

The Geographic Base

Journal Homepage: www.cdgtu.edu.np/geographic-base

Assessment of Solar Photovoltaic Potential of Building Rooftops Using Photogrammetry and GIS

Ashmeera Dahal^{1,*}, Bimala Chhetri¹, Kshitij Raj Sharma², Mira Neupane¹

¹Paschimanchal Campus, Institute of Engineering, Tribhuvan University, Pokhara, Nepal

² Center for Space Science and Geomatics Studies, Paschimanchal Campus, Institute of Engineering, Tribhuvan University, Pokhara, Nepal

*Corresponding E-mail: ashmeeradahal04@gmail.com

Article info

Keywords:

Solar photovoltaic potential UAV Solar radiation Photogrammetry GIS **Received:** 22nd Aug. 2021 **Accepted:** 23rd Nov. 2021 **DOI:** https://doi.org/10.3126/ tgbv8i01.43467 © The Geographic Base

Abstract

As conventional non-renewable energy is becoming increasingly scarce, the development of renewable energies, such as solar energy, has become a major priority in today's world. In this study, it has developed an approach to simulate solar radiation on rooftops of Paschimanchal Campus and estimate the solar photovoltaic (PV) potential using Photogrammetry and GIS techniques. The object-based method was used to extract and classify buildings using very high-resolution data: orthophoto, the UAV-derived Digital Surface Model, and Digital Terrain Model raster layers. For more accurate estimation of solar panel installations, the evaluation of solar radiation is essential and the amount of solar radiation that was converted into solar PV potential depends upon the technical characteristics of the panel (technology used: monocrystalline or polycrystalline). Subsequently, the evaluated cost of solar panel installation was compared to the cost of grid-based electricity of the study area. The result obtained shows that 18 rooftops of the buildings are the most suitable place for solar panel installation and their usable area is 4303.67m².

For polycrystalline and monocrystalline technologies, the annual PV power generation in the study area is 868 MWh/ yr and 1274 MWh/yr respectively. It was found that 1428.42m² of the suitable area was enough to fulfill the yearly demand of Paschimanchal Campus. For polycrystalline technologies, around 876 panels costing NRS.1,57,68,000 are required The cost analysis of 10 years concludes solar energy will be cheaper than grid-based electricity by NRS.1,04,10,785.

Introduction

Carbon-based energy production that is widely employed in all parts of the world is of significant interest. The stakes are high: rising the carbon dioxide concentrations of the atmosphere due to GreenHouse Gases (GHGs) emissions, environmental safety of energy production techniques, energy price volatility, and degradation of fuel reserves. To reduce global warming, renewable energy has appeared as an important constituent of energy strategy for governments at all levels: national, regional, and municipal (Ordóñez et al., 2010). Therefore, fossil fuels should be replaced with renewable energies (i.e., solar, wind, hydropower, nuclear) (Ramachandra & Shruthi, 2007). Solar energy has the highest rate of energy output and the lowest operational expenses of all the renewable resources available (IRENA, 2019).

Solar energy is radiant light and heat released from the sun. It is a renewable

energy source that is natural, unlimited, clean, and reliable. Solar energy is a very flexible energy technology growing better in terms of both cost and applications. Furthermore, compared to traditional energy production methods, solar energy requires significantly less labor. Solar energy has a significant advantage over other traditional power producers in sunlight can be transformed that directly into solar energy utilizing the tiny photovoltaic cells (PV solar cells) (Shaikh et al, 2017). Solar panels have photovoltaic cells that convert sunlight into direct current, which is subsequently converted to alternating power by an inverter (Fonash et al., 2020). Solar PV potential depends upon solar radiation and the type of photovoltaic system to convert solar energy into electrical energy (Energy, n.d.). The technology for producing electrical energy with a photovoltaic system has advanced rapidly in recent decades (Kumar, 2020).

The solar panel performance is determined by the specific location of panels while installing it. Solar energy has traditionally been utilized through the installation of photovoltaic (PV) systems on building rooftops. Once installed, it lasts for 20-25 years with low care (Kumar & Sreedevi, 2018). It is still a problem to make optimum use of solar energy and meet the energy demands of both commercial and residential structures. As a result, it's vital to assess solar energy potential and look at how it's allocated throughout a building's roofs. Due to significant spatial and temporal changes in solar radiation, that are influenced by a variety of elements including roof structures, inclined faces, shadowing impacts, geographical positions, and topographic characteristics, estimating solar energy potential becomes difficult. To determine the energy potential of building roofs, several methodologies and techniques have been examined so far (Tiwari et al., 2020). Recent technological advances such as remote sensing, aerial photogrammetry, LiDAR, GIS etc., have greatly eased data acquisition, construction, and visualization (Fan et al., 2014). Aerial Photogrammetry was adopted in the study as the use of an unmanned aerial vehicle (UAV) enables the rapid, precise, and costeffective capture of enormous areas (Sullivan, 2019). Similarly, the study used Geographic Information System (GIS)-based methodologies since they are the most practical, exact, and effective techniques for estimating usable roof characteristics that enable us in correct modeling and spatial analysis (Kouhestani, 2018).

This research assesses the possibility of estimating the solar PV potential of building rooftops and analyzes, estimates and locates the best maximum potential rooftop for solar panel installation which can be used in housing, schools, hospitals, college apartments. It also compares solar PV energy with the national grid system in terms of cost and benefits. Therefore, we devise a method for assessing PV solar potential at Paschimanchal Campus located in Gandaki Province, Pokhara, Nepal, by retrieving rooftop features using Photogrammetry and GIS.

Methods and Materials

Paschimanchal Campus premises was chosen for the study covering an area of 47,956.44 m² (96.26 *ropani*) due to easy access for the extraction of data and offering various types of roofs in different inclinations and orientations. So far, no comprehensive assessment of rooftop photovoltaic solar potential has been carried out in the study area.

The peripheral area of Paschimanchal Campus was selected for study area because of its infrastructure and resources available for research As this research is not restricted to the number of buildings it can be applied to the large geographical areas for finding the best buildings that provide the highest solar energy. The study area was analyzed based on the slope aspect map, ESRI's Solar Analyst toolbox, Current electricity bill and solar panel installation rate on the current market scenario. The solar radiation was calculated at specific times and statistics that have been created are visualized with tables and maps.

For the study, two separate data sources were used. The first is photos obtained from UAVs, which were used to create DSM, Orthophoto, and DTM. The second is the electricity consumption bill of Paschimanchal Campus for cost analysis.

Figure 1. Study area

Orthophoto of 1cm/pixel resolution, DSM of 1cm/pixel resolution, and DTM of 0.96 m/pixel resolution were generated after performing image processing in Pix4DMapper software. These data were then utilized to extract buildings for further examination. An object-based classification using a machine learning algorithm was used to detect buildings inside the research region with the help of eCognition Developer 9. The objectbased method begins with the creation of segmented objects that contain clusters of pixels with consistent feature values. To restructure the image segments, this research used a multi-level segmentation hierarchy, performing Level I and Level II classification (Tiwari et al., 2020). The orthophoto, DSM, DTM, slope, and

nDSM were used to create the Level-I multi-resolution segmentation. For the creation of a segmented layer the parameters used in the multi-resolution technique are scale parameter of 10, shape factor of 0.5, and compactness of 0.7. Elevated structures such as buildings, trees, bushes were extracted from Level-I classification excluding ground features. The object-based classification's primary goal is to solely retrieve buildings. Therefore, a few additional elements were added due to the presence of vegetation on some elevated structures to attain the Level-II classification. Finally, the building's footprints of the study area were derived and outline breakages of extracted features were fixed with the help of available open-source GIS platforms (QGIS).

Figure 2. Flowchart of solar PV potential calculation.

Figure 3. Methodology to achieve level-I and level-II classification

The amount of sunlight available at a given place and time are an essential requirement to design photovoltaic systems. Solar Radiation in watt-hours per meter square (wh/m²) was calculated using the area solar irradiation tool and then expressed as kilowatt-hours per meter square (kwh/m²).

For a better estimate of PV potential, a spatial analysis was undertaken over the building roofs. The slope, aspect, and solar radiation raster layer generated from DSM were incorporated for spatial analysis. The following four criteria were considered to determine suitable rooftops for solar panels installation.

1. Rooftops with a slope of 45 degrees or less are ideal, as steeper slopes receive less sunshine.

2. Rooftops for solar panel installation should receive at least 800 KWh/m^2 of solar radiation.

3. Suitable rooftops should not face north as such rooftops tend to receive less sunlight. 4. Usable roof surface should cover more than 20 m^2 area.

The usable solar radiation was then converted into electric power generation potential. The amount of power that solar panels can generate is determined by two technological parameters in addition to solar radiation (conversion efficiency, performance ratio). Based on the two current technologies on the market: high performance (Monocrystalline) and standard yield (Polycrystalline), it

is possible to calculate the entire yearly electricity production (Saadaoui et al., 2019). The electric power production potential (E) is expressed as:

E (KWh/year) = Area * Mean * PR * Nm

where, Area = Building's suitable area (m^2)

Mean = Average solar radiation for each building (KWh/m^2)

PR= Performance Ratio (%)

Nm= Conversion efficiency of the panel System (%)

Results and Discussion

The results showed significant PV Potential on the building rooftops of Pashchimanchal Campus.

Building extraction result

23 buildings covering an area of 13437.47 m² were extracted. Figure 4 shows extracted building footprint present in the study area.

Figure 4. Extracted buildings in Paschimanchal campus

Slope and aspect

In our study, slope and aspect were measured in terms of degrees. In Figure 5, slope values were categorized into five different classes $(0-10^\circ, 10^\circ-26^\circ, 26^\circ-46^\circ, 46^\circ-70^\circ, 70^\circ-89^\circ)$ where 0° degree corresponds to a flat surface, while a

90° value specifies a completely vertical surface. In Figure 6, the aspect map was categorized into eight quadrants: North (0°), Northwest, West (270°), Southwest, South (180°), Southeast, East (90°), and Northeast. If a surface is flat, the aspect value was assigned as -1.

Figure 5. Slope from DSM

Figure 6. Aspect from DSM

Distribution of solar radiation

Figure 7 represents solar radiation distribution in the study area. The solar radiation values were scaled from 0 to 1745 KWh/m² which was further categorized into five different classes (0-674, 674-1063, 1063-1349, 1349-1582, 1582-1745). South-facing hipped roofs tend to receive more solar radiation than north-facing hipped roofs in the study area. Further, flat roofs also receive less solar radiation.

Suitable building detection

Out of 23 buildings, only 18 buildings were chosen for further research after applying four criteria for solar

panel placement. Figure 8 shows the most suitable area in the Paschimanchal Campus's rooftops for solar panel installation where the yellow portion in each building indicates its suitable area. These chosen sections cover an area of more than 20 m² in the building rooftop, do not face north, have a slope less than 45°, and solar radiation greater than 800 Kwh/m². The summation of the usable area of 18 buildings is 4303.67 m².

Conversion of solar radiation to electric power

To convert the solar radiation to the quantity of electricity that can be generated by solar panels, PV Technologies (monocrystalline and polycrystalline) along with its solar panel's efficiency and the installation performance ratio are described in (Table. 1). The values of conversion efficiency and performance ratio depends upon the technology used (mono, poly), the brand of panel used.

(Table 2.) represents the detailed calculation of solar PV potential of each building (23 buildings) evaluated for both Monocrystalline and Polycrystalline technologies along with their respective total usable area for solar panel installation, and the table 2 links (Figures 4. and 8.).

The total annual electric power production potential for Monocrystalline and Polycrystalline are found to be 1274 MWh/yr and 868 MWh/yr respectively.

Figure 8. The most suitable area in Paschimanchal campus rooftops for solar panel installation **Table 1.** PV technologies and features solar panel placement. The Department

Technology	Monocrystalline	Polycrystalline		
Classification	Silicium (c-Si)	Silicium (mc-Si)		
Dimension (mm)	1046*1559*35	1650*992*35		
Power (W)	345	265		
Conversion efficiency (%)	21	15		
Performance ratio (%)	83	79		
Brand	Sunpower X21 - 345	Trinasolar TMS - 265PDO5		

Source: (Saadaoui et al., 2019)

The results show the highest PV potential values from Monocrystalline than Polycrystalline panels. The table also shows the suitability of each building for

solar panel placement. The Department of Electrical Engineering located on the northeast side of the study area and RIC located on the northwest side of the study area is found to have the highest and lowest electric power production capacity respectively.

In the context of Nepal, Polycrystalline is most widely used because of its cost-effective property as compared to Monocrystalline. Thus, in our study, Polycrystalline was further considered for analysis. (Figure 9.) shows the annual electric production capacity greater than 4 MWh/yr for Polycrystalline technology.

Building	Name of	Area of	ID of usable	Usable	Electric	Electric	Remark
ID	building	building	area	area of	potential	potential	
		(m ²)		each	using	using poly	
				building	mono	crystalline	
				(m^2)	crystalline	(MWh/ vr)	
					(MWh/		
					vr)		
1	Administration	560.63	*	*	*	*	Not
1	section	500.05					suitable
2	Civil laboratory	520 16	1	224.22	66	15	Suitable
	Civil laboratory	328.10	1	224.23	00	43	Suitable
3	Geomatics	673.31	2	360.37	105	71	Suitable
	block						
	(G-Block)						
4	Department	780.19	5,6	549.09	164	112	Suitable:
	of Electrical						highest
	Engineering						
5	Plumbing	438.74	8	223.46	66	45	Suitable
	workshop						
6	Roof area	429.63	*	*	*	*	Not
							suitable
7	Canteen area	869.36	24	89.83	26	18	Suitable
8	RIC block	1165.85	3	20.96	6	4	Suitable:
0	NIC DIOCK	1105.05	5	20.70	0		lowest
9	Library and	1084 99	10.14	124.09	37	2.5	Suitable
	electronics	100	10,11	12			Summere
	computer block						
10	Civil	607.01	23	35.91	11	7	Suitable
10	Department	007.01	25	55.71	11	/	Sultuble
	(D - Block)						
11	(D Block) Mechanical	287.96	*	*	*	*	Not
11	Department	207.70					suitable
	(C - Block)						Suitable
12	(C Block) Mechanical	320.80	*	*	*	*	Not
12	Department	527.00					suitable
	(C Ploal)						Suitable
13	MSC building	1112.46	17 18 19 20	313.80	02	63	Suitable
1.5	Nibe building	1006.00	17,10,17,20	515.00)2	05	Suitable
14	Department	1006.09	9,11	/0.64	20	14	Suitable
	of Applied						
	Sciences						
15	Sikarmi	500.33	4	486.99	145	98	Suitable
	karyelaya						
16	Department of	513.22	21	309.32	92	63	Suitable
	Mechanical and						
	Automobile						
	Engineering						

Table 2. Detailed calculation of solar PV potential of each building

17	Store Sakha pramukh	232.97	22	163.68	49	34	Suitable
18	Machinig workshop	542.17	16	319.19	95	65	Suitable
19	Fitting and maintenance workshop	484.03	15	317.82	94	64	Suitable
20	Roof area	104.32	*	*	*	*	Not suitable
21	Sheet metal workshop	507.46	7	311.98	93	63	Suitable
22	Welding / fabrication founder forging	561.11	12	336.10	100	68	Suitable
23	NSU block	117.70	13	46.22	13	9	Suitable
Total		13437.47		4303.67	1274	868	

Figure 9. Annual electric production capacity of the most suitable buildings for polycrystalline

Source: Field Survey, 2021

Comparative cost analysis

The demand units per year consumed by the entire Paschimanchal campus is 288.096 MWh and the total charge per year is NRS. 38,57,162.52 approximately. The detailed solar panel installation analysis is explained in Table 3. The approximate cost per panel installation was based on the study of an installed solar power plant in Butwal. Thus, the total cost for the installation of panels (876 panels) for fulfilling the demand of the whole Paschimanchal Campus is found to be NRS 1,57, 68,000. From Figure 8 and Table 2, it is concluded that installing solar power panels in the Department of Electrical Engineering (ID 5, Usable Area 515.50 m²), Sikarmi Karvalava (ID 4, Usable Area 486.99 m²), Geomatics Block (ID 2, Usable Area 360.37 m²) and Welding and Fabrication Founder Forging (ID 12, Usable Area 336.10 m²) with its total electric power production capacity of 342 MWh/ yr is found to be sufficient to fulfill yearly demand of electricity consumed by the college per year.

Table 3.	Solar	panel	installation	analysis
----------	-------	-------	--------------	----------

Solar panel installation analysis				
Total suitable area (square meter)	4303.67			
Total production capacity (Mwh/				
Year)	868			
	1			
Total demand per year in				
Paschimanchal Campus (Mwh)	288.096			
Total area to cover for demand				
(square seter)	1428.42			
Model area (square meter)	1.63			
Model power (Wh)	265			
Total number of panels required to				
meet demand	876			
Approx. cost of panel installation				
(NRS)	18000			
Total cost of installation (total panel				
* per panel cost) (NRS)	15768000			
Per year average solar panel				
maintenance cost (NRS)	1000			
Per year total solar panel				
maintenance cost (NRS)	876000			

From the 10-years of cost analysis between the solar panel installation and the national grid-based electricity, it was found that solar energy would be cheaper than national grid by NRS. 1,04,10,785.

Conclusion

Since the energy demand is increasing day by day, solar energy is a very promising, effective and beneficial source of energy. This research is primarily focused to determine an appropriate location for solar panel installation by maximizing the amount of energy. Accurate assessment of slope, aspect, the orientation of the building rooftops is key points for the determination of solar energy which were extracted based on cost-effective orthophoto and object-based methods. By avoiding the expensive lidar technique, this algorithm promises a better result for estimation of solar energy that yields on flat, pitched surface and classified the best building to put solar panels in order to meet the user energy requirements over the specific period with a limited amount of resources.

The results demonstrate that the derived method of calculation can accurately predict the solar radiation, exact slope and aspect at which building rooftops will generate high solar energy throughout a year. These results also show that solar panels installation is cost-effective when used for a longer period if the selection of the building and direction are as guided by the algorithm of this research.

The lack of cloud cover analysis and rooftop type analysis is the limitation of the current study Still, the proposed method can be applied for the accurate solar panel sizing for commercial use, households use and other private housing investors with the effective consumption of the renewable source of energy without worrying about a large amount of cost in comparison of current grid electricity charges.

References

- Borfecchia, F., Caiaffa1, E., Pollino1, M., Cecco1, L.D., Martini1, S., Porta1, L.L., & Marucci, A. (2017).
 Remote sensing and GIS in planning photovoltaic potential of urban areas, 47(1), 195-216. https://doi. org/10.5721/eujrs20144713
- ESRI. (2020). Modeling solar radiation. Retrieved from https://pro.arcgis. com/en/pro-app/latest/toolreference/spatial-analyst/modelingsolar-radiation.htm
- Fan, H., Yao, W., & Fu, Q. (2014). Segmentation of sloped roofs from LiDAR airborne point clouds using ridge-based hierarchical Decomposition. Remote Sensing, 3284-3301. 6(4), doi: 10.3390/ rs6043284
- Fonash, R. T., Ashok, S., & Fonash, S.J. (2020). solar cell. encyclopedia britannica. https://www.britannica. com/technology/solar-cell
- Fuentes, J.E., Moya, F.D., & Montoya, O.D. (2020). Method for estimating solar energy potential based on photogrammetry from unmanned aerial vehicles. *Electronics*, 9(12), 2144. https://doi.org/10.3390/ electronics9122144
- Fu, P., & Rich, P. M. (1999). Design and implementation of the solar analyst:

An arcview extension for modeling solar radiation at landscape scales. In proceedings of the nineteenth annual ESRI user conference (Vol. 1, pp. 1-31). USA: San Diego.

- GISGeography. (2021). Image classification techniques, Remote Sensing. Retrieved from https:// g i s g e o g r a p h y. c o m / i m a g e classification-techniques-remotesensing/
- Honsberg, C.B., & Bowden, S.G. (2019). Photovoltaics education. Retrieved from https://www.pveducation.org/
- IRENA. (2019). Renewable capacity statistics 2019. International renewable energy agency,Abu Dhabi. Retrieved from https://www. irena.org/publications/2019/mar/ renewable-capacity-statistics-2019
- Karthick, A., Murugavel, K.K., Kalaivani, L., & Saravana Babu, U. (2017). Performance study of building integrated photovoltaic modules. Advances in building energy research, 12(2). https://doi.or g/10.1080/17512549.2016.1275982
- Khan, J., & Arsalan, M.H. (2016). Estimation of rooftop solar photovoltaic potential using geospatial techniques: A perspective from the planned neighbourhood of Karachi – Pakistan. *Renewable*

energy, 188-203. https://doi. org/10.1016/j.renene.2015.12.058

- Khanna, D. (2021). Estimate solar power potential. Retrieved from https://learn.arcgis.com/en/projects/ estimate-solar-power-potential/
- Kouhestani, F.M., Byrne, J., Johnson, D., Sencer, L., Hazendonk, P., & Brown, B. (2018). Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. *International Journal of Energy and Environmental Engineering*, 10, 13-32.
- Kumar, A., & Sreedevi, I. (2018). Solar potential analysis of rooftops using satellite imagery.
- Kumar, V. (2020). Smart environment for smart cities. https://doi. org/10.1007/978-981-13-6822-6 (Energy, n.d.)
- Ordóñez, J., Jadraque, E., Alegre, J., & Martínez, G. (2010). Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia. *Renewable and Sustainable Energy Reviews*, 14(7), 2122-2130. https:// doi.org/10.1016/j.rser.2010.01.001
- Ramachandra, T.V., & Shruthi, B.V. (2007). Spatial mapping of renewable energy potential. Renewable and Sustainable energy reviews, 11(7),

1460-1480. https://doi.org/10.1016/j. rser.2005.12.002

- Saadaoui, H., Ghennioui, A., Ikken, B., Rhinane, H., & Maanan, M. (2019).
 Using GIS & photogrammetry for assessing solar photovoltaic potential on flat roofs in urban area cases of the city of Ben Guerir/ Morocco. doi:10.5194/isprsarchives-XLII-4-W12-155-2019
- Shaikh, M.R.S., Shaikh, S., Waghmare, S.B., & Tekale. A. (2017). A review paper on electricity generation from solar energy. *International Journal* for Research in Applied Science & Engineering Technology, 5(IX).
- Singh, R., & Banerjee, R. (2015). Estimation of the rooftop solar photovoltaic potential of a city. *Solar Energy*, 115, 589-602. doi:10.1016/j. solener.2015.03.016
- Song, X., Huang, Y., Zhao, C., Liu, Y., Lu, Y., Chang, Y., & Yang, J. (2018, November 15). An approach for estimating solar photovoltaic potential based on rooftop retrieval from remote sensing images. *Energies*, 11(11), 3172. https://doi. org/10.3390/en11113172
- Sullivian, J. (2019). UAV photogrammetry use cases beyond surveying and mapping. The Aerial Perspective Blog

Tiwari, A., Meir, I.A, & Karnieli, A. (2020). Object-based image procedures for assessing the solar energy photovoltaic potential of heterogeneous rooftops using airborne LiDAR & orthophoto. *Remote Sensing*, 12(2), 223. https:// doi.org/10.3390/rs12020223