Mechanical, Thermal, and Optical Properties of MoTe2 and MoSe2 Monolayer TMDCs Materials: First-Principles Study

Authors

  • Tejendra Neupane Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Arpan Pokharel Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Kamal Khanal Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Sukrit Kumar Yadav Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Ganesh Paudel Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Om Shree Rijal Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal
  • Hari Krishna Neupane Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu Nepal

DOI:

https://doi.org/10.3126/jist.v30i2.82535

Keywords:

Anisotropy, Conductivity, DFT, Dynamical, Monolayer

Abstract

Materials can be used in the fields of electronic, optoelectronics, and thermoelectric devices based on their electronic, optical, mechanical and thermal properties. In this study, we explored the mechanical, thermal, and optical properties of MoSe2 and MoTe2 materials computationally, using density functional theory (DFT) method through quantum ESPRESSO computational software package. For the investigation of materials mechanical properties, their elastic constants and modulus of rigidities are analyzed. It is found that MoSe2 and MoTe2 have brittle, soft, and compressible properties. Both have anisotropic tendencies as suggested by Chung-Buessem anisotropic ratio. Phonon velocities, and Debye temperature of MoSe2 and MoTe2 are examined for the prediction of their thermal properties. Both materials have good thermal properties. Complex dielectric function has been deployed for the analysis of materials optical properties. The nature of different optical curves such as optical conductivity, absorption coefficient, transmission coefficient, and reflection coefficient (reflectivity) is studied from complex dielectric functions and found that both materials have optical anisotropy nature with greater degree of polarization in xx- & yy- plane than in zz-plane. Moreover, materials have semiconducting properties based on their absorption coefficient plots. They also have higher transmission occurred at low energy region (up to 1.2 eV), and higher absorption values at energy range (1.10 - 3.5) eV.  The results suggest that MoSe2 and MoTe2 materials can be used as effective absorbent materials in the infrared and visible light regions. Hence, these materials can be used to create more efficient photoelectronic as well as optoelectronic devices.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Al-Qaisi, S., Abu-Jafar, M., Gopir, G., Ahmed, R., Omran, S. B., Jaradat, R., Khenata, R. (2017). Structural, elastic, mechanical and thermodynamic properties of terbium oxide: First-principles investigations. Results in Physics, 7, 709-714.

Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909-917.

Aryal, S., Paudel, G., Nepal, M., Oli, D., Rijal, O. S., & Neupane, H. K. (2025). Water Adsorption on Pristine and Vacancy Defected h-BN Monolayer: First-principles Study. Journal of Institute of Science and Technology, 30(1), 73-81.

Baithi, M., & Duong, D. L. (2024). Doped, Two-Dimensional, Semiconducting Transition Metal Dichalcogenides in Low-Concentration Regime. Crystals, 14(10), 832.

Bartolotti, L. J., & Flurchick, K. (1996). An introduction to density functional theory. Reviews in Computational Chemistry, 187-216.

Brown, B. E. (1966). The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallographica, 20, 268-174.

Chang, Y. M., Lin, C. Y., Lin, Y. F., & Tsukagoshi, K. (2016). Two-dimensional MoTe2 materials: From synthesis, identification, and charge transport to electronics applications. Japanese Journal of Applied Physics, 55(11), 1102A1.

Chen, Z., Gandhi, U., Lee, J., & Wagoner, R. H. (2016). Variation and consistency of Young’s modulus in steel. Journal of Materials Processing Technology, 227, 227-243.

Cohen, M. L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B, 32(12), 7988.

Dal Corso, A. (1996). A pseudopotential plane waves program (pwscf) and some case studies. Quantum-mechanical Ab-initio Calculation of the Properties of Crystalline Materials, 155-178. Berlin, Heidelberg: Springer Berlin Heidelberg.

D’angelo, M., & Matsuda, I. (2019). Monatomic Two-Dimensional Layers. Elsevier.

Giustino, F. (2014). Materials modelling using density functional theory: Properties and Predictions. Oxford University Press.

Han, D., Qin, H., Tu, H., Chen, Y., Sun, H., Xue, Y., & Zeng, X. (2025). Comparative Analysis of Phonon Thermal Transport Properties in 2D Janus TMDC Monolayers: Insights from First-Principles Calculations. Journal of Electronic Materials, 54(3), 2180-2191.

Kanoun, B. M. (2018). Tuning magnetic properties of two-dimensional MoTe2 monolayer by doping 3d transition metals: Insights from first principles calculations. Journal of Alloys and Compounds, 748, 938-942.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), 1133.

Kokalj, A. (2003). Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 28(2), 155-168.

Komatitsch, D., Vilotte, J.-P., Vai, R., Castillo-Covarrubias, J. M., & Sanchez-Sesma, F. J. (1999). The spectral element method for elastic wave equations—application to 2-d and 3-d seismic problems. International Journal for Numerical Methods in Engineering, 45(9), 1139-1164.

Körner, W., & Elsässer, C. (2010). First-principles density functional study of dopant elements at

grain boundaries in ZnO. Physical Review B-Condensed Matter and Materials Physics, 81(8), 085324.

Kuc, A., Heine, T., & Kis, A. (2015). Electronic properties of transition-metal dichalcogenides. MRS Bulletin, 40(7), 577-584.

Kumar, V. P., Raut, P., Panda, D. K., & Rashed, A. N. Z. (2025). Exploring Next Generation TMDC Materials: A Comprehensive Review of Their Classifications, Properties, and Applications. Silicon, 1-23.

Li, Y., Feng, Z., Sun, Q., Ma, Y., Tang, Y., & Dai, X. (2021). Electronic, thermoelectric, transport and optical properties of MoSe2/BAs van der Waals heterostructures. Results in Physics, 23, 104010.

Lin, Z., Yang, X., He, J., Dong, N., & Li, B. (2025). Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors. Applied Physics Reviews, 12(1), 011301.

Luo, Z., Hao, J., & Li, J. (2022). The optical properties of MoSe2 in bulk and monolayer with different crystal orientation based on first-principles calculations. Academic Journal of Materials & Chemistry, 3(1), 51-57.

Ma, Y., Dai, Y., Guo, M., Niu, C., Lua, J., & Huanga, B. (2011). Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Physical Chemistry Chemical Physics, 13, 15546-15553.

Mia, A. K., Meyyappan, M., & Giri, P. (2023). Two-dimensional transition metal dichalcogenide based biosensors: from fundamentals to healthcare applications. Biosensors, 13, 169.

Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104.

Nakamura, K. (2018). First-principles simulation on thermoelectric properties of transition metal dichalcogenide monolayers. Japanese Journal of Applied Physics, 57(6S1), 06HE04.

Nepal, M., Paudel, G., Aryal, S., Devkota, A., & Neupane, H. K. (2024). Adsorption of water on vacancy defective h-bn bilayer at b and n sites: First-principles calculation. Bibechana, 21(2), 129-141.

Neupane, H. K., & Adhikari, N. P. (2020). Structure, electronic and magnetic properties of 2D Graphene-Molybdenum diSulphide (G-MoS2) Heterostructure (HS) with vacancy defects at Mo sites. Computational Condensed Matter, 24, e00489.

Neupane, H. K., & Adhikari, N. P. (2020). Tuning Structural, Electronic, and Magnetic Properties of C Sites Vacancy Defects in Graphene/MoS2 van der Waals Heterostructure Materials: A First‐Principles Study. Advances in Condensed Matter Physics, 2020(1), 8850701.

Neupane, H. K., & Adhikari, N. P. (2021). Electronic and magnetic properties of defected MoS2 monolayer. BIBECHANA, 18(2), 68-79.

Novoselov, Kostya, S., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., & Geim, A. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102, 10451-10453.

Orio, M., Pantazis, D. A., & Neese, F. (2009). Density functional theory. Photosynthesis Research, 102, 443-453.

Lawaetz, P. (1972). Stability of the wurtzite structure. Physical Review B, 5(10), 4039.

Pathak, A. (2019). Effect of Cr on electronic and mechanical properties of TiS2 compound: A first-principles study. Journal of Applied Research and Technology, 17(4), 302-312.

Paudel, G., Nepal, M., Aryal, S., Devkota, A., & Neupane, H. K. (2023). Effect of water adsorption on bilayer h-bn: First-principles study. Journal of Nepal Physical Society, 9(2), 56-62.

Pumera, Z. S. (2014). Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry, 2, 8981-87.

Puotinen, D., & Newnham, R. (1961). The crystal structure of molybdenum ditelluride. Acta Crystallographica, 14, 691-692.

Rassay, S. S. (2017). Electrical, electronic and optical properties of MoSe2 and WSe2. New Jersey Institute of Technology.

Reuss, A. J. Z. A. M. M. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58.

Rijal, O. S., Neupane, H. K., Oli, D., Neupane, R. K., Shrestha, P., Sharma, S., ... & Parajuli, R. (2025). A first-principles investigation of the structural, mechanical, dynamic, electronic, magnetic, and optical properties of Ti2AC (A= Cd, S) MAX phase compounds. Journal of Physics D: Applied Physics, 58(12), 125102.

Ruppert, C., Aslan, O. B., & Heinz, T. F. (2014). Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Letters, 14(11), 6231-6236.

Tsai, M. L., Su, S. H., Chang, J. K., Tsai, D. S., Chen, C. H., Wu, C. I., ... & He, J. H. (2014). Monolayer MoS2 heterojunction solar cells. ACS Nano, 8(8), 8317-8322.

Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., Grossman, J.C., & Wu, J. (2012). Thermally driven crossover from indirect toward direct bandgap in 2d semiconductors: MoSe2 versus MoS2. Nano Letters, 12(11), 5576-5580.

Van Voorhis, T., & Scuseria, G. E. (1998). A novel form for the exchange-correlation energy functional. The Journal of Chemical Physics, 109(2), 400-410.

Vellinga, M., De Jonge, R., & Haas, C. (1970). Semiconductor to metal transition in molybdenum ditelluride. Journal of Solid State Chemistry, 2(2), 299–302.

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699-712.

Wang, Y., Wisesa, P., Balasubramanian, A., Dwaraknath, S., & Mueller, T. (2021). Rapid generation of optimal generalized Monkhorst-Pack grids. Computational Materials Science, 187, 110100.

Zeng, F., Zhang, W. B., & Tang, B. Y. (2015). Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M= Mo, W; X= O, S, Se, Te): a comparative first-principles study. Chinese Physics B, 24(9), 097103.

Downloads

Published

2025-12-23

How to Cite

Neupane, T., Pokharel, A., Khanal, K., Yadav, S. K., Paudel, G., Rijal, O. S., & Neupane, H. K. (2025). Mechanical, Thermal, and Optical Properties of MoTe2 and MoSe2 Monolayer TMDCs Materials: First-Principles Study. Journal of Institute of Science and Technology, 30(2), 55–64. https://doi.org/10.3126/jist.v30i2.82535

Issue

Section

Research Articles