
- 50 -

SCITECH Nepal, Vol. 14, No. 1

Sundar Kunwar
sundark@nec.edu.np

Department of Computer Science and
Engineering, Nepal Engineering College,

Pokhara University
Changunarayan, Bhaktapur, Nepal

Sundar Kunwar is working
as an Assistant Professor in
the Department of Computer
Science and Engineering at Nepal
Engineering College, where he has
been since 2007. He has received
BE in computer engineering from
Tribhuvan University in 2006 and
Master in Soft ware Development
from University of Tampere, Finland
in 2013. His research interest is
in improving the agile soft ware
development methodologies through
agile modeling. In addition he is also
interested and has made numerous
contributions to robotics projects. He
had successfully coordinated robotics
competition organized by IOE held
on 2067 on theme “Working together
for better Nepal” and had stood fi rst
position among all the engineering
colleges of Nepal.

Abstract
As agile software development methodologies are used in many
domains and come with different shapes and sizes, it is one of the
complex human endeavours. Extreme Programming (XP) is one of the
well-known agile software development methodologies and is driven
by a set of values including simplicity, communication, feedback and
courage, but lacks the mechanism to measure these values demanding
the evaluation framework to make it measurable and attainable. The
main aim of this study is to build the software process improvement
model that can be used for evaluating XP values and practices. The
proposed XP evaluation framework in this study is XP focused and
evaluates the XP project, product and practices. The XP evaluation
framework is a collection of some new and validated metrics used
for evaluating XP projects, XP practices, XP products and some
additional factors concerned with XP. The evaluation framework
for extreme programming is basically based on the assessment and
evaluation of various project characteristics, extreme programming
characteristics, product characteristics and other additional
characteristics. The metrics used for assessments and evaluations of
XP are designed to be simple, precise, understandable, economical,
timely, consistent, accountable, unambiguous, suitable and reliable.

[Keywords : Agile, eXtreme Programming (XP), evaluation
framework, metrics, lightweight requirement, onsite customer, pair
programming]

I. INTRODUCTION
 One of the major challenges of agile software development
methodologies is to develop a mechanism to measure the various
aspects of software development process [1]. Therefore, there is
always a need of such measurement mechanism that could quantify
the various aspects of software development methodology and
fi nal product of the development process. To evaluate the XP, a
framework that contains various metrics to capture information
about development team, development process, development tools
and the fi nal product is proposed in this study. This is useful to
those organizations which have adapted or willing to adapt XP
methodology. Measurement is important in software projects
because it keeps us involved in it, informs about the current status

Enabling and Limiting factors in
eXtreme Programming (XP) with

Evaluation Framework

- 51 -

and provides the guidelines to process further. There
are many evaluation frameworks available to evaluate
different practices of XP. Usually measurement
encompasses of qualitative evaluation and measures
in term of numerical values to show the assessment
results [2]. A quantitative evaluation framework was
proposed for agile methodologies and was based
on the four postulates of Agile Manifesto [1]. The
quantitative evaluation framework based on four
postulates of Agile Manifesto cannot evaluate the
practices of methods on which it is used. It can only
tell about the agility of the agile methods evaluated.
The evaluation framework initiated by William [4]
is more general agile evaluation framework with no
XP focused features. The proposed XP evaluation
framework in this study is XP focused and evaluates
the XP project, product and practices.

 According to Fenton and Pfl eeger [4],
"measurement is the process by which numbers
or symbols are assigned to attributes of entities in
the real world in such a way as to describe them
according to clearly defi ned rules". An entity can be
anything like time, event, commodity, thing, place or
person. Measurement is extensively used in most of
the production and manufacturing area to estimate
costs, calibrate equipment, assess quality and monitor
inventories [5]. Science and engineering disciplines are
incomplete without measurement tools and techniques.
Why measurements are used? The most general four
reasons for measurements are: to characterize, evaluate,
predict and improve the existing or proposed system.
As shown in Figure 1, attributes of the entity are taken
into consideration for the propose of measurement and
are assigned with numbers or symbols.

 This measurement does not give any meaning
unless we express with the mapping system like height
is 5.9 feet and weight is 65 kg. Software metrics are
the integral part of the state of the practice of software
engineering. Many customers specify software
and quality metrics as a part of their contractual
requirements. As all the attributes of software are
diffi cult to measure, software measurements do
not seem to have fully penetrated into industry
practices A metrics is a quantifi able measurement of
software products, process, or project that is directly
observed, calculated, or predicted. As shown in
Figure 2, software metrics are the measurement based
techniques applied to software process, products and
services to supply or to improve the engineering and
management information.

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

Figure 1: Measurement of entity [5].

Figure 2: Software Metrics [5]

 They are useful in predicting outcomes as well as
decisions when required. Metrics need to be defi ned
clearly before using it. Following are the elements that
should be clearly defi ned before using metrics. [6]

  Metrics Name: Appropriate name that has something
to do with its functionalities should be given.

  Metrics Description: Description of what is being
measured.

  Measurement Process: How metrics is used for
measurement?

  Measurement Frequency: How often
measurement is used?

  Threshold Estimation: How are thresholds
calculated?

  Current Thresholds: Current range of values
considered normal for metrics.

- 52 -

SCITECH Nepal, Vol. 14, No. 1

Several studies have shown that there are enabling as
well as limiting factors in extreme practices of XP.
A detail study about the rules and practices of XP
was carried out through interpretive approach and
some enabling and limiting factors were discovered
and the most criticized factors such as lightweight
requirements, onsite customer and Pair Programming
are taken into account to make XP practices more
realistic and practical.

II. RESEARCH METHODOLOGY
 The work is more concerned with the development
of evaluation framework with enabling and limiting
factors in XP. Most three criticized extreme practices
of XP- user stores, pair programming and online
customers are mainly taken into account as an initial
research framework for discovering enabling and
limiting factors and evaluating various aspects of it.
An interpretive approach was followed to conduct
a literature review. A research can be interpretive if
it builds on the assumptions that humans learn about
the reality from the meaning they assign to social
phenomena such as language, consciousness, shared
experiences, publications, tools, and other artefacts
[7]. The most fundamental principle of the interactive
research approach is a hermeneutic cycle derived
from documents and literary analysis. The different
components of the hermeneutic cycle are illustrated in
Figure 3. The fi rst component of the hermeneutic cycle
is concerned with the pre-understanding of researchers
on the subject matter and the second component is
concerned with the absorption of more knowledge
from different sources to widen knowledge to expand
the researcher’s interpretation potential. The third
component is concerned with theory building on the
basis of an interpretation of knowledge, explanation
attempts and missing knowledge. The last component
is concerned with documenting the new theories and
knowledge acquired through interpretive research
approach.

III. PROPOSED EVALUATION
FRAMEWORK FOR XP

 The measurements in physical systems are rigidly
defi ned and do not require more effort to quantify
them. However, the measurements in software
engineering are not so rigidly defi ned as in physical
systems and take a lot of effort to quantify them.
Software engineers make very diffi cult and critical
decisions based on the result of such measurements.
The evaluation framework for extreme programming
is basically based on the assessment and evaluation of
various project characteristics, extreme programming
characteristics, product characteristics and other
additional characteristics. The metrics used for
assessments and evaluations of XP are designed
to be simple, precise, understandable, economical,
timely, consistent, accountable, unambiguous, suitable
and reliable. The proposed extreme programming
evaluation framework consists of four sections with
numbers of subsections. The general block diagram
of the proposed XP evaluation framework is shown in
Figure 4:

XP Project
Records

XP Practice
metrics

XP Product
metrics

Additional
XP metrics

Project Detail
Member
Detail
Client Detail

Various
validated and
proposed
matrices for
XP practices

Product detail
Product
Quality
Product
productivity

Additional
metrics

Figure 3. Hermeneutic Cycle [3]

Figure 4: Proposed XP evaluation framework

Proposed XP evaluation framework design is more
specifi c to extreme programming. It is a collection of
some validated and proposed metrics. As illustrated in
the fi gure, proposed XP evaluation framework consists
of four sections with some subsections. Subsections of
each section are more concerned with both validated and
proposed metrics. The fi rst section is Project evaluation
which is used for recording and measuring the project
and project members’ details. The second section is
XP practice metrics which contains validated as well
as proposed metrics for assessment and evaluation of
XP practices used for software development process.
The third section is XP product metrics which contains
validated as well as proposed metrics for fi nal product
assessment and evaluation. The fourth section is
Additional XP metrics which contains some validated

- 53 -

as well as some proposed metrics for assessment and
evaluation of additional information on XP that are not
covered in other sessions of proposed XP evaluation
framework.

A. Project Records
Project records are designed in order to evaluate
the project and member details. Personnel and
team makeup are documented as top risk factors in
software development.

B. XP Practices Metrics
XP has its roots spread in information technology
system development where it makes the
development process more responsive to changing
business requirements [8]. The fourteen principles
of XP are: Humanity, Economics, Mutual Benefi t,
Self Similarity, Improvement, Diversity, Refl ection,
Flow, Opportunity, Redundancy, Failure, Quality,
Baby Steps, and Accepted Responsibility [9].
However, there are no any measuring means to
assess all these practices and principles. Therefore,
the proposed XP practice metrics play a vital role
to assess the effectiveness of these practices and
they are discussed below:

1. Sit Together Attendee
Sit together is one of the simplest but most
diffi cult XP practices. XP advocates the entire
team members must be present but it is not always
possible. Therefore, sit together attendee records
the name and of the absentee team member in the
meeting.

2. Number of Requirements (User Stories)
The size of the project mainly depends upon the
number of user stories which serve as a lightweight
requirement to software development process.
Simply, it counts the number of user stories in the
project.

3. Requirement Complexity
Requirement complexity qualifi es how complex is
each user story to implement. It can be qualifi ed as
low, medium and high.

4. XP Stakeholders
It is used for recording all the concerned
stakeholders and their roles in the XP project.

5. Project Velocity
Project velocity is the measure of the time taken
(in days) and the number of stories completed in
a single iteration. It measures the length of the
iteration in days and the tasks completed.

6. Automated Unit Tests per User Story
It quantifi es the total number of automated unit
tests carried out per user story. The main objective
of this metrics is to know how many unit tests
are created for each user story before they are
implemented.

7. Frequency of Automated Unit Test
It shows how often the automated unit tests are
carried out. It can be calculated as FAUT= (total
number of unit tests/total number of classes) per
user story*100%.

8. Acceptance Tests
It keeps all the necessary information about
acceptance tests.

9. Number of iterations per user story
Implementation of a user story may or may not
be fully implemented in iteration. Therefore, it
measures the numbers of iterations taken by user
story to get fully implemented

10. Onsite Customer Availability
Onsite is very simple but diffi cult practice of
XP. It is the measure of how often the customer
is available on onsite of development. It can be
qualifi ed as Full time, Part time and Never.

11. Pairing Frequency

In Pair Programming, one programmer is driver
who writes code while the other is observer or
navigator who reviews the code as it is typed in.
The two programmers switch roles frequently.
Pairing frequency measures how often the
role of driver and navigator changes in Pair
Programming.

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

- 54 -

SCITECH Nepal, Vol. 14, No. 1

C. XP Product Metrics
XP product metrics are concerned with measuring
the product related measurements.

1. Number of Component, Methods and Lines of
Codes
Number of components, methods and lines of
codes determine the size of the project.

2. Productivity Metrics
Halstead proposed the coding productivity metrics
and the idea was to determine the productivity
from the numbers and types of words used in
the program. It is also referred as a token count
measure. It can be calculated using the following
formula. [9]

 Volume = length*log2 (vocabulary)
 Where length = N1 + N2
 Vocabulary = n1 + n2
 n1 = the number of unique operators
 n2 = the number of unique operands
 N1 = the total number of operators
 N2 = the total number of operands

3. Diffi culty and Effort Metrics
IBM researchers developed diffi cult metrics which
measure the effort required to understand code and
maintain a piece of software. It is calculated as
follows. [10]

 Diffi culty = n1/2*N2/n2
 Effort=diffi culty*volume
 Where,
 n1 = the number of unique operators
 n2 = the number of unique operands
 N2 = the total number of operands
 Volume = length*log2 (vocabulary)

4. Defect Removal Effectiveness
Defect Removal Effectiveness (DRE) is defi ned
as the ratio of defects removed during the
development phase to defects latent in the product
and it is usually expressed in percentage [11].

5. Constraint
Constraints are the limitations or restrictions
present in the project. It lists all the known present
in the system.

D. XP Additional Metrics
There are many metrics that can be put under
additional metrics which can be used for evaluating
and measuring various aspects of XP. Some of
them are discussed below:

1. Customer Problem Metrics
The customer problem metrics is generally
expressed in terms of problems per user month
(PUM).

PUM = Total problems that customers reported
(true defects and non-defect-oriented problems)
for a time period /Total number of licenses-months
of the software during the period.

2. Customer Satisfaction Metrics

Customer satisfaction is measured in term of
results obtained from customer surveys. The result
is analysed in term of following fi ve levels: Very
satisfi ed, Satisfi ed, Neutral, and Dissatisfi ed and
Very dissatisfi ed.

3. Estimation of Number of Defects
It was fi rst proposed by Jones [12] for the
estimation of the number of defects based on the
numbers of functional points of the system. It is
calculated as:

Potential Number of Defects=FP 1.25

Where FP is the functional points of the system

4. Halstead Metrics for Effort
It was Halstead [9] who proposed an effort metrics
to determine the effort spent. It is calculated as:
E=V/L
Where,
E = effort
L=NLog2n
V=Program Volume
N=Program Length
n=Program Vocabulary

- 55 -

IV. Enabling and limiting factors in xp
Several studies have shown that there are enabling
as well as limiting factors in extreme practices of
XP. A detail study about the rules and practices of
XP was carried out through interpretive approach
and some enabling and limiting factors were
discovered and the most criticized factors such
as lightweight requirements, onsite customer and
Pair Programming are taken into account to make
XP practices more realistic and practical. The
lightweight requirement is one of the most criticized
extreme practices of XP. This study proposes the
scenario based requirements engineering practices
for XP with stakeholder analysis to overcome
the defects in the requirement practices of XP.
It is known fact that the unclear and defi cient
requirements create more problem than they solve.
As very lightweight requirement engineering
practices are followed in drafting requirement in
XP, there is always danger of drafting unclear and
defective requirements. The unclear and defective
requirements result the propagation of error
throughout the software development cycle. This
may result fi nal product with undiscovered errors
which is one of the risk factors for customers and
software developers. The most common enabling
and limiting factor of the requirement process in
XP is listed below:

 Enabling factors of requirement in XP
- Lightweight process.
- Divide and conquer approach.
- Less effort and time.
- Emphasis on oral communication over written

documentation.

 Limiting factors of requirement in XP
- It is very diffi cult to fi nd the real representative

of customer business.
- Single person (onsite customer) is responsible

for making decisions about the business.
- High chances of unclear and defective

requirement collected from a single person.
- Bypassing the requirements engineering

practices.

The limiting factors seem to affect more than an
enabling factor of the requirement process in XP.
Therefore, to eliminate all the limiting factors,
new approach for collecting requirements in XP is
proposed in this study and the approach is called
scenario based requirement engineering process
where all the related use cases are collected
from the real world working environment. The
realistic scenarios are generalized for requirement
analysis to get the requirements from it. There
are some scenario based tools that make the
process more organized and simple. As automated
tools are present to facilitate the scenario based
requirements, it can be successfully implemented
into XP without making it heavyweight
methodology. For example CREW SAVRE
version 2.1 built on Window NT platform supports
scenario based requirement engineering such as
incremental specifi cation of use cases and high
level requirements, automatic scenario generation
from use cases, description of use cases and
scenario of historical data, user walk-through and
validation support among others [13]. With the
scenario based approach stakeholder identifi cation
and analysis becomes easier and simpler. In most
of the cases, it is possible to identify and analyse
the stakeholders and their roles from real world
scenarios. This makes the requirements stronger
and realistic. Stakeholder analysis is performed
to understand the system with stakeholders staked
to it, their relationships, interests and expectation.
It helps to avoid the expectation gap between
developers and customers with different interests.
As the requirement is obtained through intensive
communication process in XP, it will defi nitely
help to improve the requirement process in XP. And
then the detail user story is drafted in electronic
form that is made available through web pages
which will act as written requirement specifi cation
in future.
Onsite customer practice is also one of the
most criticized extreme practices of XP. Onsite
customer is responsible for drafting a user story,
sitting together with the whole team. User story
acts as requirement specifi cation in XP. He/she is
also responsible for user story prioritization that
defi nes the priority of user story to be implemented

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

- 56 -

SCITECH Nepal, Vol. 14, No. 1

and development of acceptance tests with
developers. It is also believed that onsite customer
is courageous enough to make a business decision.
Many studies show that onsite customer practice is
effective but unrealistic and impractical. The most
common enabling and limiting factors of onsite
customer are listed below:

 Enabling factors of onsite customer
- Team oriented practices.
- Provides business values.
- Timely decision.
- Bearing responsibilities for failure or success

of project.

 Limiting factors of onsite customer
- Full time availability.
- Inadequate domain knowledge.
- Decision making authority on single people.

There were not so many studies performed relating
onsite customer extreme practices of XP. Out of
several alternative solutions to onsite customer, two
conceptual models were taken into consideration.
First is multiple customer representative models
where single customer is replaced by a multiple
concerned customers who can provide all the
necessary information that the developer is
looking for. Second is segregating customer model
where the domain experts act as customer in case
real customer are inaccessible. Especially, it can
be practiced in outsourcing projects.

Pair Programming (PP) is another the most
criticized extreme practice of XP. It has been
claimed that PP improves software development
process in many ways. However, some studies
and researches show that two developers working
together cannot be productive, economical
and chances of delay if developers have strong
disagreements on some issues.Two alternative
solutions to Pair Programming: Distributed
Pair Programming Model and Collaborative
Adversarial Pair (CAP) Programming model are
proposed in this study.

 Enabling factors of Pair Programming

- Collaborative and supportive effort.

- Feel of code ownership.

- Reluctant to interruption-single person can be
easily interrupted than a pair.

- Pairs are less likely to go down Gopher Holes
and Blind Alleys.

- Two minds are always better than single.

 Limiting factors of Pair Programming

- Differences in programming and
communication skills.

- Antisocial or anti personalities.

- Perception of cost and time.

- Common schedule and agreement.

- Discourage in pairing.

The personal traits development training
is proposed to inexperienced and resistant
programmers to help in cultivation of two
personalities making them right pair. It helps
to improve communication skills, to make
more comfortable, confi dent and comprising
which are suitable personal traits for Pair
Programming. Two models for improving Pair
Programming were proposed. First is Distributed
Pair Programming (DPP) when programmers are
located geographically apart and the second is a
Collaborative Adversarial Pair (CAP) to take the
merits and downplay the demerits of PP. There
are some studies that examine the enabling or/
and limiting factors of XP. Some of the analytical
studies present the alternative solution to limiting
factors of XP to improve the XP software process.
Table 1 shows the analysed enabling and limiting
factors of User Story of XP. Similarly, Table 2
shows the analysed enabling and limiting factors
of Pair Programming and Table 3 shows the
analysed enabling and limiting factors of onsite
customer.

- 57 -

XP Practices Enabling Factors Limiting Factors Remedy/Remedies Ref.
User Story Clear vision:

The customer has a
clear vision of
business
processes, product
requirements and
product background.

Defi cient Requirement:
Customers are not able to
give complete requirements to
developers.
Flood Requirement:
Customer has high expectations
exaggerating the capacity of
computer.
Frequent Changes:
Frequent changes in requirement
will lead stagnation, modify and
even abandon the fi nish work.
Negative Infl uence
The contradiction between
customers and developers has a
negative infl uence on the demand
of high quality.

i. Kano Model Analysis
for measuring customer feeling and
measuring effects of the product or

software quality.
ii. High Quality

Requirement Analysis to measure the
customer wish and developer need.

iii. XP Demand Module
It is established with Kano
Model thinking and High Quality
Requirement
Analysis to explore the high quality
requirements with customer awareness
and reduce the misunderstanding in
software development process and
hidden threats.

[14]

User Story Not stated Single Customer
The assumption that, in the
planning game, the business
could be represented by just
one customer.
Non-functional
requirements
The lack of consideration of
non-functional requirements
from the standpoint of the
business.

i. A process and a representation are
proposed for writing the stories and
tasks cards.

ii. Also include non functional
requirements as user stories.

iii. The word should be underlined to
show that it has an explicit link with
other underlined word.

[15]

Linkage
The lack of explicit links between
stories and tasks cards to the code
Process
The lack of a process for
producing stories and tasks.

iv. The process is described using SADT
diagram to verifi cation and validation.

User story Rapid
Rapid response to
changing
requirements.

Defects
Less predictable, less stable,
less reliable and less quality
assurance requirements.
Informal requirements
defi nition
User stories drafted by
customer are prioritised, but
no formal documentation.

Mapping extreme
practices to ISO Process
Model

 16]

User story Unambiguous,
Correct, and
Understandable
Modifi able,
Verifi able
and Annotated by
Relative Importance
Complete and
Concise
Requirements

Not Stated Not Necessary [17]

Table 1: Enabling and Limiting factors of user story found in different studies.

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

- 58 -

SCITECH Nepal, Vol. 14, No. 1

XP Practice Enabling Factors Limiting Factors Remedy/Remedies Ref.
Pair
Programming

Counter Balance
The detrimental effects of paired
programming are counterbalanced
by other XP best practices such as
common metaphor, simple design,
unit tests, coding standard and the
 reverse is true.

Productivity
Two developers working together cannot
equal the productivity of the same two
developers working in parallel.
Cost
It has been statistically shown that paired
programming costs approximately 15%
more time than traditional programming
Personal Characteristics
Effective paired programming is
diffi cult to achieve and requires a careful
cultivation of personalities within the
development team.
Dynamic interchange
The dynamic interchange of roles is one
major problem in PP.

Personalities Traits
It was noticed that
certain
personality traits are
benefi cial for paired
programming.
Improvement in
interview technique
It can be used for
ensuring
the traits of pair
programmers during
their interviews.

[18]

Pair
Programming

Defects
The end defect content is
statistically lower.
Faster
The pair solves the problem fast.
Code Review
Mistakes can be found during
coding.
Learning
People learn more about the
system and software development.
Communication
It provides an opportunity to
improve the communication skills.
Understanding
Project end with many people
understanding the software
product.

Cost
The development cost for Pair
Programming enabling factors is only
15%.
Wrong Perception
Managers view programmers as a scarce
resource, and are reluctant to "waste"
such by doubling the number of people
needed to develop a piece of code.

It is only the
study of cost and
benefi ts of Pair
Programming.
No remedy is
provided to
address its costs.

[19]

Tradition
Programming has traditionally been
taught and practiced as a solitary activity.
Reluctant
Many experienced programmers are very
reluctant to program with another person.

Pair Better code
Its premise—that of two people,
one computer—is that two
people working together on the
same task will likely produce
better code than one person
working individually
Benefi ts
Faster software development,
higher quality code, reduced
overall software development cost,
increased productivity,
better knowledge transfer, and
increased job satisfaction are
some benefi ts of PP.

Time schedule and
agreement
It requires that the two developers be
agreed for the same place at the same
time.
Management prospective
It requires an enlightened management
that believes that letting two people work
on the same task will result in better
software than if they worked separately.
Cost
The cost of Pair Programming is higher
than that of sole programming.
Paring Up
Novice-expert and expert-expert pairs
have not been demonstrated to be
effective.

Collaborative
Adversarial pair
(CAP)
programming
The main objective
is to take the merits
of Pair Programming
while at the same
time downplay
with its demerits.
The main idea is
to design together,
construct test and
code independently
and then test
together.

[20]
Programming

Table 2: Enabling and Limiting factors of Pair Programming found in different studies

- 59 -

XP Practice Enabling Factors Limiting Factors Remedy/Remedies Ref.
Pair
Programming

Counter Balance
The detrimental effects of
paired programming are
counterbalanced by other
XP best practices such as
common metaphor, simple
design, unit tests, coding
standard and the reverse is
true.

Productivity
Two developers working together
cannot equal the productivity of the
same two developers working in
parallel.
Cost
It has been statistically shown
that paired programming costs
approximately 15% more time than
traditional programming

Personalities Traits
It was noticed that certain
personality traits are
benefi cial for paired
programming.
Improvement in
interview technique
It can be used for ensuring
the traits of pair
programmers during their
interviews.

[21]

Personal Characteristics
Effective paired
programming is diffi cult to
achieve and requires a
careful cultivation of
personalities within the
development team.
Dynamic interchange
The dynamic interchange
of roles is one major
problem in PP.

Pair
Programming

Defects
The end defect content is
statistically lower.
Faster
The pair solves the problem
fast.
Code Review
Mistakes can be found during
coding.
Learning
People learn more about
the system and software
development.
Communication
It provides an opportunity to
improve the communication
skills.
Understanding
Project end with many
people understanding
the software product.

Cost
The development cost for Pair
Programming enabling factors is only
15%.
Wrong Perception
Managers view programmers as a
scarce resource, and are reluctant to
"waste" such by doubling the number
of people needed to develop a piece of
code.
Tradition
Programming has traditionally been
taught and practiced as a solitary
activity.
Reluctant
Many experienced programmers are
very reluctant to program with
another person.

It is only the study of cost
and benefi ts of Pair
Programming.
No remedy is provided to
address its costs.

[22]

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

- 60 -

SCITECH Nepal, Vol. 14, No. 1

XP Practice Enabling Factors Limiting Factors Remedy/Remedies Ref.
Pair
Programming

Better code
Its premise-that of two
people, one computer-is that
two people working together
on the same task will likely
produce better code than one
person working individually
Benefi ts
Faster software development,
higher quality code, reduced
overall software development
cost, increased productivity,
better knowledge transfer, and
increased job satisfaction are
some benefi ts of PP.

Time schedule and
agreement
It requires that the two developers be
agreed for the same place at the same
time.
Management prospective
It requires an enlightened management
that believes that letting two people
work on the same task will result in
better software than if they worked
separately.
Cost
The cost of Pair Programming is higher
than that of sole programming.
Paring Up
Novice-expert and expert-expert pairs
have not been demonstrated to be
effective.

Collaborative
Adversarial pair (CAP)
programming
The main objective is to
take the merits of Pair
Programming while at the
same time downplay with
its demerits. The main idea
is to design together,
construct test and code
independently and then
test together.

[23]

Table 3: Enabling and Limiting factors of onsite customer found in different studies.

During this study, following are the most remarkable enabling and limiting factors noticed and the alternative
solutions are proposed to limiting factors to improve the XP software process. It is shown in Table 4.

Extreme
Practice Enabling factors Limiting factors Remedy Remarks

Lightweight
Requirements
(User story)

Lightweight process
Divide and conquer
approach
Less effort and time
Emphasis on oral
communication over
written documentation.

High chances of unclear
and defective requirement
collected from a single
person.
Bypassing the Requirement
Engineering Practices.

Requirement
Specifi cations are
collected from
Scenario Based
Requirement
Engineering
(SBRE)
Practices.

SBRE is not so
heavyweight method.
Processes are simple
and easy to practice.
However, it is not as
simple as user story.
Further improvements
and modifi cations are
necessary to make the
process lightweight.

Onsite
customer

Team oriented practices.
Provides business values
Timely decision
Bearing responsibilities
for failure or success of
project

Full time availability.
Inadequate domain
knowledge.
Decision making authority
on single people

Multiple
Customers
Representative
Model
Surrogate
Customer
Model

Multiple customers
having adequate
domain knowledge are
dealt based on their
priority.
Customers are
surrogated by domain
experts according to
need and necessity.

- 61 -

Pair
Programming

Collaborative and
supportive effort
Feel of code ownership
Reluctant to
interruption-single
person can be easily
interrupted than a pair
Pairs are less likely to go
down Gopher Holes and
Blind Alleys.
Two minds are always
better than single.

Differences in
programming and
communication skills
Antisocial or anti
personalities
Wrong perception of cost
and time
Common schedule and
agreement
Discourage in pairing

Personality traits
development
trainings to pair
resistant.
Distributed Pair
Programming
(DPP)
Model.
Collaborative
Adversarial Pair
Programming
(CAPP) Model

Training is only
provided to those who
are found to be pair
resistant.
DPP is practices when
the developers are
geographically apart.
CAPP is validated
model to take the
merits and downplay
the demerits of Pair
Programming.

Table 4: Remarkable Enabling and Limiting factors observed with alternative solutions.

V. Conclusion
 The study proposes evaluation framework for
evaluating XP project with different existing and
proposed metrics in order to evaluate it. The evaluation
framework consists of enough room to include the
desired metrics on specifi c fi eld of XP project. It is more
concerned with the XP project which cannot be applied
for other methodologies. Software metrics were chosen
or proposed to evaluate the XP practices. However, the
agility of agile software development methodologies
can be somehow affected by the XP evaluation
framework. The proposed XP evaluation framework is
a comprehensive tool for agile software development
to evaluate XP practices without imposing excessive
burden. With the improvement in XP practices and
process, the metrics can also be further modifi ed or
added. An active continuation of research is needed for
refi ning and validating the XP evaluation framework
to make it possible to implement practically in real
projects. This can be done through the international
collaboration with software industries to refi ne and
validate the study. After the refi nement and validation,
it can be used as standard XP evaluation framework in
real projects. There are many numbers of enabling as
well as limiting factors in XP. This study is concerned
only with some extreme practices of XP although there
are many other extreme practices to be studied. The
study concentrates on only three the most criticized
practices-lightweight requirement, onsite customer and
Pair Programming of XP. In future, further study about
other extreme practice can be carried out to refi ne the
practices and make them simple, practicable as well as
effective.

REFERENCES
[1] E. Karla, C. Pablo, & F. Estevez, “A Quantitative

Framework for the Evaluation of Agile
Methodologies”, Journal of Computer Science
and Technology, vol. 10, no.2, pp. 68–73, 2010.

[2] N. Ahmad, “Software Measurement and Metrics:
Role in Effective”, International Journal of
Engineering Science and Technology (IJEST),
vol 3, no. 1, pp. 671–680, 2011.

[3] L. Williams, W. Krebs, L. Layman, A. I. Antón,
and P. Abrahamsson, “Toward a Framework for
Evaluating Extreme Programming,” Proceedings
of the 8th International Conference on Evaluation
and Assessment in Software Engineering (EASE
’04), pp. 11–20, 2004

[4] N. Fenton and J. Bieman, Software metrics. Boca
Raton, Fla. [u.a.]: CRC Press, 2015.

[5] L. Westfall, The Certifi ed Software Quality
Engineer Handbook, ASQ Quality Press, 2009.

[6] N. Ahmad, “Software Measurement and Metrics:
Role in Effective”, International Journal of
Engineering Science and Technology (IJEST),
vol. 3, no. 1, pp. 671–680, 2011.

[7] E David, Research Methods for Political
Science: Quantitative and Qualitative
Approaches, 2nd ed. Reading, ME Sharpe, 2004,
[E-book] Available: http://books.google.com/
books?id=8PJYznDXQIcC&pgis=1

Enabling and Limiting factors in eXtreme Programming (XP) with Evaluation Framework

- 62 -

SCITECH Nepal, Vol. 14, No. 1

[8] G. Meszaros, J. Andrea & S.Smith, “Framework
XP – Building Frameworks using XP”, The
Pennsylvania State University, Pennsylvania,
2002

[9] Maurice H. Halstead, “Elements of Software
Science (Operating and Programming Systems
Series”, Elsevier Science Inc., New York, NY,
USA, 1978.

[10] T. Andersson, “A Survey on Software Quality
Metrics”, Åbo Akademi University, Department
of Computer Science,Finland, 1990.

[11] E. Karla, C. Pablo & F. Estevez, “A Quantitative
Framework for the Evaluation of Agile
Methodologies”, Journal of Computer Science
and Technology,vol. 10, no. 2, pp. 68–73, 2010

[12] C. Jones, “Software Estimation Rules of Thumb”,
Proceedings of the 1998 IFPUG conference, vol.
10, no. 3, pp. 1–11, 1998.

[13] N.A. Maiden , S. Minocha, K. Manning & M.
Ryan, “CREWS-SAVRE: Systematic Scenario
Generation and Use”, Proceeding in the 1998
third international conference on Requirements
Engineering, vol. 12 no. 5, pp. 148-155, 1998.

[14] Z. Li-li, H. Lian-feng & S. Qin-ying, “Research
on Requirement for High-quality Model of
Extreme Programming”, Proceedings of the
2011 International Conference on Information
Management, Innovation Management and
Industrial Engineering, vol. 4 no. 3, pp. 518–522,
2011.

[15] R. De. Janeiro, “Extreme Requirements (
XR)”, Proceedings of the 2001 Requirements
Engineering Conference Applied Science, pp.
1–13, 2001.

[16] E. Erharuyi, “Combining Extreme Programming
with ISO 9000 : 2000 to Improve Nigerian
Software Development Processes”, Blekinge
Institute of Technology, Sweden, 2007.

[17] R. Duncan, “The Quality of Requirements in
Extreme Programming”, Software Defence
Engineering, pp. 19–22, 2001.

[18] A. J. Dick, & B. Zarnett, “Paired Programming
& Personality Traits”, Proceedings of the 2002
Workshops on Database Theory, 2002.

[19] A. Cockburn, & L. Williams, “The Costs and
Benefi ts of Pair Programming”, In Extreme
Programming and Flexible Processes in Software
Engineering XP, pp. 1–11, 2000.

[20] R. Swamidurai & D. Umphress, “Collaborative-
Adversarial Pair Programming”, ISRN Software
Engineering, pp. 1–11, 2012.

[21] A. J. Dick, & B. Zarnett, “Paired Programming
& Personality Traits”, Proceedings of the 2002
Workshops on Database Theory, 2002.

[22] A. Cockburn, & L.Williams, “The Costs and
Benefi ts of Pair Programming”, In Extreme
Programming and Flexible Processes in Software
Engineering XP, pp. 1–11, 2002.

[23] R. Swamidurai & D. Umphress, “Collaborative-
Adversarial Pair Programming”, ISRN Software
Engineering, vol. 5, no. 8, pp. 1–11, 2012.

* * *

