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Abstract

In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters 
of  Perks-II distribution based on a complete sample. The procedures are developed to perform 
full Bayesian analysis of the Perks-II distributions using Markov Chain Monte Carlo (MCMC) 
simulation method in OpenBUGS, established software for Bayesian analysis using Markov 
Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, 
hazard and reliability functions, and their probability intervals are also presented. We have also 
discussed the issue of model compatibility for the given data set.   A real data set is considered 
for illustration under gamma sets of priors.

Kewwords: Bayesian estimation, Maximum likelihood estimation, Markov chain Monte Carlo, 
Model validation, OpenBUGS, Perks-II distribution

1. Introduction
[Perks (1932)] proposed the four-parameter extension of the Gompertz–Makeham 

distribution that has hazard rate of the form
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The choice K = D = 0 yields the Gompertz–Makeham hazard rate. It appears that 
Perks intended the parameters to be nonnegative. [Marshall and Olkin (2007)] have 
shown that we can not take D=0. However, Gompertz–Makeham distribution can be 
obtained by setting K=0 and taking limit as 0D → .

  Recently, two modified versions of Perks distribution are appeared in 
literature. The first one has been introduced by [Richards (2008, 2012)] by modifying 
the hazard function of Perks distribution as 
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Applications of the Perks distribution to actuarial science include: models for 
pensioner mortality data [Richards (2008)]; parametric mortality projection models 
[Haberman and Renshaw (2011)]. The moments for this distribution do not appear to 
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be available in closed form, [Nadarajah and Bakar (2012)]. We shall denote it as Perks 
I distribution.

The second version (Perks II distribution) has been introduced by [Yee (2012)].   
The hazard  function of Perks II distribution is given by
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It is to be noted that most of the cited literatures are confined to classical 

developments and any systematic development on Bayesian results are rarely seen 
for the Perks I and Perks II distributions. The importance of the Bayesian method 
is well known both in the context of reliability studies and otherwise. Among several 
advantages, the most important is the fact that the Bayesian methods are equally 
well applicable for small sample sizes and censored data problems; the two common 
features in reliability data analyses. Chaudhary and Kumar (2013) obtained the 
maximum likelihood and Bayes estmates for the parameters of Perks-II distribution 
by MCMC method.

2. Perks-II distribution
2.1 Model Analysis

Cumulative distribution function (cdf):
The distribution function of Perks -I distribution with two parameters is given 

by

                                                                                               (2.1.1)
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where 0α >  and 0β >  are the parameters. The Perks-II distribution will be 
denoted by PS2( ,  )α β . 

Probability density function (pdf):          
The probability density function is given by
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(2.1.2)

Fig 2.1 The probability density function of Perks II distribution for 1α =  and different values of β .
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The R functions dperks_II( ) and pperks_II( )  can be used for the computation of 

pdf and cdf respectively. Some of the typical PS2 density functions for different values 
of b and for a = 1 are depicted in Figure 2.1. It is clear from the Figure 2.1 that the 
density function of the PS2( ,  )α β  distribution can take different shapes.

Mode:
1 log ;Mode β β α
β α

 = ≥ 
   

(2.1.3)

The Reliability/Survival function(sf):          
The reliability/survival function is
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(2.1.4)

The R function sperks_II( ) computes the reliability/ survival function.

The hazard rate function(hrf):          
The hazard rate function is
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Fig 2.2 The hazard function of Perks II distribution for 1α =  and different values of β .
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Figure 2.2 exhibits the different hazard rate functions of PS2( ,  )α β  distribution. 
The associated R function hperks_II( ) computes the hazard rate function.

The cumulative hazard function:
The cumulative hazard function H(x) defined as

{ }H(x) log 1 ( )F x= − −  (2.1.6)
can be obtained with the help of pperks_II( ) function by choosing arguments 

lower.tail=FALSE and log.p=TRUE. i.e.
  - pperks_II(x, alpha, beta, lower.tail=FALSE,log.p=TRUE)

Failure rate average: 
Another relevant function useful in reliability analysis is failure rate average 

(FRA). The failure rate average of X is given by

0

H(x) 1FRA(x) = ( )
x

x
h x dx

x
= ∫ , x > 0, (2.1.7)

where H(x) is the cumulative hazard function. An analysis for FRA(x) on x 
permits to obtain the IFRA and DFRA classes. The R function hra.perks_II () can be 
used for the computation of FRA.

The Quantile function:
The quantile function is given by

( )
( )

11 1log 1 ; 0 1.
1

px p
p β
α

β α

  +  = − < <
  −    

(2.1.8)

For the computation of quantiles, the R function qperks_II() can be used.

The random deviate generation:
The random deviate can be generated from PS2( ,  )α β by 
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(2.1.9)

where u has the U(0, 1) distribution. The R function rperks_II( ) generates the 
random deviate from PS2( ,  )α β .

For model choice purpose, the values of AIC and BIC can be computed using the 
R function abic.perksII( ) .

3. Maximum Likelihood Estimation (MLE) 
For completeness purposes, in this section, we briefly discuss the maximum 

likelihood estimators (MLE’s) of the two-parameter PS2( ,  )α β  distribution. 
Let x=(x1, . . . , xn) be a random sample of size n from PS2( ,  )α β , then the log-

likelihood function ( , )l α β  can be written as;  
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Therefore, to obtain the MLE’s of α  and β , we can maximize (3.4.10) directly 
with respect to α  and β  or we can solve the following two non-linear equations using 
Newton-Raphson method. 
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4. Bayesian Model Formulation
The Bayesian model is constructed by specifying the prior distributions for the 

model parameters α  and β , and then multiplying with the likelihood function to 
obtain the posterior distribution function.

Probability Model : ( | , )f x α β
Prior distribution : ( , )p α β
Data : 1( , , )nx x x= 

Given a set of data 1( , , )nx x x=  , the likelihood function is
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Denote the prior distribution of α  and β  as ( , )p α β . The joint posterior is
( , | ) ( , | ) ( , )p x L x pα β α β α β∝

Prior distributions:
We assume the independent gamma priors for ( )1 1~ ,  G a bα  and ( )2 2~ ,  G a bβ   as

a1
a 1 b1 1 1 1 1

1
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Posterior distribution:
Combining the likelihood function with the prior via Bayes’ theorem yields the 

posterior as
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It can be written, upto proportionality, as
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It can be observed that posterior distribution is complicated. We consider MCMC 
techniques for the Bayes analysis of the model .

Gibbs Sampler : Algorithm
For Gibbs sampler implementation, the full conditionals for α  and β  upto 

proportionality can be specified as
 (i) Full conditional distribution of the parameter α for given b and x

  ( ) ( )/11 1 1( | , ) 1 expnn ap x b Tβα β α α α+ −∝ + −

 (ii) Full conditional distribution of the parameter b for given α and x
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We shall use OpenBUGS software to obtain posterior samples. As the Perks-II 
distribution is not available in OpenBUGS, it requires incorporation of a module in 
ReliaBUGS [Kumar et al.(2010)],  subsystem of OpenBUGS for Perks-II.

A module dPerks2_T(alpha, beta) is written in Component Pascal for Perks-
II to perform full Bayesian analysis in OpenBUGS using the method described in 
[Thomas et al.(2006)] , [Thomas(2010)],  [Kumar et al.(2010)] and [Lunn et al.(2013)]. 
It is important to note that this module can be used for any set of suitable priors of 
the model parameters. Almost all aspects of the model in Bayesian framework can be 
studied using  the developed module dPerks2_T(alpha, beta).

5. Data analysis
Data Set :

The following real data set is considered for illustration of the proposed 
methodology. The data below are from an accelerated life test of 59 conductors, failure 
times are in hours, and there are no censored observations, [Lawless (2003)].

2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459, 5.589, 5.640, 
5.807, 5.923, 6.033, 6.071, 6.087, 6.129, 6.352, 6.369, 6.476, 6.492, 6.515, 6.522, 
6.538, 6.545, 6.573, 6.725, 6.869, 6.923, 6.948, 6.956, 6.958, 7.024, 7.224, 7.365, 
7.398, 7.459, 7.489, 7.495, 7.496, 7.543, 7.683, 7.937, 7.945, 7.974, 8.120, 8.336, 
8.532, 8.591, 8.687, 8.799, 9.218, 9.254, 9.289, 9.663, 10.092, 10.491, 11.038
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I. Classical Analysis   
5.1	 Computation	of	MLE	

The maximum 
likelihood estimates (MLEs) 
are obtained by direct 
maximization of the log-
likelihood function ( , )α β

. The advantage of this 
procedure is that it runs 
immediately using existing 
statistical packages such 
R [R Development Core 
Team, (2013)]. We consider 
the software R through the 
Quasi-Newton algorithm 
[Lange (1999)] to compute 
the MLEs.  The MLEs (and 
the corresponding standard 
errors in parentheses) and 
the maximized value of 
loglikelihood  of the Perks II 
distribution parameters are 
given by

( )ˆ  0.0003158 0.0004036α = , ( )ˆ 1.2041 0.22713β =  and ˆˆ( , ) 111.398α β = −  
The contour plot in figure 5.1 computes the maximum likelihood estimates(MLEs) 

of the Perks-II distribution.

5.2 Model Validation
To check the validity 

of the model, we compute 
the Kolmogorov-Smirnov 
(KS) distance between 
the empirical distribution 
function and the fitted 
distribution function 
when the parameters are 
obtained by method of 
maximum likelihood.

For this, we can use 
R function ks.perks_II(). 
From Figure 5.2, it is clear 
that the estimated Perks 
II distribution provides 
excellent fit to the given 
data. 

Fig 5.1  Contour plot

Fig 5.2 The graph of empirical and fitted distribution function.
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The following graphical methods are used for suitability of the model under 
consideration: (i) Quantile-Quantile(QQ) plot, and (ii)Probability –Probability(PP) plot

 
Fig 5.3 Quantile-Quantile(Q-Q) plot  (left panel) and Probability-Probability(P-P) plot (right panel) 

using MLEs as estimate.

The corresponding R function qq.perks_II() for Q-Q plot and pp.perks_II() for P-P 
plot are used. As can be seen from the straight line pattern in Figure 5.3 the Perks II 
fits the data very well.

II. Bayesian Analysis
 Script 3.2 : OpenBUGS script for the Bayesian analysis of Perks II
 distribution

model
 {
  for( i in 1 : N ) 
  {
   x[i] ~ dperks2_T(alpha, beta)
   reliability[i] <- R(x[i], x[i]) # to estimate reliability
   f[i] <- density(x[i], x[i])   #  to estimate density
   hrf[i] <- hrf(x[i], x[i])  # to estimate hazard rate
 # To predict the data set    
 ep[i] <- (i - 0.5)  / N  
 x.new[i] <-(1.0 / beta) * log((1.0/alpha)*(((1+alpha)/(1.0 - ep[i])) -1.0))
  }  
 # Prior distributions of the model parameters 
  alpha ~ dgamma(0.001, 0.001)
  beta ~ dgamma(0.001, 0.001)
 }

DATA  
list(N=59, x =c(2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459, 
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5.589, 5.640, 5.807, 5.923, 6.033, 6.071, 6.087, 6.129, 6.352, 6.369, 6.476, 6.492, 
6.515, 6.522, 6.538, 6.545, 6.573, 6.725, 6.869, 6.923, 6.948, 6.956, 6.958, 7.024, 
7.224, 7.365, 7.398, 7.459, 7.489, 7.495, 7.496, 7.543, 7.683, 7.937, 7.945, 7.974, 
8.120, 8.336, 8.532, 8.591, 8.687, 8.799, 9.218, 9.254, 9.289, 9.663, 10.092, 10.491, 
11.038))

Init1
 list(alpha=0.001,  beta= 0.5)   # Chain 1

Init2
 list(alpha=0.0001, beta= 1.0)   # Chain 2

We assume the independent gamma priors for ( )1 1~ ,  G a bα   and ( )2 2~ ,  G a bβ  with 
hyper parameter values a1=b1=a2=b2=0.001. We run the model to generate two Markov 
Chains at the length of 40,000 with different starting points of the parameters. We have 
chosen initial values ( )0.001, 0.5α β= =  for the first chain and ( )0.0001, 1.0α β= =  for the 
second chain. The convergence is monitored using trace and ergodic mean plots. We 
find that the Markov Chain converge together after approximately 2000 observations. 
Therefore, burnin of 5000 samples is more than enough to erase the effect of starting 
point(initial values). Finally, samples of size 7000 are formed from the posterior by 
picking up equally spaced every fifth outcome (to minimize the auto correlation among 
the generated deviates.), i.e. thin=5, starting from 5001. 

Therefore, we have the posterior sample ( )( ) ( )
1 1, ; 1, ,7000j jα β  from chain 1 

and ( )( ) ( )
2 2, ; 1, ,7000j j jα β =   from chain 2. 

5.3 Convergence diagnostics
The sequential plot of parameters is the plot that most often exhibits difficulties 

in the Markov chain. Figure 5.4 shows the sequential realizations of the parameters of 
the model. In this case, Markov chain seems to be mixing well enough and is likely to 
be sampling from the stationary distribution. 

The plot looks like a horizontal band, with no long upward or downward trends, 
then we have evidence that the chain has converged.

Running Mean (Ergodic mean) Plot
The running mean(ergodic average) is computed as the mean of all sampled 

values up to and including that at a given iteration. The convergence pattern based 
on ergodic average as shown in Figure 5.5 is obtained after generating a time series 
(iteration number) plot of the running mean for each parameter in the chain. The 
dotted line represents the mean of sample values. The plot shows that the ergodic 
mean stablizes as chain advances.
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History(Trace) plot

 
Fig 5.4  Sequential realization of the parameters α andβ .

Fig. 5.5 The Ergodic mean plots for α and β .

5.4 Posterior Analysis
(a) Numerical Summary 

In Table 5.1, we have considered various quantities of interest and their 
numerical values based on MCMC sample of posterior characteristics for Perks II 
distribution under gamma priors.

Table 5.1 : Numerical summaries based on MCMC sample of posterior characteristics for Perks II 
distribution under gamma priors 

Characteristics
Chain 1 Chain 2

alpha   beta alpha   beta 
Mean 0.000453 1.259412 0.000528 1.218955
Standard  Deviation 0.000580 0.224854 0.000624 0.211176
Minimum 0.000001 0.652100 0.000002 0.641700
2.5th Percentile(P2.5) 0.000017 0.869790 0.000023 0.849598
First Quartile (Q1) 0.000106 1.102000 0.000144 1.072000
Median 0.000255 1.244000 0.000318 1.204000
Third Quartile (Q3) 0.000563 1.400000 0.000670 1.345000
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Characteristics
Chain 1 Chain 2

alpha   beta alpha   beta 
97.5th Percentile(P97.5) 0.002082 1.740025 0.002294 1.689025
Maximum 0.006530 2.365000 0.006848 2.156000
Mode 0.000085 1.240278 0.000118 1.164095
Skewness 3.329321 0.501056 2.974009 0.472158

95% Credible Interval (1.66e-05, 
0.0020) (0.8698, 1.7400) (2.252e-05, 

0.00229)
(0.84959, 
1.6890)

95% HPD Credible 
Interval

( 6.15e-07, 
0.0015) (0.8473, 1.703) (2.154e-06, 

0.00176) (0.8063, 1.626)

Highest probability density (HPD): The algorithm described by [Chen and Shao 
(1999)] is used to compute the HPD intervals under the assumption of unimodal 
marginal posterior distribution

(b) Visual summary
Box plots:
The boxplots of the parameters α  and β  are displayed Figure 5.6. 

 
Fig  5.6 L eft panel :Boxplot for α ; Right panel : Boxplot for β .

Kernel density estimates:
The MCMC samples may be used to completely summarize the posterior 

uncertainty about the parameters α  and β  through a kernel estimate of the posterior 
distribution. The marginal posterior density estimates of the parameters and their 
histograms based on samples of size 7000 are shown in Figure. 5.7 using the Gaussian 
kernel. 
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Fig 5.7 Kernel density estimate and HPD intervals for a (left panel) and b(right panel)

It is evident from the Figure 3.24 that the marginal distributions of β  is 
symmetrical whereas α  shows positive skewness. The 95% HPD interval for β  has 
been plotted in Figure 3.24 (right panel), whereas a vertical line is drawn at Bayes 
estimte (mean) of α  (left panel).

5.5 Comparison with MLE 
We have used graphical method for 

the comparison of Bayes estimates with ML 
estimates. In Figure 5.8, the density 
functions ˆˆf(x; , )α β  using MLEs and 
Bayesian estimates, computed via MCMC 
samples under gamma priors, are plotted. It 
is clear from the Figure 5.8 that the MLEs 
and the Bayes estimates with respect to the 
gamma priors are quite close and fit the 
data very well.

A further support for this finding 
can be obtained by inspecting the Figure 
5.9. In Figure 5.9, we have plotted 

th th th2.5 , 50 and 97.5 quantiles of the 
estimated density based on MCMC 
sample ( )( ) ( )

1 1, ; 1, ,7000j j jα β =  . Here 
the density is computed at each data 
point for 7000 posterior samples. The 
density corresponding to MLE has been 
plotted using the “plug-in” estimates of the 
parameters. It shows that we have a fairly 
good model for the given data set.

5.6 Estimation of reliability function
In this section, our main aim is to 

demonstrate the effectiveness of proposed 
methodology. For this, we have estimated 
the reliability function using MCMC samples under gamma priors. Since we have an 

Fig 5.8 The density functions using ML and 
Bayesian estimates

Fig 5.9 Density estimates
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effective MCMC technique, we can estimate any function of the parameters. We have 
used the Kaplan-Meier estimate of the 
reliability function to make the comparison 
more meaningful. The Figure 5.10, exhibits 
the estimated reliability function (dashed 
blue line: th2.5 97.5thand  quantiles; solid red 
line: th50 quantile) using Bayes estimate 
based on MCMC output under independent 
gamma priors for both the parameters and 
the empirical reliability function (black solid 
line). The Figure 5.10 shows that reliability 
estimate based on MCMC is very closed to 
the empirical reliability estimates. 

5.7 Estimation of Hazard and Reliability at 
The advantage of using the MCMC method over the MLE method is that we 

can always obtain a reasonable interval estimate of the parameters by constructing 
the probability intervals based on the empirical posterior distribution. This is often 
unavailable in maximum likelihood estimation. Indeed, the MCMC samples may be 
used to completely summarize the posterior uncertainty about the parameters α  and 
β  through a kernel estimate of the posterior distribution. This is also true of any 
function of the parameters e.g. reliability and hazard functions. Suppose we wish to 
give point and interval estimates for reliability  and hazard functions at the mission 
time t=5.009 ( at the 7th observed data point)..

The marginal posterior density estimates of the reliability and hazard functions 
and their histograms based on samples of size 7000 are shown in Figure. 5.11 and 
5.12 using the Gaussian kernel. It is evident from the estimates that the marginal 
distribution of reliability is negatively skewed whereas hazard is positively skewed. 

 

Fig 5.10 Reliability function estimate using 
MCMC and Kaplan-Meier estimate 

Fig 5.11  Visual summary of α Fig 5.12 Visual summary of α
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The MCMC results of the posterior mean, median, mode, standard deviation(SD)
and skewness of reliability and hazard functions are displayed in Table 5.2.The ML 
estimates of reliability and hazard function at t=5.009 are computed using invariance 
property of the MLE.  

Table 5.2 : Posterior summary of hazard and reliability 

Parameters  MLE
Based on MCMC output

Mean Median  Mode SD Skewness
h(t = 5.009) 0.1162 0.1173 0.1155 0.1113 0.0268 0.4304
R(t = 5.009) 0.9027 0.9003 0.9032 0.9069 0.0321 -0.6168

A trace plot is a plot of the iteration number against the value of the draw of the 
parameter at each iteration. Figure 5.13 display 7000 chain values for the reliability 
R(t=5.009) and hazard h(t=5.009) functions, with their sample median and 90% 
credible intervals. 

  

5.8 Model compatibility
Posterior	Predictive	Checks:

A natural way to assess the fit of a Bayesian model is to look at how well the 
predictions from the model agree with the observed data [Gelman (2003)] and [Gelman 
et al. (2004)]. We do this by comparing the posterior predictive simulations with the 
data.

           

Fig 5.13 MCMC output of h(t = 5.009) and R(t = 5.009). Dashed line(...) represents the posterior 
median and solid lines(-) represent lower and upper bounds of 90% probability intervals (HPD)

Fig 5.14 Density estimates of the two smallest order future observations, vertical lines represent 
corresponding observed values
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There are several approaches available for the study of model compatibility in 

Bayesian framework. Predictive simulation is an easiest and flexible one. The basic 
idea of studying the model compatibility through predictive simulation is to compare 
the observed data or some function of it with the data that would have been anticipated 
from the assumed model called the predictive data. If the two data sets compare 
favourably, the assumed model can be considered to be an appropriate choice for the 
data in hand, [Gupta et al. (2008)]. Modern Bayesian computational tools however 
provide straightforward solutions as one can easily simulate predictive samples if 
MCMC outputs are available from the posterior corresponding to the assumed model. 
Most of the standard numerical and graphical methods based on predictive distribution 
can then be easily implemented to study the compatibility of the model.

Comparison of empirical distribution function plots based on the observed and 
the predictive data may be considered as an informal way to check discrepancies 
between the data and the model.

To obtain further clarity on our conclusion for the study of model compatibility, 
we have considered plotting of density estimates of two smallest and two largest 
replicated future observations from the model with superimposed corresponding 
observed data. For this purpose, 5000 samples have been drawn from the posterior 
using MCMC procedure and then obtained predictive samples from the model under 
consideration using each simulated posterior sample. The size of predictive samples is 
same as that of observed data. 

The MCMC results of the 
posterior mean, median, mode of 
two smallest ( )(1) (2)X and X  and 
two largest ( )(58) (59)X and X are 
displayed in Table 5.3.

Density estimates based 
on replicated future data sets are 
shown in Figures 5.14 and 5.15. Figure 5.15 represents the estimates corresponding to 
largest two predictive observations, whereas the same for smallest two observations is 
shown in Figure 5.14. The corresponding observed values are also shown by means of 
vertical lines. 

 
Fig 5.15 Density estimates of the two largest order future observations, vertical lines represent 

corresponding observed values

Observed Mode Mean Median
X(1)   2.997 2.978 2.917 3.325
X(2)   4.137 3.868 3.816 4.144
X(58)   10.491 10.277 10.362 10.54
X(59)   11.038 11.381 11.469 11.65

Table 5.3:  Posterior characteristics
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In fact, we have predicated the entire data set. Figure 5.16 represents the Q-Q 
plot of predicted quantiles vs. observed quantiles. We, therefore, conclude that the 
Perks II model is compatible with the given data set.

Fig. 5.16    Q-Q plot of predictive quantiles versus empirical quantiles

3.6 Conclusion
We have discussed the likelihood based inferential procedures (Classical as well 

as Bayesian) for Perks-II distribution.. We have developed tools for empirical modeling, 
e.g., model analysis, model validation and estimation of parameters. These tools are 
developed in R language and environment. The ML Estimates and their asymptotic 
confidence intervals of the parameters have been obtained. The procedures are 
developed to perform full Bayesian analysis of the Perks-II distributions using Markov 
Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software 
for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have 
obtained the Bayes estimates of the parameters, hazard and reliability functions, and 
their probability intervals are also presented. We have also discussed the issue of 
model compatibility for the given data set. We have seen that Perks-II distributions is 
suitable for modelling the reliability data.
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