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Abstract 
The main objective of this article is to study transfer matrix algorithm, energy eigenvalue 
calculation. This article gives the idea that, in quantum mechanics, the transfer matrix algorithm 
is a method for calculating the energy eigenvalues of an arbitrary potential profile. The algorithm 
is based on the transfer formalism, which expresses the wave function of a particle in a potential 
as a product of matrices. The transfer matrix algorithm is particularly well suitedfor potentials 
that are piecewise constant, such as the potentials often used in quantum dot and quantum well 
devices. 

The transfer matrix algorithm begins with the construction of the transfer.  
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Introduction:-  

Eigen energy values of well known potential shapes, e.g. finite well, is easy to calculate 
because of the symmetry of the problem. In real world the potentials are, in general, not 
symmetric and cannot be solved without suitable approximation to simplify the problem. 
In this project, I will explore a transfer matrix algorithm to find the eigenvalues of a 
potential system with an arbitrary shape. In this method, the basic principle is the 
approximation of an arbitrary-shaped potential by a series of piece wise constant functions 
of known solution (Fig 1). Since the solution can easily be found in given piece of a 
potential, the total transfer matrix can be derived by a number of subsequent matrix 
multiplication of the corresponding potentials. From the total transfer matrix, energy 
eigenvalues can be extracted. 
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Figure 1. Any arbitrary potential (A) can be approximated as a combination of piecewise 
linear potential (B) of known solution. Approximation becomes more realistic as thickness 
of the piece-wise potential "Z" becomes smaller. 

To develop the theory of transfer matrix assume an arbitrary potential structure 
approximated as a set of piece-wise potentials, as shown in Figure 2. We can imagine that 
a wave incident on the structure from one side, with a given energy E. When the wave hits 
the surface, there will be some reflection and transmission. We can derive a matrix that 
relates the forward and the backward amplitudes, Ai and Bi just to the left of the i" 
interface to the forward and the backward amplitudes Ai+1 and Bi+1 just to the right of 
thei"interface (Figure 3). By multiplying those matrices together for all the layers, we can 
construct a single transfer matrix for the whole structure, which will enable us to analyze 
the entire multilayer structure. Each layer i will have a potential energy Vi, a thickness ti 
and some effective material parameter mi

eff  ( e.g.. this parameter could be electron mass in 
semiconductor). The position of the ith interface relative to the position of the first 
interface in figure 2 can be written as 

         (1) 

In any given layer, if E>Vi, we will, in general, have a forward propagating wave (i.e. 
propagating to the right in Figure 2) of the form A = A0, exp[iki (z - zi) and a backward 
propagating wave of the form B = B0  exp[-iki (z - zi)]. where A and B are complex 
numbers representing the amplitude of the forward and the backward waves, respectively. 

 
Figure 2. Schematic of the layered structure giving an arbitrary potential profile. The 
position of each layer interface and their distance from the origin are also depicted. 
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Figure 3. Constants A and B across the arbitrary ith interface of two adjacent layers. 
In this case 

                                                                           (2) 

Where mi
eff is the effective material parameter in the given layer of the structure Similarly, 

if E< Vi , we will have a forward decaying wave of the form A = A0 , exp[-ki (z - zi )], and 
a backward decaying wave of the form B = B0 exp[ki (z - zi)] , where 

        (3)  

One can notice that, ; hence, for the mathematical simplicity, we 
can define the wave vector only by Eq. (2). Wherek can be imaginary or real, depending 
on the imposed condition. Hence in any given layer, the wave function can be written as 

                                                   (4) 
Boundary condition: If the effective material parameter of the two adjacent layers were 
the same across the interface, we would simply match the value and the derivative of the 
wave function at the interface as 

                            (5) 

This simple condition is not correct for the potential structure where the effective material 
parameter is different across the potential. The correct boundary conditions should be 

         (6) 

Here, mi
eff is the effective material parameter in the ith layer. Using Eqs. (4) and (6), the 

transfer matrix can be found to relate the complex constants A and B of the ith and the 
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(i+1)th layers. The first boundary condition defines the continuity of the wave function,  

at the th interface, as shown schematically in Figure 3 and gives 

                                (7) 

and the second boundary condition defines the continuity of (1/ )d  across the 
th interface and gives 

                        (8)  
Where, 

                                                        (9) 

Solving Eqs. (7) and (8) gives 

           (10) 

And 

      

 (11)  
which can be written in the matrix form as  

                                                                                       (12)  

Where 

                                                                    

(13) 
For the propagation in a given layer, , whose layer thickness is ti , we have   
 (14) 
Which again can be written in matrix form as 

                      (15) 

With 

                                      (16) 

Combining Eqs. (12) and (15) we can have a transfer matrix equation combining the 

coefficients in the given th layer to the coefficients in the next i+1th layer as 
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 ,                                                (17) 

Where 
 

        
(18) 
Here, ti is the thickness of the ith layer. For a large number of layers, as shown in Figure 2 
for N+2 layers, the total transfer matrix can be written as the product of the transfer 
matrices across each layer 

                                                              (19) 

Where 

(20) 

 
Figure 4. Schematic for the transmission probability vs. energy plot. The energy 
corresponding to the maximum transmission probability gives the corresponding energy 
level of the system.  
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We now require  for decaying solutions in the first and the last barriers, 
which corresponds to the resonant condition in the potential system and the corresponding 
energy would be the eigen energy of the system. Hence, the condition to find the eigen 
energy stales can be written as 

                                                                                         (21) 

Eq. (21) has to be solved numerically. At a given energy E, when the energy of the system 
matches the energy E of the wave impinged on the structure, a resonance occurs. During 
the resonance, the probability of transmission of the wave across the structure would be 
the maximum. The amplitude of the transmitted wave during the resonance is given as 
1/w11. It is more convenient to work with a positive definite number, hence, the probability 
density of the transmitted wave, can be used to track the resonance. As 
shown schematically in Figure 4, the transmission probability can be found for all the 

possible expected energy range. During the resonance,   becomes maximum at certain 
energies E=E1, E2.... , giving the first, second,... energy levels of the system.  
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