Synthesis of Zinc Oxide Nanoparticles Using Aqueous Stem Extract of Colebrookea Oppositifolia Sm: Chracterization and Assessment of Biological Properties

Authors

  • Bimal G. C. Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Indra Ojha Central Department of Chemistry, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Pusp Raj Joshi Annapurna Research Center, Kathmandu, Nepal
  • Akash Budha Magar Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Sugam Sharma Department of Computer Engineering, Kathmandu Engineering College, Kathmandu, Nepal
  • Ram Chandra Basnyat 1Central Department of Chemistry, Institute of Science and Technology, Tribhuvan University, Kirtipur,
  • Khaga Sharma Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal

DOI:

https://doi.org/10.3126/jist.v30i2.76472

Keywords:

Antibacterial, Anticancer, Antioxidant,, Colebrookea oppositifolia Sm, Nanoparticles

Abstract

Colebrookea oppositifolia Sm. is a medicinal shrub traditionally used to treat various ailments, including urinary disorders, skin eruptions, and epilepsy. This study reports the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous stem extract of C. oppositifolia Sm. The synthesized ZnO NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, field emission scanning electron microscopy (FE SEM), and energy-dispersive X-ray spectroscopy (EDX). UV-Vis analysis of ZnO nanoparticles revealed a peak at 364 nm, while FTIR confirmed the role of plant secondary metabolites in capping, reducing, and stabilizing ZnO NPs. XRD analysis indicated a crystalline structure with an average grain size of 10.89 nm. EDX confirmed the elemental composition of zinc, carbon, and oxygen. The ZnO NPs exhibited strong antibacterial and antifungal activity against Staphylococcus aureus, Shigella sonnei, and Candida albicans. They also demonstrated moderate antioxidant activity and significant anticancer effects against HeLa and A549 cell lines, with IC50 values of 56.6 ± 1 µg/mL and 141.0 ± 0.0548 µg/mL, respectively. These findings highlight the potential of C. oppositifolia Sm. mediated synthesized ZnO NPs for biomedical, industrial, and packaging applications.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A.

K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 82, 353–368. https://doi.org/10.1016/j.rser.2017.09.046.

Abraham, J., Jose, B., Jose, A., & Thomas, S. (2020). Chapter 2 - Characterization of green nanoparticles from plants (pp. 21-39). In Thajuddin, N. & Mathew, S. (Eds.), Phytonanotechnology. Elsevier. https://doi.org/10.1002/9783527834143.ch9.

Acharya, R., Tettey, F., & Gupta, A. (2024). Bioinspired synthesis and characterization of zinc oxide nanoparticles and assessment of their cytotoxicity and antimicrobial efficacy. Discover Applied Sciences, 6, 85. https://doi.org/10.1007/s42452-024-05719-2.

Ahmed, S., Ahmed, M., Swami, B. L., & Ikram, S. (2016). A review on plant extract-mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007.

Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. https://doi.org/10.1016/j.jrras.2015.06.006.

Ajaib, M. A. M., Abid, S. A. S., Anjum, M. A. M., Noshad, Q., Siddiqui, M. F., & Iqbal, M. F. (2018). Phytochemical, antibacterial, and antifungal activities of leaves and bark of Colebrookea oppositifolia: an ethnomedicinal plant. Pure and Applied Biology, 7(1), 138-151. http://dx.doi.org/ 10.19045/bspab.2018.70017.

Akhil, K., & Khan, S. S. (2017). Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal, and crustacean systems. Journal of Photochemistry and Photobiology B: Biology, 167, 136–149. https://doi.org/10.1016/j.jphotobiol.2016.12.010.

Arakha, M., Saleem, M., Mallick, B. C., & Jha, S. (2015). The effects of interfacial potential on the antimicrobial propensity of ZnO nanoparticles. Scientific Reports, 5(1), 9578. https://doi.org/10.1038/srep09578.

Bacaksiz, E., Parlak, M., Tomakin, M., Ozcelik, A., Karakiz, M., & Altunbas, M., (2008). The effects of zinc nitrate, zinc acetate, and zinc chloride precursors on the investigation of structural and optical properties of ZnO thin films. Journal of Alloys and Compounds, 466(1), 447–450. https://doi.org/10.1016/j.jallcom.2007.11.061.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005.

Barzinjy, A. A. & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. Leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 991. https://doi.org/10.1007/s42452-020-2813-1.

Bhusal, M., Sharma, K., Magar, A. B., Pant, J., & Sharma, K. R. (2024). Chemical analysis and biological activities on solvent extracts from different parts of Rhus chinensis Mill. Natural product research, 1–7. Advance online publication. https://doi.org/10.1080/14786419.2024.2387831.

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834.

Chabattula, S. C., Gupta, P. K., Tripathi, S. K., Gahtori, R., Padhi, P., Mahapatra, S., & Biswal, B.

K. (2021). Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Materials Today Chemistry, 22, 100618. https://doi.org/10.1016/j.mtchem.2021.100618.

Espitia, P. J. P., Otoni, C. G., & Soares, N. F. F. (2016). Chapter 34 - Zinc oxide nanoparticles for food packaging applications (pp. 425-431). In Barros-Velázquez, J. (Ed.), Antimicrobial Food Packaging. San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-800723-5.00034-6.

Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Wajidullah, Akhter, N., Khattak, A., & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709–9722. https://doi.org/10.1021/acsomega.1c00310.

Fernández-García, M. & Rodriguez, J. A. (2011). Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. https://doi.org/10.1002/9781119951438.eibc0331.

He, K., Chen, N., Wang, C., Wei, L., & Chen, J. (2018). Method for determining crystal grain size by X-ray diffraction. Crystal Research and Technology, 53(2), 1700157. https://doi.org/10.1002/crat.201700157.

Huang, X., Zheng, X., Xu, Z., & Yi, C. (2017). ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. International Journal of Pharmaceutics, 534(1), 190–194. https://doi.org/10.1016/j.ijpharm.2017.10.008.

Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562.

Kahru, A., & Dubourguier, H. C. (2010). From ecotoxicology to nanoecotoxicology. Toxicology, 269(2-3), 105–119. https://doi.org/10.1016/j.tox.2009.08.016.

Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(7), 814–819. https://doi.org/10.1080/15533174.2011.591308.

Lü, J. M., Lin, P. H., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of cellular and molecular medicine, 14(4), 840–860. https://doi.org/10.1111/j.1582-4934.2009.00897.x.

Mellinas, C., Jiménez, A., & Garrigós, M. C. (2019). Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules, 24(22), 22. https://doi.org/10.3390/molecules24224048.

Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. M. R., Lopes, P. R. M., Moraes, P B., Montagnolli, R. N., Ferreira, H., & Bidoia, B. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12(1), 2658. https://doi.org/10.1038/s41598-022-06657-y.

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055. https://doi.org/10.1038/s41598-020-65949-3.Özgür, Ü., Alivov,Y. I., Liu C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., & Morko, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301. https://doi.org/10.1063/1.1992666.

Pal, K., Chakroborty, S., & Nath, N. (2022). Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications. Green Processing and Synthesis, 11(1), 951–964. https://doi.org/10.1515/gps-2022-0081.

Peralta-Zaragoza, O., Bermúdez-Morales, V. H., Pérez-Plasencia, C., Salazar-León, J., Gómez-Cerón, C., & Madrid-Marina, V. (2012). Targeted treatments for cervical cancer: a review. OncoTargets and therapy, 5, 315–328. https://doi.org/10.2147/OTT.S25123.

Perumal, P., Sathakkathulla, N. A., Kumaran, K., Ravikumar, R., Selvaraj, J. J., Nagendran, V., Gurusamy, M., Shaik, N., Gnanavadivel Prabhakaran, S., Suruli Palanichamy, V., Ganesan, V., Thiraviam, P. P., Gunalan, S., & Rathinasamy, S. (2024). Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells. Scientific reports, 14(1), 2204. https://doi.org/10.1038/s41598-024-52217-x.

Pokrajac, L., Abbas, A., Chrzanowski, W., Dias, G. M., Eggleton, B. J., Maguire, S., Maine, E., Malloy, T., Nathwani, J., Nazar, L., Sips, A., Sone, J., van den Berg, A., Weiss, P. S., & Mitra, S. (2021). Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS nano, 15(12), 18608–18623. https://doi.org/10.1021/acsnano.1c10919.

Priya, M., Selvi, B. K., & Paul, J. A. (2011). Green synthesis of silver nanoparticles from the leaf extract of Euphorbia hirta and Nerium indicum. Digest Journal of Nanomaterials & Biostructures, 6, 869–877.

Rauf, M. A., Oves, M., Rehman, F. U., Khan, A. R., Husain, N. (2019). Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomedicine & Pharmacotherapy, 116, 108983. https://doi.org/10.1016/j.biopha.2019.108983.

Sharma, N., Khajuria, V., Gupta, S., Kumar, C., Sharma, A., Lone, N. A., Paul, S., Meena, S. R., Satti, N. K., & Verma, M. K. (2021). Dereplication based strategy for rapid identification and isolation of a novel anti-inflammatory flavonoid by LCMS/MS from Colebrookea oppositifolia. ACS Omega, 6(45), 30241–30259. https://doi.org/10.1021/acsomega.1c01837.

Sharma, R.K. & Ghose, R. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceramics International, 41(1), 967–975. https://doi.org/10.1016/j.ceramint.2014.09.016.

Shilpakar, R., Paudel, B. D., Sharma, R., Silwal, S. R., Sapkota, R., Shrestha, P., Dulal, S., Piya, M. K., Tuladhar, S. M., Neupane, P., Dhimal, M, Niraula, A., & Uprety, D. (2022). Lung cancer in Nepal. Journal of Thoracic Oncology, 17(1), 22–29. https://doi.org/10.1016/j.jtho.2021.10.020.

Shin, S. A., Moon, S. Y., Kim, W. Y., Paek, S. M., Park, H. H., & Lee, C. S. (2018). Structure- based classification and anti-cancer effects of plant metabolites. International Journal of Molecular Sciences, 19(9), 2651. https://doi.org/10.3390/ijms19092651.

Shobha, N., Nanda, N., Giresha, A. S., Manjappa, P., Sophiya, P., Dharmappa, K. K., & Nagabhusana, B. M. (2019). Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Materials Science and Engineering C, 97, 842–850. https://doi.org/10.1016/j.msec.2018.12.023.

Shrestha, D., Budha Magar, A., Pakka, S., & Sharma, K. R. (2024). Phytochemical analysis, antioxidant, antimicrobial, and toxicity studies of Schima wallichii growing in Nepal. International Journal of Food Properties, 27(1), 273-285. https://doi.org/10.1080/10942912.2024.2304267.

Shrestha, D. K., Budha Magar, A., Bhusal, M., Baraili, R., Pathak, I., Joshi, P. R., Parajuli, N., & Sharma, K. R. (2024). Synthesis of silver and zinc oxide nanoparticles using Polystichum lentum extract for the potential antibacterial, antioxidant, and anticancer activities. Journal of Chemistry, 2024(1), 1876560. https://doi.org/10.1155/2024/1876560.

Shrestha, D. R., Jaishi, D. R., Ojha, I., Ojha, D. R., Pathak, I., Budha Magar, A., Parajuli, N., & Sharma, K. R. (2024). Plant assisted synthesis of silver nanoparticles using Persicaria perfoliata (L.) for antioxidant, antibacterial, and anticancer properties. Heliyon, 10(23), e40543. https://doi.org/10.1016/j.heliyon.2024.e40543.

Singh, K., Singh. J., & Rawat, M. (2019). Green synthesis of zinc oxide nanoparticles using Punica granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Applied Sciences, 1(6), 624. https://doi.org/10.1007/s42452-019-0610-5.

Slavin, Y. N. & Bach, H. (2022). Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials, 12(24), 4470. https://doi.org/10.3390/nano12244470.

Viswanatha, G. L., Shylaja, H., Kumar, H. Y., Venkataranganna, M. V., & Prasad, N. B. L. (2021). Traditional uses, phytochemistry, and ethnopharmacology of Colebrookea oppositifolia Smith: a mini-review. Advances in Traditional Medicine, 21(2), 209–229. https://doi.org/10.1007/s13596-020-00513-y.

Wu, F., Harper, B. J., & Harper, S. L. (2019). Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environmental Toxicology and Chemistry, 38(3), 591–602. https://doi.org/10.1002/etc.4349.

Yadav, S. & Maurya, P. K. (2021). Biomedical applications of metal oxide nanoparticles in aging and age-associated diseases. 3 Biotech, 11(7), 338. https://doi.org/10.1007/s13205-021-02892-8.

Yassin, M. T., Elgorban, A. M., Al-Askar, A. A., Sholkamy, E. N., Ameen, F., & Maniah, K. (2023). Synergistic anticandidal activities of greenly synthesized ZnO nanomaterials with commercial antifungal agents against Candidal infections. Micromachines, 14(1), 209. doi: https://doi.org/10.3390/mi14010209.

Zak, A. K., Abrishami, M. E., Majid, W. H. A., Yousefi, R., & Hosseini, S. M. (2011). Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceramics International, 37(1), 393–398. https://doi.org/10.1016/j.ceramint.2010.08.017.

Zhou, W. & Greer, H. F. (2016). What can electron microscopy tell us beyond crystal structures? European Journal of Inorganic Chemistry, 2016(7), 941–950. https://doi.org/10.1002/ejic.201501342.

Downloads

Published

2025-12-23

How to Cite

G. C., B., Ojha, I., Pusp Raj Joshi, Akash Budha Magar, Sugam Sharma, Ram Chandra Basnyat, & Sharma, K. (2025). Synthesis of Zinc Oxide Nanoparticles Using Aqueous Stem Extract of Colebrookea Oppositifolia Sm: Chracterization and Assessment of Biological Properties . Journal of Institute of Science and Technology, 30(2), 137–150. https://doi.org/10.3126/jist.v30i2.76472

Issue

Section

Research Articles