} B_n$ is open and $B(x) = \rho$. Sufficiency. For two fuzzy points x_{λ} and x_{μ} , there exists from hypothesis an open set B such that $B(\mathbf{x}) = \mathbf{1} - \boldsymbol{\mu} > \mathbf{1} - \boldsymbol{\lambda}.$ It is evident that B is an open Q-neighborhood of x_{λ} but is not quasi-coincident with $\{x_{\lambda}\}$. Hence it follows that $x_{A} \in \overline{x}_{a}$. Theorem 2 (X, T) is a T_o space iff (X, T) is quasi- T_{a} and for any two distinct points x, y in X and for any $\rho, v \in [0,1];$ Then there exists *B* **\u2265** Tsuch that $B(x) = \rho$ and B(y) > v, $B(c) > \rho$ and or Proof: Necessity. When (X, T) is T_{a} , it is also quasi- T_{a} . For $x \neq y$ and $\rho, v \in [0,1],$ Putting $\lambda = 1 - \rho$ and $\mu = 1 - n$, We obtain two distinct fuzzy points x_{λ} and y_{μ} . If 🐅 🛒 🧖 , there exists an open Q-neighborhood $B_1 \left(B_1(x) > 1 - \lambda = \rho \right)$ Which is not equal quasi-coincident with [7,], i.e., $B_1(y) \leq 1 - \mu - v$. In view of Previous Theorem,

There is $B_2 \subseteq T$ such that $B_2(y) = v$. Then the fuzzy open set $\mathbf{B} = \boldsymbol{B}_1 \cup \boldsymbol{B}_2$ is the required one. If $y_1 \notin \{\vec{x}_k\}$, the argument can be carried out in a similar way. Sufficiency. Since (X, T) is quasi- T_o , it suffices to consider the separation of two fuzzy points x_{λ} and y_{μ} with $x \neq q$. Putting $\rho = 1 - \lambda_{\mu}$ $v = 1 - \mu$ from the hypothesis, we may assume that there exists $B \in T$ such that B(x) = g and B(y) > v. Then B is a Q-neighborhood of y_{μ} which is not quasi-coincident with $\{x_{\lambda}\}$. Hence 🎇 텪 🌠. Theorem 3. If (X, T) is both T_2 and quasi- T_o , then it is also T_1 . Proof: Let y_{μ} be an arbitrary fuzzy point. An accumulation point, if any, of y_{μ} is of the form $y_{\lambda} = (\lambda > \mu).$ In the light of the property of (X, T) being T_{α} and Previous Theorem, there exists a $B \in T$ such that $B(\mathbf{y}) = \mathbf{1} - \boldsymbol{\mu} > \mathbf{1} - \boldsymbol{\lambda},$ i.e., B is a Q-neighborhood of y_{λ} and is not quasi-coincident with y_{μ} . Hence y_{λ} ($\lambda > \mu$) cannot be an accumulation point of y_{μ} and therefore y_{μ} has no accumulation point. y_{μ} is closed. This means that (x, T) is T_1 . Since the derived set of every fuzzy point in a T_1 space is obviously ϕ , we obtain the following result: Theorem 5. The derived set of every fuzzy set on a T_1 space is closed. 82

References

- Chang, C. (1968). Fuzzy Topological Spaces. Journal of mathematical analysis and publication, 24, 182-190.
- Goguen, J. A. (1973). The fuzzy Tychonoff theorem. Journal of mathematical analysis and application, 43, 734-742.
- Shen, J. (1993). Separation axiom in fuzzifying topology. Fuzzy sets and Systems, 57(01), 113-123.
- Ying, M. S. (1991). A new approach for fuzzy topology. Journal of mathematical analysis and publications, 39(03), 303-321.
- Yue, Y., & Fang, J. (2006). On Separation axioms I-Fuzzy topological spaces. Fuzzy Sets and Systems, 157(06), 780-793.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Computation(08), 338-353.
- Zhang, D., & Xu, L. (1999). Categories isomorphic to FNS. Fuzzy Sets and System, 104(03), 373-380.