

Analysis of Bacteriological Quality and Antibiogram of *Escherichia coli* and *Staphylococcus aureus* in Raw Milk Sold in Janakpurdham

Asmita Kumari Yadav^{1*}, Manisha Sah¹, Sudha Sah¹, Shruti Chaudhary¹, Ranjit Kumar Sah¹

Department of Microbiology, Ramswaroop Ramsagar Multiple Campus, Institute of Science and Technology,
Tribhuvan University, Nepal

***Corresponding author:** Asmita Kumari Yadav, Department of Microbiology, Ramswaroop Ramsagar Multiple Campus, Tribhuvan University, Janakpur, Dhanusha, Nepal; Email: asmuyadav872@gmail.com; Telephone: +977-9822010442

ABSTRACT

Objectives: To assess the microbiological quality of raw milk sold in Janakpurdham, Nepal, by determining the Total Viable Count (TVC) and Total Coliform Count (TCC), isolating *Escherichia coli* and *Staphylococcus aureus*, and evaluating its antibiotic susceptibility pattern.

Methods: A total of 74 raw milk samples were aseptically collected from dairies and farmers in Janakpurdham from March to June 2025. TVC was determined using the pour plate method on Nutrient Agar, and TCC/*E. coli* isolation on Eosin Methylene Blue Agar. *S. aureus* isolation was done on mannitol salt agar after enrichment. Conventional biochemical tests were used to confirm the isolates. Antimicrobial susceptibility of the isolates was performed using the Kirby-Bauer disk diffusion method.

Results: Mean TVC was 1.13×10^9 CFU/ml (range: 2.075×10^8 – 2.76×10^9), and mean TCC was 7.40×10^7 CFU/ml (range: 2.0×10^5 – 5.28×10^8). *E. coli* was isolated from all seventy-four samples. Susceptibility was highest to gentamicin (100%) and chloramphenicol (85.13%), but 100% resistance was observed to ampicillin and amoxicillin-clavulanate. 60.81% isolates were multidrug-resistant. *S. aureus* was detected in 48 samples (65%). Antibiotic susceptibility testing revealed 100% resistance to ampicillin and 72.9% to cefoxitin, while varying resistance was observed for linezolid, erythromycin, clindamycin, and others.

Conclusion: Raw milk in Janakpurdham exhibits high microbial contamination and antibiotic-resistant bacteria, posing public health risks; therefore, improved hygiene and antibiotic stewardship are essential.

Keywords: Raw milk, *Escherichia coli*, *Staphylococcus aureus*, Total Viable Count, Coliform Count, Antimicrobial resistance, Janakpurdham.

INTRODUCTION

Raw milk contamination occurs during milking, handling, storage, or transportation from sources such as udder infections (mastitis), dirty equipment, or fecal matter (Jay et al., 2005). Poor pre-milking hygiene and lack of pasteurization increases the health risk in developing countries (Dhungel et al., 2019; Rahmatalla et al., 2016). Raw milk, which is unpasteurized milk from animals such as cows or buffaloes, can contain

pathogens like *Escherichia coli*, *Salmonella*, and *Listeria monocytogenes* if not handled properly (Pal et al., 2016). The presence of pathogenic microorganisms in raw milk poses significant public health risks, including foodborne disease.

Escherichia coli indicates fecal contamination and poor sanitation. While most strains are harmless, pathogenic and resistant variants pose a risk. *S. aureus* can cause a variety of illnesses. Presence of both these

Date of Submission: November 30, 2025

Published Online: December, 2025

Date of Acceptance: December 25, 2025

DOI: <https://doi.org/10.3126/tujm.v12i1.88403>

organisms represents a significant burden on public health globally, particularly in low- and middle-income countries. Antimicrobial resistance (AMR) exacerbates the issues caused by antibiotic misuse in veterinary practices (Oliver et al., 2005). This study evaluated raw milk quality sold in Janakpur and isolated two important milk-contaminating bacteria to assess antibiotic resistance levels for public health implications.

METHODS

Study Site and Duration: Raw milk samples (50 mL each) were collected aseptically in sterile glass bottles from dairies, farmers, and shops across 25 wards of Janakpur Sub-Metropolitan City during the morning hours (8-10 AM) from March to June 2025. Samples were transported in an ice box and processed within 3-4 hours.

Microbial Analysis: Serial ten-fold dilutions (10^{-1} to 10^{-7}) were prepared. Total Viable Count (TVC) was determined by pour plate method on Nutrient Agar (NA), incubated at 37°C for 24 hours (NDDDB, 2001). Total Coliform Count (TCC) and *E. coli* isolation were performed using spread plates on Eosin Methylene Blue Agar (EMBA), incubated at 37°C for 24-48 hours. Colonies with a greenish metallic sheen were subcultured for purity. For *S. aureus* isolation, 1 mL of milk sample was inoculated into 9 mL of sterile peptone water. After enrichment, a loopful was streaked onto Mannitol Salt Agar to get golden yellow colonies of *S. aureus*.

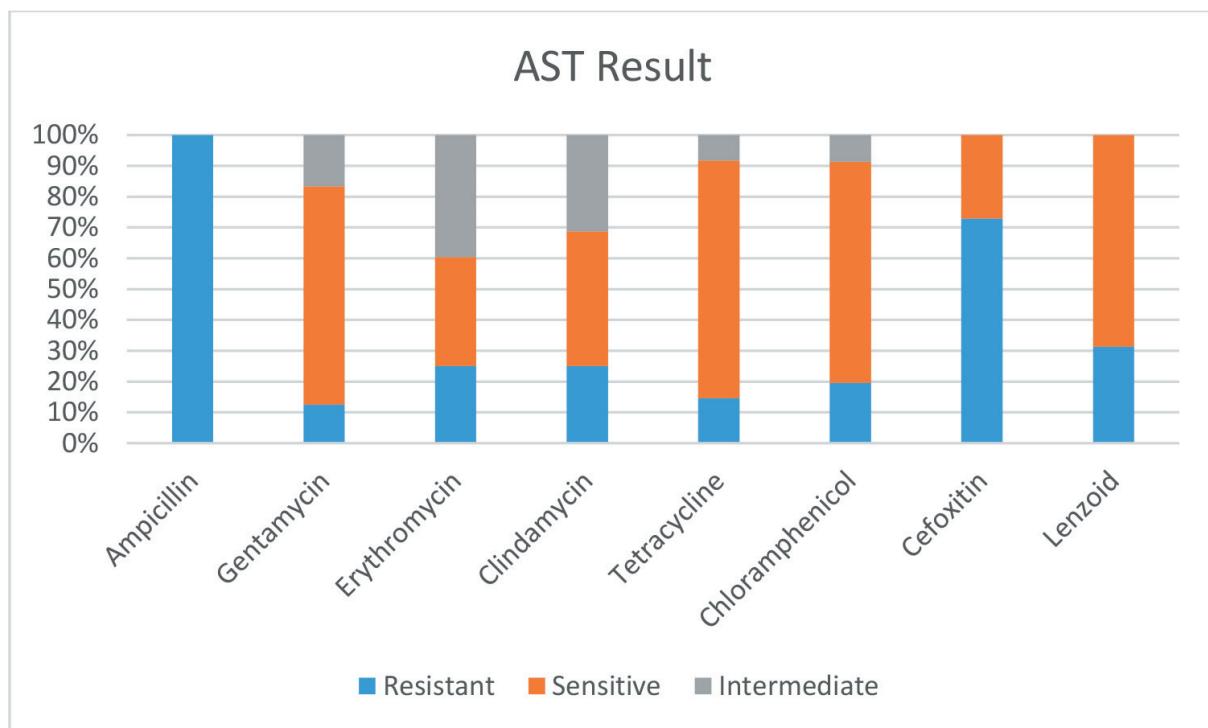
Biochemical tests: Confirmation of *E. coli* and *S. aureus* was done by biochemical tests using methods described elsewhere (Isenberg, 2007; Cheesbrough, 2006).

Table 1. Antimicrobial Susceptibility pattern of *Escherichia coli* Isolates

Antimicrobial Agents	Concentration (μg)	Zone Diameter (mm)		
		Sensitive (n, %)	Intermediate (n, %)	Resistant (n, %)
Ampicillin (AMP/AP)	10	≥ 17 (0, 0%)	14-16 (0, 0%)	≤ 13 (74, 100%)
Amoxicillin clavulanic (AMC/AUG)	30	≥ 18 (0, 0%)	14-17 (0, 0%)	≤ 13 (74, 100%)
Tetracycline (T/TE)	30	≥ 15 (58, 78.38%)	12-14 (0, 0%)	≤ 11 (16, 21.62%)
Ceftazidime (CAZ/C)	30	≥ 21 (59, 79.23%)	18-20 (0, 0%)	≤ 17 (15, 20.77%)
Chloramphenicol (CMP/CAC)	30	≥ 18 (63, 85.13%)	13-17 (0, 0%)	≤ 12 (11, 14.87%)
Gentamicin (GEN)	10	≥ 15 (74, 100%)	13-14 (0, 0%)	≤ 12 (0, 0%)
Ciprofloxacin (CIP)	5	≥ 26 (53, 71.62%)	22-25 (0, 0%)	≤ 21 (21, 28.38%)

A total of 48 *S. aureus*-positive strains (65%, 48/74) were isolated and identified. The highest resistance was found to Ampicillin (100%) and cefoxitin (72.9%), followed by linezolid (31.25%), erythromycin (25%),

Antibiotic Susceptibility Test: Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method on Mueller-Hinton Agar (MHA) following the CLSI guidelines (2023). Antibiotics tested were Ampicillin (10 μg), Amoxicillin-Clavulanate (30 μg), Gentamicin (10 μg), Ceftazidime (30 μg), Tetracycline (30 μg), Chloramphenicol (30 μg) and Ciprofloxacin (5 μg) for *E. coli*. For *S. aureus*, ampicillin, cefoxitin, linezolid, erythromycin, clindamycin, chloramphenicol, tetracycline and gentamycin were used. Multidrug resistance (MDR) was defined as resistance to ≥ 3 classes of antibiotics (Magiorakos et al., 2012).


Data Analysis: Data were entered into MS Excel 2016 and analyzed descriptively (mean, standard deviation, range, quartiles).

RESULTS

All 74 samples exhibited microbial growth. The mean TVC was 1.13×10^9 CFU/ml (SD: 5.62×10^8), ranging from 2.075×10^8 to 2.76×10^9 CFU/ml. While the Mean TCC was 7.40×10^7 CFU/ml (SD: 7.72×10^7), ranging from 2.0×10^5 to 5.28×10^8 CFU/ml.

E. coli was isolated from all samples, confirmed biochemically. AST showed 100% sensitivity to gentamicin (74/74) and 85.13% to chloramphenicol (63/74); 79.23% to ceftazidime (59/74); 78.38% to tetracycline (58/74); 71.62% to ciprofloxacin (53/74). There was 100% resistance to ampicillin and amoxicillin-clavulanate while 28.38% to Ciprofloxacin, 21.62% to tetracycline, 20.77% to ceftazidime, 14.87% to chloramphenicol (Table 1). 60.81% (45/74) isolates are multi drug resistant showing resistance to ≥ 3 classes of antibiotics.

clindamycin (25%), chloramphenicol (18.75%), tetracycline (14.5%) and gentamycin (12.5%) (Fig. 1). Out of the 48 verified *S. aureus* isolates, 18 (37.5%) were determined to be MDR.

Figure 1. Antimicrobial Susceptibility of *S. aureus* isolates

DISCUSSION

The nutrient-rich composition of raw milk makes it susceptible to contamination. The high TVC (1.13×10^9 CFU/mL) and TCC (7.40×10^7 CFU/mL) in this study exceeded the WHO/FAO limits ($<10^5$ CFU/mL TVC, $<10^2$ CFU/mL coliforms), indicating poor hygiene. Similar findings in Kathmandu (Bhattarai et al., 2017: 10^6 – 10^8 CFU/mL) and Chitwan (Koirala & Joshi, 2019: 8.5×10^8 CFU/mL) suggest widespread issues in Nepal due to inadequate refrigeration and poor sanitation. In India, Sarkar (2015) reported 10^7 – 10^9 CFU/mL, emphasizing the need for pasteurization.

E. coli detection signals fecal contamination. The antibiogram showed 100% resistance to beta-lactams, aligning with Sharma et al. (2021) in Nepal's Terai (100% ampicillin resistance). Hasan et al. (2015) in Bangladesh reported high resistance to Ampicillin (95%) and Tetracycline (60%). Lower resistance to gentamicin (0%) offers treatment options, but the 28.40% MDR rate is concerning and linked to veterinary antibiotic misuse.

Out of 74 milk samples, *Staphylococcus aureus* was detected in 48 samples, representing an overall prevalence of 65% (48/74). The isolation rate of *S. aureus* varies widely across different studies and regions.

Comparable results were reported by Alnakip (2009), El-Jakee et al. (2008), Jakeen et al. (2010), and Nassar (2013), who documented prevalence rates of 16% to 22.7% in cow milk. In contrast, significantly higher prevalence rates were reported by El-Gendy (2015), Ralls et al. (2008), and Wafy (2006), ranging from 60% to 90.4%. On the other hand, relatively lower isolation rates were found in studies by Amer et al. (2007) and Kivaria et al. (2006), which reported prevalence rates between 6.3% and 14.5%.

Liu et al. (2017) reported a 27.7% isolation rate of *Staphylococcus aureus* in 195 raw milk samples collected from northern China. Similarly, Zhao et al. (2020) found a 28.9% contamination rate in bulk tank milk samples from dairy farms in Shandong Province—both lower than the prevalence found in the current study. Contamination of raw milk with *S. aureus* commonly originates from mastitis-infected animals or human carriers. Poor hygiene practices during milking and processing significantly increase the risk of contamination (Schmidt et al., 2017).

CONCLUSION

The present study has shown that *Staphylococcus aureus* and *E. coli* is widely prevalent in milk in Janakpur city. The high rate of isolation indicates the higher

public health risk among this region. The results also emphasize the importance of regular microbiological examination of milk and milk products for the production of quality and safe products.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the staff of the Department of Microbiology of Ramsagar Ramswaroop Multiple Campus, Tribhuvan University, Janakpurdham, for support to conduct this project.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Aarestrup, F. M., & Wegener, H. C. (1999). The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in *Campylobacter* and *Escherichia coli*. *Microbes and Infection*, 1(8), 639–644. [https://doi.org/10.1016/S1286-4579\(99\)80064-1](https://doi.org/10.1016/S1286-4579(99)80064-1)

Acharya, P. P. (2006). *A textbook of dairy chemistry and technology*. Highland Publication.

Acharya, S., Bimali, N. K., Shrestha, S., & Lekhak, B. (2017). Bacterial analysis of different types of milk (pasteurized, unpasteurized and raw milk) consumed in Kathmandu Valley. *Tribhuvan University Journal of Microbiology*, 4, 32–38. <https://doi.org/10.3126/tujm.v4i0.21674>

Al-Mazeedi, H. M., Gholoum, F. A., & Al-Bader, A. (2013). Microbiological status of raw and pasteurized milk in the State of Kuwait. *International Journal of Engineering and Science*, 3(11), 15–19.

Alnakip, M. E. (2009). *Prevalence of gram-positive bacteria in milk and some dairy products* (Master's thesis). Zagazig University, Egypt.

Amer, I. H., Abdel-Aal, S. F., & Awad, E. I. (2007). Prevalence of bacterial content and food-borne organisms in raw cow's milk. *Alexandria Journal of Veterinary Science*, 26, 153–164.

Ariyal, C., Dahal, B. N., & Khadka, B. (2004). Microbial quality of milk available in Kathmandu Valley. *Journal of the Nepal Medical Association*, 43(153). <https://doi.org/10.31729/jnma.475>

Bhattarai, B., Maskey, S., & Lopchan, M. (2017). Stress and coping strategies among adolescents in private schools of Chitwan, Nepal. *Journal of Chitwan Medical College*, 6(3), 51–55.

Chakraborty, P. (2005). *A textbook of microbiology*. New Central Book Agency.

Clinical and Laboratory Standards Institute. (2023). *Performance standards for antimicrobial susceptibility testing* (33rd ed., CLSI supplement M100). CLSI.

Costard, S., Espejo, L., Groenendaal, H., & Zagmutt, F. J. (2017). Outbreak-related disease burden associated with consumption of unpasteurized cow's milk and cheese, United States, 2009–2014. *Emerging Infectious Diseases*, 23(6), 957–964. <https://doi.org/10.3201/eid2306.151603>

Darnton, N. C., Turner, L., Rojevsky, S., & Berg, H. C. (2007). On torque and tumbling in swimming *Escherichia coli*. *Journal of Bacteriology*, 189(5), 1756–1764. <https://doi.org/10.1128/JB.01501-06>

De Buyser, M. L., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. *International Journal of Food Microbiology*, 67(1–2), 1–17. [https://doi.org/10.1016/S0168-1605\(01\)00443-3](https://doi.org/10.1016/S0168-1605(01)00443-3)

Department of Food Technology and Quality Control. (2011). *Annual report 2068*. Government of Nepal.

Dhungel, D., Maskey, B., Bhattarai, G., & Shrestha, N. K. (2019). Hygienic quality of raw cow's milk at farm level in Dharan, Nepal. *Journal of Food Science and Technology Nepal*, 11, 39–46.

Dulo, F., Fufa, A., & Melaku, A. (2015). Antimicrobial susceptibility pattern of *Escherichia coli* isolated from raw milk samples of dairy farms in and around Debre Zeit, Ethiopia. *Veterinary World*, 8(3), 403–407. <https://doi.org/10.14202/vetworld.2015.403-407>

Eckles, C. H., Combs, W. B., & Macy, H. (1951). *Milk and milk products* (4th ed.). Tata McGraw-Hill.

European Food Safety Authority. (2021). The European Union One Health 2020 zoonoses report. *EFSA Journal*, 19(3), e06579. <https://doi.org/10.2903/j.efsa.2021.6579>

El-Gendy, A. M. (2015). *Bacteriological and molecular studies on *Staphylococcus* species isolated from raw milk* (Master's thesis). Benha University, Egypt.

El-Jakee, J. K., Aref, N. E., Ata, N. S., Bakry, M., Zouelfakar, S. A., & Elgabry, E. (2013). Characteristics of *Staphylococcus aureus* isolated from raw milk and human hand swab. *Journal of American Science*, 9(3), 40–46.

El-Jakee, J., Ata-Nagwa, S., Bakry, M., & Elgabry, E. (2008). Characteristics of *Staphylococcus aureus* strains isolated from human and animal sources. *American-Eurasian Journal of Agricultural & Environmental Sciences*, 4, 221–229.

El-Nahas, A. W., Mohamed, H. A., El-Barbary, H. A., & Mohamed, H. S. (2015). Incidence of *Escherichia coli* in raw milk and its products. *Benha Veterinary Medical Journal*, 29(1), 112–117.

European Union. (2020). *Exporting dairy products to the European Union: Total plate count (TPC) and bulk milk cell count*. EU.

Food Safety and Standards Authority of India. (2016). *Manual of methods of analysis of foods: Milk and milk products*. Ministry of Health and Family Welfare, Government of India.

Giacometti, F., Serraino, A., Finazzi, G., Daminelli, P., Losio, M. N., Tamba, M., Garigliani, A., Mattioli, R., Riu, R., & Zanoni, R. G. (2012). Field handling conditions of raw milk sold in vending machines: Experimental evaluation of the behaviour of *Listeria monocytogenes*, *Escherichia coli* O157:H7, *Salmonella Typhimurium*, and *Campylobacter jejuni*. *Italian Journal of Animal Science*, 11, e24. <https://doi.org/10.4081/ijas.2012.e24>

Harding, F. (1995). *Milk quality*. Springer.

Hasan, M., Islam, A., Mahmud, M. S., Uddin, A. S. M., & Ahmed, S. (2015). Microbial analysis of raw and pasteurized milk from selected areas of Dinajpur, Bangladesh. *Asian Journal of Medical and Biological Research*, 1(2), 292–296. <https://doi.org/10.3329/ajmbr.v1i2.25624>

Jackson, K. A., McDermott, P. F., White, D. G., & Barrett, J. B. (2012). Detection and enumeration of four foodborne pathogens in raw commingled silo milk in the United States. *Journal of Food Protection*, 75(10), 1759–1765. <https://doi.org/10.4315/0362-028X.JFP-12-136>

Isenberg, H. D. (2007). *Clinical microbiology procedures handbook* (2nd ed.). ASM Press.

Katakweba, A. A. S., Mulungu, L. S., Eiseb, S. J., Mahlaba, T. A., Makundi, R. H., Massawe, A. W., Borremans, B., & Belmain, S. R. (2012). Prevalence of haemoparasites, *Leptospira* and coccobacilli with potential for human infection in rodents and shrews. *African Zoology*, 47(1), 119–127. <https://doi.org/10.3377/004.047.0112>

Kivaria, F. M., Noordhuizen, J. P., & Kapaga, A. M. (2006). Evaluation of hygienic quality and associated public health hazards of raw milk in Tanzania. *Tropical Animal Health and Production*, 38, 185–194.

LeJeune, J. T., & Rajala-Schultz, P. J. (2009). Unpasteurized milk: A continued public health threat. *Clinical Infectious Diseases*, 48(1), 93–100. <https://doi.org/10.1086/595007>

Liu, H., Li, S., Meng, L., Dong, L., Zhao, S., Lan, X., Wang, J., & Zheng, N. (2017). Prevalence, antimicrobial susceptibility, and molecular characterization of *Staphylococcus aureus* isolated from dairy herds in northern China. *Journal of Dairy Science*, 100(11), 8796–8803.

Liu, Y., Liu, H., Song, Q., Zhou, X., & Cai, Y. (2020). Prevalence and characterization of pathogenic *Escherichia coli* in raw milk from dairy farms in China. *Journal of Dairy Science*, 103(4), 3390–3396.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. *Clinical Microbiology and Infection*, 18(3), 268–281. <https://doi.org/10.1111/j.1469-0691.2011.03570.x>

Nassar, M. K. (2013). *Phenotypic and genotypic characterization of enterotoxic *Staphylococcus aureus* from different sources with reference to antimicrobial resistance* (Master's thesis). Zagazig University, Egypt.

Ralls, V. L., Vieira, F. P., Ralls, R., & Fonseca, L. F. L. (2008). PCR detection of staphylococcal enterotoxins in *Staphylococcus aureus* strains

isolated from milk. *Veterinary Microbiology*, 132, 408-413.

Schmidt, A., Pratsch, H., Schreiner, M. G., & Mayer, H. K. (2017). Native vitamin B1 in milk using UHPLC. *Food Chemistry*, 229, 452-457. <https://doi.org/10.1016/j.foodchem.2017.02.104>

Wafy, Y. M. (2006). *Sanitary improvement of milk and dairy products in Assiut University hospitals* (Doctoral dissertation). Assiut University, Egypt.

Zhao, X., Liu, Y., Wang, J., Yang, B., & Zhang, Y. (2020). Contamination and antimicrobial resistance of *Staphylococcus aureus* in bulk milk from Shandong, China. *Italian Journal of Food Safety*, 9(2), 97-102. <https://doi.org/10.4081/ijfs.2020.8464>